
IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020 11895

A Proactive Reliable Mechanism-Based

Vehicular Fog Computing Network
Luobing Dong , Qiufen Ni, Weili Wu, Senior Member, IEEE, Chuanhe Huang, Member, IEEE,

Taieb Znati , Member, IEEE, and Ding Zhu Du, Member, IEEE

Abstract—As vehicles are becoming more and more intelli-
gent, mobile data traffic in vehicular ad hoc network (VANET)
has been increasing dramatically. This makes the communica-
tion capacity of VANET systems and the computing resources of
vehicles insufficient. In the meantime, location-aware large-scale
distributed services with very low latency and high reliability
are demanded by most of the novel functions, such as accident
alarming, and congestion warning, in the intelligent transporta-
tion system. To meet these claimed characteristics of VANET,
we first present a novel architecture that integrates vehicular fog
computing and vehicle-to-vehicle (V2V) communication technolo-
gies. Lower latency and higher quality services can be supplied to
vehicles by nearby fog servers, which are virtualized from vehi-
cles that locate close enough and communicate using the V2V
link. However, like all collaborative systems, computing reliabil-
ity is vital to collaborative VANET. In this article, we design a
novel energy-efficient proactive replication mechanism. Follower
vehicles calculate with a lazy rate act as backups of host vehicles
to ensure the reliability of the system. Considering the time sen-
sitivity of computing requirements in VANET, the upper bound
on the total number of failures is proposed through theoretical
analysis. Then, the lower bound on the lazy calculating rate of
followers is derived by balancing the tradeoffs between delay and
energy. A fast algorithm for searching this lower bound based on
the discrete Newton method is also proposed. Results of numer-
ical experiments show that our new mechanism is effective in
energy saving and reliability enhancing.

Index Terms—Fog computing, discrete Newton method, reli-
ability, vehicle-to-vehicle (V2V), vehicular ad hoc network
(VANET).

I. INTRODUCTION

V
EHICULAR ad hoc network (VANET) is an impor-

tant part of the intelligent transportation system (ITS),

Manuscript received May 5, 2020; revised June 7, 2020; accepted June
30, 2020. Date of publication July 7, 2020; date of current version
December 11, 2020. This work was supported in part by the National
Science Foundation under Grant 1747818 and Grant 1907472; in part by the
Fundamental Research Funds for Central Universities under Grant JB161004;
in part by the Department of Energy under Contract DE-SC0014376; and in
part by the National Science Foundation of China under Grant 61772385 and
Grant 61572370. (Corresponding author: Luobing Dong.)

Luobing Dong is with the School of Computer Science and Technology,
Xidian University, Xi’an 710071, China (e-mail: lbdong@xidian.edu.cn).

Qiufen Ni and Chuanhe Huang are with the School of Computer Science,
Wuhan University, Wuhan 430072, China (e-mail: niqiufen@whu.edu.cn;
huangch@whu.edu.cn).

Weili Wu and Ding Zhu Du are with the Department of Computer
Science, University of Texas at Dallas, Richardson, TX 75080 USA (e-mail:
weiliwu@utdallas.edu; dzdu@utdallas.edu).

Taieb Znati is with the Computer Science Department, University of
Pittsburgh, Pittsburgh, PA 15260 USA (e-mail: znati@cs.pitt.edu).

Digital Object Identifier 10.1109/JIOT.2020.3007608

which can support many applications, such as information

dissemination, accident alarming, congestion warning, navi-

gation, entertainment, and so on. It brings many conveniences

to people’s lives and makes traffic safer [1]. VANETs are

expected to accommodate a large number of data-heavy mobile

devices and multiapplication services. However, as the num-

ber of vehicles increases rapidly, the mobile data traffic in

VANET is also increasing explosively. This large amount of

data causes the insufficiency of communication capacity and

computing resources. In order to solve these resource short-

ages, some technologies emerge, such as vehicle-to-vehicle

(V2V) communication and fog computing.

To solve the novel challenging needs of modern trans-

portation systems, such as very low latency and location

awareness, VANETs cannot heavily depend on the remote

resources of cloud servers [2]. Because the traditional cloud

computing brings intolerant delay and latency to VANETs. As

an example, the modern smart city system wants to prevent

traffic accidents from some unforeseen circumstances, such

as landslides and icy pavement, by analyzing the road sur-

rounding pictures that are collected by vehicles. However,

sometimes accidents just happen so quickly that pictures have

not even been transmitted to the cloud server from vehicles.

Edge computing and fog computing can minimize delay and

latency by moving cloud computing capabilities closer to the

vehicles. This makes them two of the natural solutions of

VANETs [2]–[4]. Unlike edge computing that deploys servers

on special nodes such as base stations (BSs) network con-

troller/macro BS, fog computing can place its fog servers

everywhere [4]. Especially, vehicles can also serve as fog

servers. In the above example, if scene photographs can be

analyzed locally by the collaboration of surrounding vehicles,

there is still time to avoid accidents. Fog computing couples

with high-speed transmission provided by the V2V link can

just make this kind of local vehicular collaborative computing

possible.

Infrastructures such as roadside units (RSUs) are always

used as fog servers to serve nearby vehicles [5]. But adding

and upgrading infrastructures in VANET will inevitably lead

to high business costs. In fact, fog service can be obtained in a

cheaper way. As we all know, not all vehicles in VANET have

the same configuration. This makes the computing capabili-

ties of vehicles different from each other. In general, low-end

vehicles have poor computing resources. High-end vehicles

have richer computing resources which are always redun-

dant with respect to their normal demand. Although low-end

2327-4662 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11896 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

vehicles are equipped with computing resources that are suf-

ficient to handle normal conditions, they may also get some

complex requirements that exceed their capabilities. To com-

plete these complex requirements, low-end vehicles may need

help. Without additional investment, high-end vehicles could

be more ideal helpers than RSUs. Since vehicles manage their

own storage and computational resources, virtualization tech-

nology enables them to act as fog servers for nearby vehicles.

This proximity-service requirement in this mobile environ-

ment requires more advanced communication technologies.

V2V communication technology enables vehicles to commu-

nicate directly without going through the BS [6]. It removes

the connection delay and has larger communication capacity

and longer communication distance. Furthermore, as the dom-

inant communication technology between mobile terminals in

the 5G system, V2V will also make a significant decrease in

the number of RSUs. These properties of V2V enable vehicles

to supply efficient fog services to other nearby vehicles.

In this article, we present a novel VANET architecture

which integrates V2V communication technology into vehic-

ular fog computing network. This architecture is termed as

V2V-enabled vehicular fog computing architecture (VVFCA).

By identifying the amount of idle computing resources of sur-

rounding vehicles, vehicles choose some near-located helpers

to complete their computing tasks together. All vehicles which

are working on one same task form a virtual cluster. This col-

laborative model can efficiently enhance a vehicle’s ability to

handle complex requirements with low latency.

However, as with all collaborative systems, the reliability of

collaboration among different vehicles is vital to collaborative

VANET (especially for VVFCA-based networks) [7], [8]. Any

computational failure in any vehicle will inevitably lower the

computational efficiency of the whole task. In addition, failures

in VANET can lead to more serious consequences, such as

traffic jams and traffic accidents.

The reliability issue of collaborative VANET mainly comes

from the continuous changing of the relative location of vehi-

cles. This change will cause some vehicles to be no longer able

to collaborate with some other vehicles which are in the same

cluster. For example, one high-end vehicle is helping another

low-end vehicle to complete a computing task. But the high-

end vehicle must exit the highway immediately. The leave of

this high-end vehicle will lead to the abort of the ongoing task.

In fact, the change of vehicles’ relative positions that may dis-

rupt some existing collaborative relationships always occurs at

the end of a travel phase of one vehicle. Most vehicles always

know their leave ahead of time. If we can take some mea-

sures in this interval, the reliability of the system could be

improved.

Different from passive maintenance and detection of the sta-

bility of collaborative clusters [9]–[11], we design a proactive

collaborator replication mechanism. Each vehicle has one lazy

shadowing follower for its collaborative computing tasks. This

shadowing follower executes the same task at a reduced rate.

When one vehicle wants to leave the cluster, it will proactively

notify its shadowing follower to speed up its calculation. This

proactive replication mechanism is energy efficient and can

improve the computing reliability of VVFCA-based networks.

The key contributions of this article are summarized as

follows.

1) We define a new paradigm of V2V-enabled vehicular

fog computing networks. By virtualizing vehicles as fog

servers and transferring data through V2V links among

vehicles, this new architecture can effectively improve

the communication capacity and computing capacity of

VANET.

2) We address the reliability issue of VANET and design a

novel energy-efficient proactive replication mechanism.

Vehicles solve the computational reliability problem

by themselves instead of relying on the central nodes

of clusters. This distributed construction improves the

robustness of the system.

3) We first propose the difference operator for the progress

difference between two failures and the upper bound

on the tolerant total number of failures. Based on these

two parameters, the expected completion time of the

VVFCA-based system is quantified.

4) The lower bound on the follower’s lazy calculating rate

is given by balancing the tradeoffs between delay and

energy. We innovatively propose a fast algorithm for this

lower bound searching based on the discrete Newton

method.

The remainder of this article is organized as follows.

Section II discusses the related work. We construct the new

architecture in Section III. The proactive reliable mechanism

is also designed in this section. In Section IV, we give the

theoretical analysis of the proposed reliable mechanism. The

lower bound of the lazy following rate is proposed by using

the discrete Newton method. Section V presents the simulation

results, and finally, the conclusion is presented in Section VI.

II. RELATED WORK

In this section, we conclude some existing works related

to our study from three perspectives: 1) fog computing in

VANET; 2) D2D in VANET; and 3) discrete Newton method.

A. Fog Computing in VANET

Many works have already studied considering vehicles as

fog computing infrastructures, especially integrating vehicu-

lar fog computing with software-defined networking (SDN)

technology [12]–[17]. These methods can improve the QoS of

vehicular applications and protocols. Because it offloads the

computing services from the cloud to the edge of networks and

makes network control decisions locally. Park and Yoo [18]

believed that the mobility of vehicles leads to unstable links

between vehicles. They introduce fog computing and SDN

technology into VANET and classify mobile information

into three categories. In order to help the controller super-

vise network resources, they measure the signal strength

of the link between the controller and each switch. They

present an intelligent maintenance method combining with

network information and give some applications in VANET.

Tang et al. [19] proposed a parking slot allocation strategy and

a four-layer architecture. They introduce fog computing into

VANET to provide real-time parking slot information. They

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11897

comprehensively consider the factor that affects decision mak-

ing and give drivers options from which to choose their own

preferences.

There are also some researches on the reliability issue in

fog computing-based VANET. Xiao et al. [20] studied the

situation that potential processing nodes may have failures.

They use a task allocation strategy to increase the reliability

of VANET and also introduce delay constraint and retrans-

mission mechanism into hybrid SDN/fog computing VANET

system to enhance the real-time characteristics of VANET.

Pereira et al. [2] proposed a proof-of-concept mechanism to

perform data analysis in hybrid VANET/fog architecture. It

can detect potential city traffic anomalies and then deliver

bus stop arrival time to end devices. This method enables the

development of reliable smart mobility applications.

These above researches prove that fog computing is com-

pletely feasible for VANETs. Some basic mechanisms, such as

QoS guarantee and real-time services have been well imple-

mented. We intend to take the matter further and try to

virtualize the vehicle as a fog server to make the system more

efficient. Although researchers have conducted researches on

the reliability issue in fog computing-based VANETs, their

solutions are mainly to passively maintain the stability of the

vehicle cluster. We will propose a proactive guarantee scheme

for the first time.

B. D2D in VANET

When both communication parties are vehicles, D2D can

be named as V2V. Researchers always use these two con-

cepts vaguely in VANETs. Therefore, we will comprehensively

review D2D in VANET here. Min et al. [21] studied the

reliability in D2D communication networks. They propose

an interference retransmission method to improve the relia-

bility of the D2D receiver. The channel assignment problem

in cellular-VANET heterogeneous wireless networks has been

studied in some research. Feng et al. [22] studied the resource

allocation problem to maximize the overall network through-

put while guaranteeing the QoS requirements for both D2D

users and regular cellular users (CUs). To avoid interference in

D2D communication, the authors develop a three-step scheme.

It investigates power control for each D2D pair and its possible

CU partners to maximize overall throughput and determines

a specific CU partner for each admissible D2D pair. In the

VANET scenario, the problem of maximizing overall through-

put has attracted attention. Wei et al. designed a resource

allocation strategy to jointly address the spectrum allocation,

power controlling, and spectrum sharing. Their objective is

to maximize the total throughput of CU’s equipment and

nonsafety vehicular user’s equipment. They also propose a

three-step decomposing scheme, which is nested with the inte-

rior point method and the matching algorithm. Meng et al. [23]

considered the problem of resource reallocation and proposed

a time dynamic problem. Their objective is to constrain the

network reallocation rate and increase the number of guar-

anteed services at a low cost in a resource-limited vehicular

network. There are also some studies on D2D discovery in

VANET. Chour et al. [24] focused on how to effectively reduce

network load in the VANET. They offload some D2D dis-

covery traffic and process D2D sessions involving vehicular

users. The inherent information of the RSU can be used for

the proposed scheme. An analytical model is developed to

analyze the duration of D2D discovery in a highway scenario.

From the above researches, we know that most V2V com-

munication problems, such as reliability, resource allocation,

and interference, in VANETs have been studied. This means

low cost and reliable V2V communication in VANETs is feasi-

ble. We will use this as a basis to achieve low cost and reliable

collaborative computing among vehicles by integrating V2V

and fog computing.

C. Discrete Newton Method

Newton method is a classic and powerful method in contin-

uous nonlinear optimization. In 1993, Radzik [25] proposed a

discrete Newton method for the linear fractional combinatorial

optimization problem, the core of which is to search the unique

root of a piecewise linear decreasing function. The number of

searching iterations is polynomial in the input size but inde-

pendent of the input numbers. They also provide a strong

polynomial-time algorithm. The discrete Newton method is

used to solve the discrete nonlinear system generated by each

step after discretization [26]. The authors also analyzed the

convergence of their proposed scheme. The work in [27] points

out that Newton’s method is a popular numerical method for

the solution of the equilibrium of equations. The numerical

procedure does not converge within a certain neighborhood of

the critical state of equilibrium. Riks [27] extended the stability

analysis beyond the stability limit.

The discrete Newton method gives a fast way to find the

unique root of a piecewise linear decreasing function. In

Section IV, a fast searching algorithm for the lower bound

of followers’ lazy computing rate is designed based on the

discrete Newton method.

III. V2V-ENABLED VEHICULAR FOG

COMPUTING NETWORK

In this section, we propose a novel architecture to supply

fog services using moving vehicles in VANET based on V2V

communication. First, with V2V, communication between two

adjacent vehicles can be enhanced. Moving vehicles can com-

municate directly with each other to exchange data, computing

requirements, and so on. Second, vehicles that are working for

the same computing task form a virtual cluster. The host vehi-

cle is responsible for task allocation and cluster management.

Third, each vehicle in the cluster chooses one following replica

(we call it as a follower) from nearby vehicles for its comput-

ing task which is calculated for the host vehicle. The follower

calculates at a very low rate. When one vehicle wants to leave

the cluster, its follower will speed up computation and takes

the place of the leaving vehicle as a new helper for the host

vehicle. The task scheduler of this follower is in charge of the

detailed implementation of speeding up computation. When

it receives the leave notification, the follower will send the

speeding up requirement to its task scheduler. There are many

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11898 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

methods to do this, such as promoting priority as highest and

increasing CPU usage time.

A. Vehicles as Fog Servers

As an established paradigm, the cloud computing system

makes resources, such as storage, applications, and comput-

ing, available to customers. Customers can acquire on-demand

resources based on a pay-per-usage basis. Because of its theo-

retically infinite virtual resources, the cloud computing system

used to be widely accepted as the central computational back-

bone of most mobile networks including VANET. But with

the increase of vehicles, location-aware large-scale distributed

services with very low and predictable latency are demanded.

Due to the high latency of long-distance transmission, lack

of location awareness, and missing geographically distributed

data centers close to vehicles in VANET, cloud computing is

not able to meet the claimed characteristics of VANET. As

mentioned above, many vehicles, especially high-end vehi-

cles, have redundant computing resources. Because vehicles

manage their own storage and computational resources, it is a

promising approach to sharing these resources and use them

to supply close fog service.

Fig. 1 shows our solution of using vehicles as fog servers.

Virtualization technology is used to create isolated virtual

resources from the physical hardware of vehicles. These virtual

resources are dynamically shared as fog computing services

among vehicles. At the lowest level of the stack in Fig. 1,

there are physical resources that belong to a physical host

vehicle. Physical resources represent the collection of CPU

cores, memory, storage, and so on. The host operating system

(OS) in the second-level manages these physical resources

and transforms the program of higher levels into instruc-

tions that can be directly executed by the machine. The host

OS is the original factory supplied. The original factory-

supplied applications will run as normal. The virtualization

layer deals with network, storage, and computation virtu-

alization. Through virtualization, resources of one vehicle

are assigned to clients dynamically on-demand in the form

of fog services/applications. Each application has a corre-

sponding service. In a virtualization environment, different

fog services/applications are isolated from each other in their

respective virtual partition.

A variety of conventional complex applications, such as

long content delivery, image recognition, and road condition

recognition, are preinstalled as fog applications in each vehi-

cle. When one vehicle runs some of these applications and

its own resources are short, it will apply for assistance from

nearby vehicles. These assistances will be provided in the form

of fog services by nearby vehicles that are preinstalled corre-

sponding fog services. The detailed process will be described

in the following sections.

There are many reasons why high-end vehicles agree to

share their computing resources with other vehicles, such

as making money and earning more opportunities to borrow

resources from high-end vehicles. Service incentive is a hot

research topic in the field of cloud computing. There are many

mature mechanisms [28].

Fig. 1. Hardware virtualization of fog computing service.

Fig. 2. Architecture for the proposed framework.

B. V2V-Enabled Vehicular Fog Computing Network

The network based on VVFCA aims to improve the com-

putational ability of each vehicle by using fog services which

are supplied by nearby vehicles. It provides a reliable dis-

tributed computing environment. Complex computing tasks of

one vehicle will be split into segments such that collaborative

computing can be provided by nearby vehicles. The task initia-

tor is responsible for the allocation and maintenance of all task

fragments. BSs are responsible for collecting the location and

redundant resource information of vehicles and broadcasting

this information to vehicles. Fig. 2 shows the new architecture.

It is divided into three layers: 1) physical layer; 2) functional

layer; and 3) application layer.

Physical Layer: A set of moving vehicles connect to the

wireless network via a wireless interface, such as a wireless

fidelity access point (WiFi AP) and BS. Vehicles report their

information, including location, free resources, and willingness

as a helper to its connected WiFi AP or BS periodically. WiFi

AP or BS will broadcast these information. Vehicles usually

execute tasks by themselves. However, they may sometimes

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11899

get some complex requirements that are beyond their own

capabilities. At this time, they will choose some vehicles as

their helpers from nearby available fog servers based on the

information they got from the broadcast from BSs or WiFi

APs. Here, available fog servers represent vehicles that can

meet all the following conditions: have redundant resources,

wish to be a helper, supply the corresponding virtual service,

and within the communication range of V2V. One impor-

tant point is that the communication range of V2V refers to

the maximum communication distance between two vehicles,

which depends on the wireless technology used in the network,

such as 5G and WiFi. We call the help seeker as the host vehi-

cle for the task. It will split the task into multiple segments

and allocate them to the helpers. The host vehicle and all of

its helpers form a virtual cluster through V2V links. The host

vehicle maintains the cluster and collects the execution results

of task segments. The cluster will be disbanded after all results

of task segments have been reported to the host vehicle.

Functional Layer: It consists of four modules: 1) task

management; 2) reliability management; 3) information man-

agement; and 4) data security. The task management module

is responsible for task splitting, task allocation, and results

in consolidation. The virtual cluster is also managed by this

module. Due to the uncertainty of vehicle movement, the relia-

bility of cooperation between vehicles must be considered. As

already mentioned, we design a proactive reliable replication

mechanism (PRRM) for the system and equip it into the relia-

bility management module. Vehicles submit their information

periodically. BS broadcasts all information it has through

the information management module periodically. The data

security module secures data and protects vehicles’ privacy

by encrypting sensitive data in the fog system and ensuring

compliance with applicable regulations.

Application Layer: The system supplies all applications and

their corresponding fog services in this layer. Host vehicles run

applications and call corresponding fog services which are run

in their helpers.

C. Proactive Reliable Replication Mechanism

In VANETs, reliability is an important criterion for most

applications. It is mainly derived from realistic nonuniform

distributions of vehicles and dynamically changed relative

locations among vehicles which are caused by the random

vehicular mobility. For the VVFCA-based networks, it affects

the reliability of the virtual clusters and finally affects the reli-

ability of computing for which the clusters are working. To

solve this problem, the conventional method is to create stable

enough clusters. But this goal is very hard to achieve. Because

vehicles tend to move between points of interest that are often

changed in time. Different from the conventional methods,

we assume that the virtual cluster is not stable and design

a novel proactive replication mechanism for the reliability of

collaborative computation in the VVFCA-based network.

In VVFCA-based networks, there are two main issues that

will affect the computation reliability of the system: 1) com-

putation failure and 2) vehicle leave. We will give the defi-

nition of these two issues before designing the corresponding

solutions.

Definition 1 (Computation Failure): When the execution of

the current task reaches a point from where it cannot go any

further due to some internal issues with its host, then this is

called computation failure.

A computation failure could occur at a host, helper, or fol-

lower in VVFCA-based networks. Reasons for a computation

failure could be any internal error, such as disk failure, system

crash, and so on. When a failure occurs at a host or helper, its

follower will fill its place. We will give the details later. For

simplify, when a failure occurs at a follower, we just remove

this follower and choose a new follower for its followee. If

there is no available candidate follower and its followee hits

a failure, the task will be halt.

Definition 2 (Vehicle Leave): When one helper or follower

cannot continue to serve its host or followee, then this is called

vehicle leave.

A vehicle leave can be either a follower leave or a helper

leave. In essence, one vehicle leave refers to that a vehicle

jumps out of the available V2V communication range of its

partner (host or followee) and can no longer supply collab-

orative computation. The reason may be changing route, no

catching up, and so on. For a helper leave, its follower will

prop the task up if the follower is in the available communi-

cation range of the host. If the follower is not in the available

communication range of the host, the current task will be ter-

minated. We will give the details later. If a follower leaves,

we just choose a new follower for its followee.

We will describe the details of the PRRM as follows.

We assume that vehicle vi with maximum calculation speed

si gets a complex application requirement R i of size ri. This

requirement has to be completed in timax � (ri/si). Obviously,

this vehicle must ask for help from nearby fog servers. We

call this vehicle vi as the host vehicle for R i. The host

vehicle can choose n − 1 closest fog servers to help it in

m ≥ n − 1 available nearby fog servers. We use vector

V i = (v0
i , v1

i , . . . , vn−1
i) to represent the host vehicle and all

its helpers. The original requirement is split into a set of n

task segments F i = (f 0
i , f 1

i , . . . , f n−1
i). For simplicity of dis-

cussion, we assume that task segment f
j
i is allocated to helper

v
j
i and task f 0

i is allocated to vi. We use v0
i to represent vi. The

maximum calculation speed of v
j
i is s

j
i. vi and all its helpers

consist of the virtual cluster Ci for R i. For the reliability of

the calculation of each task segment f
j
i , we set one shadow-

ing replication for v
j
i in another vehicle v

j′
i . We call v

j′
i as the

follower of v
j
i. v

j′
i can be a vehicle either in Ci or not in Ci.

But v
j′
i must be an available fog server both for v

j
i and vi. v

j′
i

will execute f
j
i at a very low lazy speed s

j′
i .

It is important to point out that a helper vehicle helps only

one host vehicle at a time. A follower follows only one fol-

lowee. If one vehicle receives more than one request from the

nearby vehicles to help them at the same time, it can only

accept one and ignores others.

We need to deal with four situations to ensure reliability:

1) helper computation failure; 2) follower computation failure;

3) helper leave; and 4) follower leave. For the host compu-

tation failure, the solution is the same as that of the helper

computation failure.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11900 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Fig. 3. One example of VVFCA-based network work scenario. There are
two different scenarios at two different times. In the time interval, helper2
has one failure and helper3 leaves the cluster.

Helper Computation Failure: Assuming a failure occurs at

time tf on v
j
i, if it has a follower v

j′
i , and v

j′
i is in the available

V2V communication range of vi v
j′
i will speed up its execu-

tion for f
j
i to its highest speed immediately. At the same time,

v
j′
i changes to be the main process of f

j
i . It will choose one

follower to execute its shadowing replication. This whole pro-

cess can ensure fast recovery from failure. If v
j
i has no follower

when the failure occurs, the task halts.

Follower Computation Failure: If there occurs a failure on

a follower v
j′
i , we just remove it and choose another follower

for v
j
i, as long as there are available candidate vehicles.

Helper Leave: As already mentioned, every helper may

leave the cluster. Although the host vehicle cannot predict the

leave of any helper, it can be informed by the leaver ahead

of time. We assume that one helper v
j
i will leave at tl. It will

inform its host and follower v
j′
i in advance. If its follower v

j′
i

is not in the available communication range of vi, the task

halts. Because whether to choose a new helper or return the

current task f
j
i to vi may cause the entire computing of the

requirement to time out. If its follower v
j′
i is in the available

communication range of vi, v
j′
i will work as the new helper

of vi. The follower will speed up its execution for f
j
i to its

highest speed immediately. At the same time, v
j
i continues its

computing until tl. v
j′
i will choose one follower to execute its

shadowing replication. After v
j
i leaves, v

j′
i will work as the

main processor of f
j
i .

Follower Leave: If a follower v
j′
i leaves, we just choose a

new follower for v
j
i.

As long as a failure or a helper leave occurs, the correspond-

ing process will be executed. After all task segments have been

completed, requirement R i is finished. If the total number of

failures is larger than a preset threshold nmax
i , the requirement

will be stated as fail and all processes will be terminated.

We summarize the procedure of our novel PRRM in

Algorithm 1. The host vehicle needs to specify V i for the

set of helpers, F i for the set of task segments, and nmax
i for

the maximum total number of failures. The execution starts by

simultaneously launching 2n processes (lines 1 and 2). Each

helper has one associated follower. The host also has one asso-

ciated follower. During the execution, the task management

Algorithm 1 PRRM

Require: V i,F i, nmax
i

Ensure: Execution status

1: start (n − 1) pairs of helper and follower

2: start one pair of host and follower

3: num = 0

4: Status = “Execution Fails”

5: while execution not done or num ≤ nmax
i do

6: if one failure of helper v
j
i is detected AND it has

follower then

7: speed up v
j′
i and replace the jth helper by v

j′
i

8: choose one follower for v
j′
i

9: copy the status of v
j′
i to its follower

10: num = num + 1

11: else

12: Return Status

13: end if

14: if one failure of follower v
j′
i is detected OR one leave

message from follower v
j′
i is detected then

15: Select a new follower for v
j
i

16: end if

17: if one leave message from helper v
j
i is detected AND

it has follower in the available communication range then

18: speed up v
j′
i and replace the jth helper by v

j′
i

19: choose one follower for v
j′
i

20: copy the status of v
j′
i to its follower

21: else

22: Return Status

23: end if

24: end while

25: if num ≤ nmax
i then

26: Status = “Execution Success”

27: end if

28: Return Status

module runs a healthy monitor. The monitor can be imple-

mented by some conventional algorithms such as the heartbeat

algorithm. When a failure occurs, the recovery procedure will

be executed (lines 6–13). The follower of this fail helper will

speed up and take its place as a new helper. The new helper

will choose a new follower for itself and launch the follower’s

process. On the other hand, if one of the helpers wants to leave

the cluster (lines 17–23), it will inform the host vehicle and

its follower. Its follower will speed up and replaces this helper

after it leaves. The new helper will choose a new follower for

itself and launch the follower’s process. If the total number of

failures is larger than nmax
i , the whole execution will be termi-

nated (line 5). This process continues until all task segments

in F i are successfully completed.

Fig. 3 shows one example of VVFCA-based network work

scenario. There are 13 vehicles on the highway at the begin-

ning. Four vehicles form a virtual cluster to work for a

complex requirement of the host vehicle. The entire task is

divided into four task segments which are assigned to the

four cars in the cluster. After some time, a failure occurs on

helper 2. Its follower (follower 2) will act as the new helper

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11901

(helper 4) of task 2. Helper 4 will choose a vehicle as its fol-

lower (follower4). After helper3 leaves the cluster, follower 3

acts as the main process (helper 5) of task 3. Helper 5 will

choose a vehicle as its follower (follower 5).

In this section, we innovatively propose a vehicle hardware

virtualization solution and integrate it with the V2V communi-

cation. This allows vehicles to use their idle resources to serve

nearby vehicles while meeting their own needs. We also design

a novel reliable collaborative computing scheme among vehi-

cles based on a proactive replication mechanism. This scheme

can simultaneously guarantee the computing efficiency and

energy efficiency.

IV. THEORETICAL ANALYSIS

There are a number of challenges and design decisions

that need to be addressed when we introduce PRRM into the

VVFCA-based network. In this section, two special parame-

ters of PRRM are given: 1) the upper bound on the tolerant

total number of failure and 2) difference operators for the

progress difference between any two failures. Based on these

two parameters, the expected completion time of one complex

requirement is quantified. Considering the practical application

of PRRM, we give the lower bound on the lazy calculating

speed of each follower using the discrete Newton method. All

the analyses below are under the assumption that all task seg-

ments of requirement R i start at time 0, and all task segments

of R i can be asynchronously executed.

A. Expected Completion Time

Since the helper who is going to leave the cluster will notify

its follower and host in advance, its follower can catch up with

the progress in time. Therefore, the leave of any helper will

not result in any computational delay. The leave of helpers

will not affect the whole completion time of complex require-

ments. However, each failure of helpers will inevitably lead to

a delay in the completion time of the whole task. This delay

will continue to accumulate. In fact, every requirement in the

system should have its maximum tolerant latency which is the

so-called time sensitive. We use T i to denote the maximum

tolerant latency of requirement R i and use rT i to denote the

real completion time of R i. When rT i > T i, all results of task

segments which are belonging to R i must be dropped due to

expiration. We assume that Ti represents the completion time

of R i when there is no failure and helper leaving.

Property 1: For any complex requirement R i, the comple-

tion time of any task segment of R i only depends on the

vehicle in which it is executed.

Proof: We assume that rT
j
i represents the real completion

time of task f
j
i , and rT i = (rT0

i ,
rT1

i , . . . ,
rTn−1

i) represents

the set of all task segments’ completion time. Because any

two task segments are asynchronously executed, we can get

that ∀f
j
i ∈ F i, and ∀f k

i ∈ F i,
rT

j
i is independent to rTk

i .

Let Q i = (q0
i , q1

i , . . . , qn−1
i) denote the set of real delay

time of F i. q
j
i denotes the total delay time of f

j
i , which results

from all failures and helper leaving. T
j
i represents the com-

pletion time of task f
j
i without any failure and helper leaving,

and T i = (T0
i , T1

i , . . . , Tn−1
i) represents the set of all task seg-

ments’ completion time without any failure and helper leaving.

From Property 1, we can get Property 2.

Property 2: The result of R i is available if and only if

max{T0
i + q0

i , T1
i + q1

i , . . . , Tn−1
i + qn−1

i } < Ti + T i.

Proof: From Property 1, we know that ∀f
j
i ∈ F i and

∀f k
i ∈ F i, their real completion time is independent. Therefore

∀f
j
i ∈ F i, if its real completion time is larger than Ti + T i,

R i will time-out.

From Property 1, we know that the movement and task exe-

cution of vehicles are independent and identically distributed.

So the lifetime of n task segments can be modeled as n inde-

pendent concurrent renewal processes. We assume that E(X
j
i)

represents the expected time interval between any two failures

of f
j
i , and N

j
i(t) represents the number of failures of f

j
i within

time t. From the elementary renewal theorem, we know that

N
j
i(t) =

t

E
(

X
j
i

) . (1)

We assume that all followers have the same lazy calculating

speed. ∀f
j
i ∈ F i, s

j′
i = s′

i. From Property 2 and formula (1),

we can get the following theorem.

Theorem 1: The system has one upper bound on the toler-

ant total number of failure for each task segment. We denote

this upper bound as nmax
i . It satisfies

nmax
i =

(

Ti + T i
)

− maxj∈[0,n]

{

T
j
i

}

E
(

X
j
i

) . (2)

Proof: ∃f
j
i ∈ F i such that T

j
i = maxl∈[0,n]{T

l
i }. From

Property 2, we know that f
j
i has the smallest tolerant expected

total number of failures. We denote this number as nmax
ij .

Obviously, nmax
i = nmax

ij because of Property 2. The time for

these failures is (Ti +T i)− T
j
i . From formula (1), we can get

formula (2).

In Algorithm 1, we can input nmax
i as the result of for-

mula (2). We use lr
j
i to denote the recovery time of task f

j
i

from its lth failure. We define the difference operators for the

progress difference between the lth failure and the (l + 1)th

failure as the following.

Definition 3: The difference operator for the progress dif-

ference between the lth failure and the (l+1)th failure of task

f
j
i is denoted by l�

j
i. It satisfies

lr
j
i =

(

l�
j
i −

l�
j
i

ls
j
i

s′
i

)

1

(l+1)s
j
i

. (3)

Here, ls
j
i represents the processing rate of the lth helper of

task f
j
i . Fig. 4 shows an example of l�

j
i. The computing delay

by the lth helper can be calculated by formula (4). ([l�
j
i]/[ls

j
i])

denotes the calculation time requested for �
j
i after the lth fail-

ure occurs. [(l�
j
i)/(

1s
j
i)] denotes the calculation time requested

for �
j
i if the lth failure did not occur

ld
j
i =

l�
j
i

ls
j
i

−
l�

j
i

1s
j
i

. (4)

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11902 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

Fig. 4. Example of l�
j
i of task f

j
i . There are two failures. Solid black line

represents the first helper, solid blue line represents the second helper, and
solid orange line represents the third helper. Solid purple line represents the
followers with very small rate.

We use p
j
i to denote the probability that f

j
i has a failure in

a unit time. Then, 1 − p
j
i denotes the probability that f

j
i is

processed without failure in a unit time. lW
j
i represents that

there are exactly l failures in the whole computing process

of task f
j
i . If the whole computing process is split into rT

j
i

independent units, lW
j
i can be calculated by formula (5) based

on the binomial distribution

lW
j
i = Cl

rT
j
i

·
(

p
j
i

)l

·
(

1 − p
j
i

)rT
j
i−l

. (5)

We use eT
j
i to denote the expected completion time

of task f
j
i . From formulas (3)–(5), we can get for-

mula (6). The proof of formula (6) will be given in

the Appendix. In formula (6), eT
j
i consists of three

parts. T
j
i

∑nmax
i

k=1
kW

j
i is the processing time consumed

by helper.
∑nmax

i

k=1
kW

j
i

∑k
l=1([

l�
j
i]/[(l+1)s

j
i] + ((1/[(l+1)s

j
i]) −

[1/(1s
j
i)])

(l+1)�
j
i) is the total processing time consumed by

followers. s′
i

∑nmax
i

k=1
kW

j
i

∑k
l=1([

l�
j
i]/[(ls

j
i
(l+1)s

j
i)]) is the lazy

processing time consumed by all followers which has been

repeatedly counted

eT
j
i = T

j
i

nmax
i

∑

k=1

kW
j
i − s′

i

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

l�
j
i

(

ls
j
i
(l+1)s

j
i

)

+

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

(

l�
j
i

(l+1)s
j
i

+

(

1

(l+1)s
j
i

−
1

1s
j
i

)

(l+1)�
j
i

)

.

(6)

For the simplicity of discussion, we ignore the time which

is used to consolidate the results of all split tasks and the time

which is used to transfer messages between vehicles. From

Property 1, we can get the following theorem.

Theorem 2: If eT i represents the expected completion time

of R i

eT i = max
j∈[1,n]

(

eT
j
i

)

. (7)

Proof: From Property 1, we know that the values of
eT

j
i and eTk

i are independent with each other for any two

task segments f
j
i and f k

i . Because all task segments are exe-

cuted asynchronously, the maximum execution time of all task

segments is the execution time of the whole requirement.

B. Lower Bound on the Lazy Calculating Speed of Followers

As already mentioned, followers can execute at a very low

speed to save energy. However, from formulas (6) and (7),

we know that the initial execution speed of the follower s′
i is

inversely proportional to the expected completion time of the

whole requirement. Obviously, the lower s′
i is, the more energy

the corresponding follower can save in the whole process, and

the more delay will be introduced, and vice versa. In appli-

cation, s′
i can be derived by balancing the tradeoffs between

delay and energy. In this section, we present the lower bound

on s′
i from a series of mathematical analysis of formula (7).

Because rT
j
i ≥ T

j
i , the system will have a greater lower

bound of s′
i when we change rT

j
i to T

j
i in formula (5).

Moreover, we can get T
j
i at the beginning. Therefore, we use

T
j
i to calculate the approximate value of lW

j
i by

lW
j
i ≈ Cl

T
j
i

·
(

p
j
i

)l

·
(

1 − p
j
i

)T
j
i −l

. (8)

We use �
j
i = {1�

j
i,

2�
j
i, . . . ,

nmax
i �

j
i} to denote the set of all

different operators of f
j
i . For the simplicity of discussion, we

define A
j
i, f (�

j
i), and g(�

j
i) as follows:

A
j
i = T

j
i

nmax
i

∑

k=1

kW
j
i (9)

f
(

�
j
i

)

=

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

l�
j
i

(

ls
j
i
(l+1)s

j
i

) (10)

g
(

�
j
i

)

=

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

(

l�
j
i

(l+1)s
j
i

+

(

1

(l+1)s
j
i

−
1

1s
j
i

)

(l+1)�
j
i

)

. (11)

By substituting formulas (9)–(11) into formula (6), we can

rewrite formula (6) as eT
j
i = A

j
i + g(�

j
i) − s′

if (�
j
i). From

Theorem 2, we can get

eT i = max
j∈[1,n]

(

A
j
i + g

(

�
j
i

)

− s′
if

(

�
j
i

))

. (12)

Here, A
j
i is a constant. We consider eT i, g(�

j
i), and f (�

j
i) as

functions of s′
i.

eT i is rewritten as f T i(s
′
i). Then, we can rewrite

formula (12) as a function of s′
i

f T i

(

s′
i

)

= max
j∈[1,n]

(

g
(

�
j
i

)

− s′
if

(

�
j
i

)

+ A
j
i

)

. (13)

Obviously, for any fixed l�
j
i and ls

j
i (l ∈ [0, n]), g(�

j
i) −

s′
if (�

j
i) + A

j
i is a linear decreasing function on s′

i. Hence,

we have Theorem 3 is true. Its proof will be given in the

Appendix.

Theorem 3: Function f T i(s
′
i) = maxj∈[1,n](g(�

j
i)−s′

if (�
j
i)+

A
j
i) is a piecewise linear decreasing function with a unique

root ∗s′
i.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11903

From Theorem (3), we know that f T i(s
′
i)− (T i +Ti) is also

decreasing and has only one root ∗s′
i. It is the lower bound of

the calculating speed of followers.

Theorem 4: For requirement R i, ∗s′
i is the lower bound of

the calculating speed of followers.

Proof: T i + Ti is the maximum tolerant completion time

of R i and is constant. Function f T i(s
′
i) is piecewise linear

decreasing. Thus, f T i(s
′
i) − (T i + Ti) is also piecewise linear

decreasing. Then ∀s′
i > ∗s′

i,
f T i(s

′
i)− (T i +Ti) < 0. Therefore

∀s′
i > ∗s′

i,
f T i(s

′
i) < (T i + Ti). This means that when ∀s′

i <

∗s′
i the requirement R i can never be completed within the

deadline.

As already mentioned, the discrete Newton method can get

the root of piecewise linear decreasing function with the num-

ber of iteration is polynomial in the input size. Based on the

discrete Newton method, we design the lower bound searching

algorithm for followers’ calculating speed which is shown as

Algorithm 2.

The set of difference operators �
j
i cannot be got before exe-

cution. We can use history values as its approximation (line 1).

For each iteration, we use the greedy algorithm to find u� with

which the expected completion time has the maximum value

(line 5). If the root is not reached, then us′
i can be got by the

Newton Method in each iteration (line 11).

V. PERFORMANCE EVALUATION

In this section, we will show the simulations of proposed

algorithms. The experiment preparation will be discussed with

parameter settings in Section V-A. Results analysis will be

given in Section V-C.

A. Experimental Setup

To validate the performance of PRRM, we do some

performance evaluations. In our simulation, we consider the

highway VANET environment. We randomly generate traffic

on the highway. Ten vehicles (hosts) with one complex com-

putation requirement and 100 vehicles (helpers and followers)

with random amounts of free computing resources are ran-

domly scattered on the highway. We assume that the largest

V2V communication distance is R. One complex requirement

will be randomly split into l segments. l vehicles that have free

resources and within the available communication distance

of one host vehicle are randomly chosen as helpers for this

host. One helper will choose one follower from the vehicles

that have free resources and within the available communica-

tion distance. Here, having available communication distance

means that the distance between the two communication sides

is less than R. When failures or leaves occur, new helpers

and followers will be selected according to the same rules as

above. All processes are simulated by MATLAB. In the fol-

lowing discussion, the number of task segments equals to l.

All task segments will be assigned among vehicles optimally:

vehicles with more computing resources get task segments

with larger sizes. The two typical events (failure and vehi-

cles leave) in the system follow the Poisson distribution. All

results are obtained from the average results of 1000 repetitive.

All results are normalized.

Algorithm 2 Lower Bound Searching Algorithm

Input: Ti, Ti, (T
1
i , T2

i , . . . , Tn
i), s

j
i

Output: Lower bound of s′
i

1: Get the history �
j
i

2: A = max (T1
i , T2

i , . . . , Tn
i)

3: u = 1, us′
i = 0, state = False

4: While state = False

5: Find u� of f T i(s
′
i) by greedy algorithm

6: bu = f T i(s
′
i)

7: if bu = 0 then

8: state = True

9: else

10: u = u + 1

11: us′
i =

sig(u�)+A
j
i

f (u�)

12: end if

13: end While

14: Return us′
i

To show the performance of our proposed PRRM algo-

rithm, we compare it with the central cloud-based (CC)

algorithm [29] and the double-head clustering (DHC)

algorithm [30].

CC Algorithm: This algorithm is a general centralized algo-

rithm. Vehicles send their computation requirements and initial

data to the central cloud. The cloud is responsible for complex

calculation and returns results to vehicles.

DHC Algorithm: This algorithm is a full backup algorithm.

To make the vehicle collaboration cluster more stable, the

algorithm chooses two functioning cluster heads which backup

for each other in a single cluster.

B. Evaluation Metrics

Various evaluation metrics are used in our experiments.

Reliability: The main purpose of collaborative comput-

ing in the VANETs is to help vehicles quickly complete

complex requirements with limited resources in a limited

time. We dispatch some complex requirements to the host

vehicles which are beyond their capability. If the system

is not reliable enough, collaborators cannot guarantee to

submit its collaborative computing results to the host vehi-

cles in time. Much time will be wasted on finding new

collaborators and coordinating task assignments after com-

putation failures or vehicle leaves occur. Therefore, we

use the completion rate of complex requirements in a

limited time to measure the reliability of the proposed

algorithm.

Efficiency: We use the total power consumption (TPC)

and the total execution time (TET) of complex require-

ments to measure the energy efficiency of our proposed

algorithm.

Because the energy consumption in this system is mainly

electricity power consumption, we use TPC to represent the

energy consumption in the experiments. Here, TPC = Eho +

Ehe +Ef .Eho is the TPC of the host. Eho is the TPC of helpers.

Ef is the TPC of followers.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11904 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

(a) (b) (c)

Fig. 5. Reliability and overhead related results.

C. Results Analysis

Reliability: In collaborative VANET, computation failure

probability, frequency of vehicles’ route changing, and traf-

fic density are the three main factors that affect the system

reliability. We use CFFC to represent the computation fail-

ure probability and the frequency of vehicles’ route changing

of each vehicle. The effects of CFFC and traffic density on

reliability will be discussed in the following.

Fig. 5(a) shows the reliability comparison results among

PRRM, CC, and DHC under different CFFC and constrained

completion time. In these experiments, the traffic density is

set to a high level. When the CFFC is very low (0.01) and the

constrained completion time is long (1 s), the reliability of CC

is the best. PRRM is slightly weaker than DHC. Because the

communication time is sufficient, and there are few failures

and leaves. The reliability of the central cloud outperforms

that of the mobile fog servers. However, when the CFFC is

larger (0.05) and the constrained completion time is shorter

(100 ms), some client vehicles no longer have enough time to

exchange data with the cloud server. The reliability of CC sig-

nificantly decreases. The gain of DHC and PRRM emerges.

Because closer collaborative computation is more time sav-

ing than the remote central cloud. When the CFFC is 0.1 and

the constrained completion time is 10 ms, PRRM gets the top

performance. Computation failures will cause many computa-

tion restarts. This will lead to many computation time out in

DHC and CC.

Fig. 5(b) shows the effect of traffic density. We set con-

strained completion time as 100 ms and CFFC as 0.01. For

PRRM, we simply use the number of helpers associates with

each host vehicle, which is described as l above to describe

the traffic density. For DHC and CC, the corresponding traf-

fic densities are (1/2) + 1 and (1/2) separately. When the

traffic density is large, all algorithms perform well. When the

traffic density is low, DHC and PRRM have poor performance.

For host vehicles, there are few vehicles in their available V2V

communication ranges in this situation. Then, they can hardly

find enough helpers. They complete their computing tasks

mainly by their own computing resources. Therefore, collab-

orative VANET algorithms are more suitable for high-density

traffic scenarios.

As a brief summary of reliability comparison, PRRM is

more reliable when the mobility of vehicles is higher and

traffic density is lower.

Energy Efficiency: We continue to increase the number of

task segments from 1 to 10 to observe the TPC and TET.

Results are compared with that of DHC.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Energy efficiency results.

Fig. 6(a) and (b) shows the experimental results. We set the

probability of failure as 0.05. The ratio of the calculating speed

of followers to that of helpers is set to 0.6. Because we ignore

the energy consumption of message communication and the

failure probability is very small, the energy consumption of

two mechanisms has only minor ascension as the number of

task segments increases. At the same time, the number of clus-

ter header exchanging in DHC is very small. Thus, its TPC is

smaller than our mechanism. This means DHC consumes less

energy than our mechanism for the same requirement when

the failure probability is very small. But when some vehi-

cles in the cluster leave, especially the cluster header leaves,

many task segments must be reexecutated from the beginning

under DHC. The energy consumption and time consumption

are unacceptable. But for our mechanism, the extra energy

consumption is very small. Therefore, when the failure proba-

bility is high, our mechanism is energy efficient while ensuring

reliability.

As the number of task segments increases, the average TET

of the two different mechanisms drops rapidly. It is reasonable.

Because more task segments will activate more vehicles to cal-

culate for the same requirements collaboratively. A computing

restart after a failure always takes a lot of time. This time is

much larger than the time it takes for the follower to catch

up on the progress. Therefore, the TET of our mechanism is

smaller. As a brief summary of energy efficiency metrics com-

parison between PRRM and DHC, PRRM has higher energy

efficiency under all scenarios.

Relationship Between the Probability of Failure and TPC:

In Fig. 6(c) and (d), we show the change in the average TET

and TPC of the system as the probability of failure increases

from 0.1% to 5%. The ratio of the calculating speed of fol-

lowers to that of helpers is set to 0.6. The increasing of the

probability of failure means that there are more computing

failures or helper leaving from the cluster during the whole

collaborative computing of complex requirements. The calcu-

lation accelerating process of followers will be activated more

times to ensure that task segments can be completed correctly.

This process is time consuming, so the rise in the TET curve

is reasonable. The TPC will increase accordingly.

Effect of the Calculating Speed of Followers: We continue

to increase the ratio of the calculating speed of followers to

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11905

Fig. 7. Example of f T i(s
′
i). Solid line is the segments which have the

maximum values of g(�
j
i) − s′if (�

j
i) + A

j
i.

that of helpers from 0.1 to 1.0. Fig. 6(e) and (f) shows the

change of the average TET and TPC under our mechanism.

The number of task segments is 12. The increasing of the ratio

means the decrease of the time that is used by followers to

catch up the progress of the helpers which have failures. We

can see from the figure that as the followers’ calculation accel-

erates, the average TET is decreasing. At the same time, TPC

has the opposite trend. It increases rapidly as the calculation

speed of followers increases. A higher calculation speed con-

sumes more energy. So it is very meaningful to calculate the

lower bound of the calculating speed of followers.

Overhead: The overhead mainly comes from Hello packets

messages, cluster creation messages, cluster maintenance mes-

sages, communication messages, and synchronization mes-

sages. We use the average total amount of all messages but the

core data exchange in the execution process of a requirement

as the overhead of compared algorithms. Fig. 5(c) shows the

overhead comparison results between PRRM and DHC. The

first observation of this figure tells that the higher CFFC,

the higher overhead in PRRM and DHC. This is reason-

able. A higher CFFC refers to a higher probability of vehicle

leaves. Then, more clusters need to recoordinate their struc-

tures. There will be more cluster creation messages and cluster

maintenance messages in PRRM and DHC. The overhead

of PRRM is a little higher than DHC in the situation with

high CFFC. Because more role-exchange messages between

helpers and followers are needed to maintain the cluster. These

messages are nonexistent in DHC.

VI. CONCLUSION

In this article, we address the reliability problem in col-

laborative VANET. First, we define VVFCA for VANET. By

virtualizing vehicles as fog servers and enabling nearby vehi-

cles to communicate with V2V links, this new architecture

brings many advantages. Second, we design PRRM to improve

the reliability of the system. Through theoretical analysis, we

get the upper bound on the tolerant total number of failures.

The expected completion time and the lower bound on follow-

ers’ calculating speed are also present. The simulation results

demonstrate that our proposed algorithm can improve the relia-

bility and save energy, compared to other algorithms. In future

work, we will study situations that one helper vehicle helps

more than one host vehicle at the same time, and that one

follower follows more than one followee at the same time.

APPENDIX A

PROOF FOR FORMULA (6)

We assume that the maximum number of failure of task f
j
i

is nmax
i . p

j
i denotes the probability that f

j
i has a failure in a

unit time. The probability that there is only one failure is

1W
j
i = C1

rT
j
i

· p
j
i ·

(

1 − p
j
i

)rT
j
i−1

.

The probability of that there are exactly two failures is

2W
j
i = C2

rT
j
i

·
(

p
j
i

)2
·
(

1 − p
j
i

)rT
j
i−2

.

The probability of that there are exactly three failures is

3W
j
i = C3

rT
j
i

·
(

p
j
i

)3
·
(

1 − p
j
i

)rT
j
i−3

. . .

The probability of that there are exactly nmax
i failures is

nmax
i W

j
i = C

nmax
i

rT
j
i

·
(

p
j
i

)nmax
i

·
(

1 − p
j
i

)rT
j
i−nmax

i
.

The probability that there is no failure occurs is

0W
j
i = 1 −

nmax
i

∑

k=1

kW
j
i .

The recovery time from the lth failure is

lr
j
i =

(

l�
j
i −

l�
j
i

ls
j
i

s′
i

)

1

(l+1)s
j
i

.

The computing delay by the lth new helper is

ld
j
i =

l�
j
i

ls
j
i

−
l�

j
i

1s
j
i

.

Therefore, the expected completion time of f
j
i is

0W
j
i · T

j
i + 1W

j
i ·

(

T
j
i + 1r

j
i + 1d

j
i

)

+ · · · + nmax
i W

j
i ·

⎛

⎝T
j
i +

nmax
i

∑

l=1

(

lr
j
i + ld

j
i

)

⎞

⎠

= T
j
i

nmax
i

∑

k=1

kW
j
i +

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

(

lr
j
i + ld

j
i

)

= T
j
i

nmax
i

∑

k=1

kW
j
i − s′

i

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

l�
j
i

(

ls
j
i
(l+1)s

j
i

)

+

nmax
i

∑

k=1

kW
j
i

k
∑

l=1

(

l�
j
i

(l+1)s
j
i

+

(

1

(l+1)s
j
i

−
1

ls
j
i

)

(l+1)�
j
i

)

.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

11906 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 12, DECEMBER 2020

APPENDIX B

PROOF OF THEOREM 3

For any fixed l�
j
i and ls

j
i (l ∈ [0, n]), because f (�

j
i) > 0,

g(�
j
i)−s′

if (�
j
i)+A

j
i is a linear decreasing function on s′

i (dash

lines in Fig. 7).

For any interval of s′
i, there must be a set of l�

j
i in �

j
i which

makes g(�
j
i) − s′

if (�
j
i) + A

j
i has the maximum value. These

line segments consist of f T i(s
′
i).

Fig. 7 shows an example of f T i(s
′
i). The dash line is

some g(�
j
i) − s′

if (�
j
i) + A

j
i when we fix l�

j
i. The solid line

represents f T i(s
′
i).

REFERENCES

[1] W. He, G. Yan, and L. Da Xu, “Developing vehicular data cloud services
in the IoT environment,” IEEE Trans. Ind. Informat., vol. 10, no. 2,
pp. 1587–1595, May 2014.

[2] J. Pereira, L. Ricardo, M. Luís, C. Senna, and S. Sargento, “Assessing
the reliability of fog computing for smart mobility applications in
VANETs,” Future Gener. Comput. Syst., vol. 94, pp. 317–332, May
2019.

[3] Y. Qu et al., “Decentralized privacy using blockchain-enabled feder-
ated learning in fog computing,” IEEE Internet Things J., vol. 7, no. 6,
pp. 5171–5183, Jun. 2020.

[4] E. Borcoci, M. Vochin, and S. Obreja, “Mobile edge computing versus
fog computing in Internet of Vehicles,” in Proc. 10th Int. Conf. Adv.

Future Internet, 2018, pp. 8–15.

[5] X. Wang, Z. Ning, and L. Wang, “Offloading in Internet of Vehicles:
A fog-enabled real-time traffic management system,” IEEE Trans. Ind.

Informat., vol. 14, no. 10, pp. 4568–4578, Oct. 2018.

[6] X. Cheng, L. Yang, and X. Shen, “D2D for intelligent transportation
systems: A feasibility study,” IEEE Trans. Intell. Transp. Syst., vol. 16,
no. 4, pp. 1784–1793, Aug. 2015.

[7] T. Thirugnanam and M. R. Ghalib, “A reward based connectivity-
aware IoV neighbor selection for improving reliability in healthcare
information exchange,” in Peer-to-Peer Networking and Applications.
Cham, Switzerland: Springer, 2020, pp. 1–11.

[8] L. Dong, W. Wu, Q. Guo, M. N. Satpute, T. Znati, and D. Z. Du,
“Reliability-aware offloading and allocation in multilevel edge com-
puting system,” IEEE Trans. Rel., early access, May 15, 2019,
doi: 10.1109/TR.2019.2909279.

[9] D. Zhang, H. Ge, T. Zhang, Y.-Y. Cui, X. Liu, and G. Mao, “New multi-
hop clustering algorithm for vehicular ad hoc networks,” IEEE Trans.

Intell. Transp. Syst., vol. 20, no. 4, pp. 1517–1530, Apr. 2019.

[10] I. Ahmad et al., “VANET–LTE based heterogeneous vehicular clustering
for driving assistance and route planning applications,” Comput. Netw.,
vol. 145, pp. 128–140, Nov. 2018.

[11] A. A. Khan, M. Abolhasan, and W. Ni, “An evolutionary game theoretic
approach for stable and optimized clustering in VANETs,” IEEE Trans.

Veh. Technol., vol. 67, no. 5, pp. 4501–4513, May 2018.

[12] Y. Zhang, H. Zhang, K. Long, Q. Zheng, and X. Xie, “Software-defined
and fog-computing-based next generation vehicular networks,” IEEE

Commun. Mag., vol. 56, no. 9, pp. 34–41, Sep. 2018.

[13] C. Huang, R. Lu, and K.-K. R. Choo, “Vehicular fog computing: archi-
tecture, use case, and security and forensic challenges,” IEEE Commun.

Mag., vol. 55, no. 11, pp. 105–111, Nov. 2017.

[14] R. Vilalta et al., “Control and management of a connected car using
SDN/NFV, fog computing and YANG data models,” in Proc. 4th IEEE

Conf. Netw. Softw. Workshops (NetSoft), 2018, pp. 378–383.

[15] N. B. Truong, G. M. Lee, and Y. Ghamri-Doudane, “Software defined
networking-based vehicular adhoc network with fog computing,” in
Proc. IEEE Integr. Netw. Manag. (IM) Int. Symp. IFIP/IEEE, 2015,
pp. 1202–1207.

[16] A. Soua and S. Tohme, “Multi-level SDN with vehicles as fog computing
infrastructures: A new integrated architecture for 5G-VANETs,” in Proc.

IEEE 21st Conf. Innov. Clouds Internet Netw. Workshops (ICIN), 2018,
pp. 1–8.

[17] J. C. Nobre et al., “Vehicular software-defined networking and fog
computing: Integration and design principles,” Ad Hoc Netw., vol. 82,
pp. 172–181, Jan. 2019.

[18] S. Park and Y. Yoo, “Network intelligence based on network state
information for connected vehicles utilizing fog computing,” Mobile Inf.

Syst., vol. 2017, Jan. 2017, Art. no. 7479267.
[19] C. Tang, X. Wei, C. Zhu, W. Chen, and J. J. Rodrigues, “Towards

smart parking based on fog computing,” IEEE Access, vol. 6,
pp. 70172–70185, 2018.

[20] Y. Xiao, Z. Ren, H. Zhang, C. Chen, and C. Shi, “A novel task allocation
for maximizing reliability considering fault-tolerant in VANET real time
systems,” in Proc. IEEE 28th Annu. Int. Symp. Pers. Indoor Mobile

Radio Commun. (PIMRC), 2017, pp. 1–7.
[21] H. Min, W. Seo, J. Lee, S. Park, and D. Hong, “Reliability improve-

ment using receive mode selection in the device-to-device uplink period
underlaying cellular networks,” IEEE Trans. Wireless Commun., vol. 10,
no. 2, pp. 413–418, Feb. 2011.

[22] D. Feng, L. Lu, Y. Yuan-Wu, G. Y. Li, G. Feng, and S. Li, “Device-
to-device communications underlaying cellular networks,” IEEE Trans.

Commun., vol. 61, no. 8, pp. 3541–3551, Aug. 2013.
[23] Y. Meng, Y. Dong, C. Wu, and X. Liu, “A low-cost resource re-allocation

scheme for increasing the number of guaranteed services in resource-
limited vehicular networks,” Sensors, vol. 18, no. 11, p. 3846, 2018.

[24] H. Chour, Y. Nasser, H. Artail, A. Kachouh, and A. Al-Dubai, “VANET
aided D2D discovery: Delay analysis and performance,” IEEE Trans.

Veh. Technol., vol. 66, no. 9, pp. 8059–8071, Sep. 2017.
[25] T. Radzik, “Parametric flows, weighted means of cuts, and fractional

combinatorial optimization,” in Complexity in Numerical Optimization.
Singapore: World Sci., 1993, pp. 351–386.

[26] F. A. Radu and I. S. Pop, “Newton method for reactive solute transport
with equilibrium sorption in porous media,” J. Comput. Appl. Math.,
vol. 234, no. 7, pp. 2118–2127, 2010.

[27] E. Riks, “The application of Newton’s method to the problem of elastic
stability,” J. Appl. Mech., vol. 39, no. 4, pp. 1060–1065, 1972.

[28] T. Makela and S. Luukkainen, “Incentives to apply green cloud comput-
ing,” J. Theor. Appl. Electron. Commerce Res., vol. 8, no. 3, pp. 74–86,
2013.

[29] M. A. Salahuddin, A. Al-Fuqaha, M. Guizani, and S. Cherkaoui, “RSU
cloud and its resource management in support of enhanced vehicular
applications,” in Proc. IEEE Globecom Workshops (GC Wkshps), 2014,
pp. 127–132.

[30] G. H. Alsuhli, A. Khattab, and Y. A. Fahmy, “Double-head clustering
for resilient VANETs,” Wireless Commun. Mobile Comput., vol. 2019,
Feb. 2019, Art. no. 2917238.

Luobing Dong received the Doctoral degree from
Xidian University, Xi’an, China, in 2013.

He was a Visiting Scholar with the University
of Texas at Dallas, Richardson, TX, USA.
He is an Associate Professor with the School
of Computer Science and Technology, Xidian
University. His research interests include big data
processing, mobile cloud computing, and document
summarization.

Qiufen Ni is currently pursuing the Ph.D. degree
with the School of Computer, Wuhan University,
Wuhan, China.

She is also a joint Ph.D. student with the
University of Texas at Dallas, Richardson, TX,
USA, from October 2019 to October 2020.
Her research interests include wireless networks,
VANET, social networks, theoretical approximation
algorithm design, and blockchain.

Weili Wu (Senior Member, IEEE) received the M.S.
and Ph.D. degrees from the Department of Computer
Science, University of Minnesota, Minneapolis, MN,
USA, in 2002 and 1998, respectively.

She is currently a Full Professor with the
Department of Computer Science, University of
Texas at Dallas, Richardson, TX, USA. Her cur-
rent research interests include data communication,
data management, the design and analysis of algo-
rithms for optimization problems that occur in wire-
less networking environments, and various database
systems.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

DONG et al.: PROACTIVE RELIABLE MECHANISM-BASED VEHICULAR FOG COMPUTING NETWORK 11907

Chuanhe Huang (Member, IEEE) received the B.S.,
M.S., and Ph.D. degrees in computer science from
Wuhan University, Wuhan, China, in 1985, 1988,
and 2002, respectively.

He is currently a Professor and the Ph.D. supervi-
sor with the School of Computer, Wuhan University.
His research interests include SDN, opportunistic
networks, and wireless networks, focusing on cryp-
tography, wireless security, and trust management.

Taieb Znati (Member, IEEE) received the M.S.
(Computer Science) degree from Purdue University,
West Lafayette, IN, USA, in December 1981, and
the Ph.D. (Computer Science) from Michigan State
University, East Lansing, MI, USA, in 1988.

He joined the Faculty of the Department of
Computer Science with a joint appointment in
the Graduate Program of Telecommunications,
University of Pittsburgh, Pittsburgh, PA, USA, in
1988. His research interests include distributed
multimedia systems, high-speed networks to support

real-time applications, performance evaluation, and local area networks.

Ding Zhu Du (Member, IEEE) received the
Doctoral degree from the University of California at
Santa Barbara, Santa Barbara, CA, USA, in 1985.

He is a Professor with the Department of CS,
University of Texas at Dallas, Richardson, TX, USA.
His research interests include design and analy-
sis of approximation algorithms for combinatorial
optimization problems with applications in compu-
tational biology and computer and communication
networks.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:34:57 UTC from IEEE Xplore. Restrictions apply.

