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Abstract— Blockchain can provide a dependable environment
for the Internet of Things (IoT), while the high computing power
and energy required by blockchain hinder its applications in
IoT. Offloading the computation at the resource-limited IoT
devices to a cloud/edge computing service provider (CESP) is
a feasible solution to the execution of computation-intensive
blockchain tasks. The CESP provides computing resources to
IoT users with a cloud and multiple edge servers that work
collaboratively such that the users are able to perform mobile
blockchain services. Resource allocation and pricing of computing
resources at the cloud/edges have a significant impact on the
revenues of CESP and users. Most of the existing works on
the cooperative edge–cloud for computation offloading assumes
that a user is mapped to a prespecified edge server or the
cloud. However, the CESP may choose a server from either the
edge servers or the cloud to run the offloaded tasks by jointly
considering the cost and income of the service provisioning.
In this article, we formulate a Stackelberg game with CESP as
the leader and users as the followers for cloud/edge computing
resource management. We prove the existence of Stackelberg
equilibrium and analyze the equilibrium. We then model the
resource allocation and pricing at the CESP as a mixed-integer
programming problem (MIP) with the objective to optimize the
CESP’s revenue and propose an efficient iterative greedy-and-
search-based resource allocation and pricing algorithm (IGS).
The algorithm solves two subproblems comprising the CESP’s
revenue optimization problem: resource allocation under a given
resource price and resource pricing based on a specified resource
allocation scheme. The first subproblem evaluates where to
execute the computing tasks via a greedy-and-search-based
approach, whereas the second subproblem estimates the resource
price through golden section search. We conduct experiments
through simulations. Simulation results show that the proposed
algorithm can effectively improve the revenue of both the CESP
and the IoT terminals.

Index Terms— Cloud computing, edge computing, mobile
blockchain, resource allocation, resource pricing.

I. INTRODUCTION

I
N 2008, Nakamoto [1] proposed an electronic transac-

tion system that does not rely on trust between system
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participants and for the first time explained the principles

of bitcoin and blockchain technology. Blockchain has the

characteristics of immutability, decentralization, distributed

ledgers, consensus, and so on, which enables blockchain

to overcome the problem of distrust among users in the

decentralized network and ensure the reliability and security

of transactions [2], [3]. Blockchain has a wide range of

applications from cryptocurrencies, financial services, and

the Internet of Things (IoT) to public social services [4].

As of December 2019, the cryptocurrency market capital-

ization statistics website coinmarketcap.com shows that there

were 4914 cryptocurrencies in the world with a total market

value of more than $200 billion, of which bitcoin market

value accounts for about 66.9% [5]. The annual revenue of

blockchain enterprises is expected to increase to approxi-

mately $20 billion in 2025 [6].

Consensus is the core of blockchain, which guarantees the

consistency and correctness of each transaction on all nodes

and enables the blockchain for efficient collaborative work on

a large scale without relying on a centralized organization.

Some consensus algorithms, such as proof of work (PoW),

require a large amount of computation. Users (miners) win

rewards through mining, where the users need to solve a

computationally challenging problem. The first miner who

successfully solves the computation problem and reaches an

agreement with other miners is considered as the winner of

the competition, and the winner will receive a reward for suc-

cessful mining. Since the energy consumption and computing

power required by the computation-intensive consensus are

prohibitively high, blockchain cannot be directly applied to

the resource-limited IoT devices, which hinders the practical

use of blockchain in mobile environments.

Offloading the computing tasks of the IoT devices to a

cloud/edge computing service provider (CESP) is a feasible

solution to computation resource-demanding blockchain in

mobile environments [7]. IoT devices can participate in the

mining by applying solo mining or pooled mining protocols

through mining task offloading [8], [9]. By providing more

computing resources with the CESP, computation offloading

can speed up the calculation process, improve the performance

of applications, and enable blockchain deployment on devices

with limited power supporting hashing and encryption algo-

rithms [10].

The CESP provides computing resources to the users with

cloud and multiple edge servers that work collaboratively such

that the users are able to perform mobile blockchain services,
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such as mining and encrypting. The resource allocation and

pricing scheme of computing resources at the cloud/edges has

a significant impact on the revenues of CESP and users.

Most of the existing works on the cooperative edge-cloud

for computation offloading assume that a user is mapped to

a prespecified edge server or the cloud. However, the CESP

may choose a server from either the edge servers or the

cloud to run the offloaded tasks by jointly considering the

cost and income of the service provisioning. In this article,

we study the cloud/edge computing resource allocation and

pricing problem for mobile blockchain under the computing

offloading framework in which a CESP provides both cloud

and multiple edge servers to run users’ offloaded tasks. The

contributions of this article are as follows.

1) We construct a computation offloading framework that

includes the cloud, multiple edge servers, and multiple

users (miners), and the cloud/edge servers are provided

by a CESP. We formulate a Stackelberg game with

CESP as the leader and users as the followers for

cloud/edge computing resource management. We prove

the existence of the Stackelberg equilibrium and analyze

the equilibrium.

2) We model the resource allocation and pricing at the

CESP as a mixed-integer programming problem (MIP)

with the objective to optimize the CESP’s revenue

and propose an efficient iterative greedy-and-search-

based resource allocation and pricing algorithm (IGS).

Algorithm IGS solves two subproblems comprising the

CESP’s revenue optimization problem: resource alloca-

tion under a given resource price and resource pricing

with a specified resource allocation scheme.

3) We conduct experiments through simulations. Simu-

lation results show that the proposed algorithm can

effectively improve the revenues of both the CESP and

the IoT users.

The rest of this article is organized as follows. Section II

introduces the related work. The system model is formulated

and analyzed in Section III. Section IV presents the proposed

resource allocation and pricing algorithm. The simulations are

given in Section V, and Section VI concludes this article.

II. RELATED WORK

Blockchain has the characteristics of security, reliability,

immutability, decentralization, and so on, and blockchain can

provide a reliable environment for IoT devices. For example,

Casado-Vara et al. [11] proposed an architecture based on

blockchain and edge computing to improve the quality of IoT

data and false data detection. Chamarajnagar and Ashok [12]

designed a decentralized architecture using the blockchain

technology, in order to promote distributed collabora-

tion among mobile IoT devices to share their services

and redundant computing resources. In vehicle edge net-

works, Kang et al. [13] proposed a reputation-based data

sharing scheme, which introduces consortium blockchain

and smart contract technology to implement data storage

securely and prevent data sharing without authorization.

Kim and Moon [14] proposed an edge computing architecture

based on the blockchain technology to ensure the availability,

scalability, and integrity of edge computing; blockchain struc-

ture and protocols were modified to support the execution of

complex programs.

IoT devices can offload computation-intensive tasks to edge

servers. For example, Xiong et al. [7] proposed a mobile

blockchain framework that migrates computation-intensive

tasks, e.g., PoW that requires a lot of computing resources,

from IoT devices to the edge nodes with sufficient computing

resources.

Resource allocation and pricing are of vital importance for

the benefits of service providers and users. Some research

applied game theory to the allocation and pricing of the

cloud/edge computing resources. Xiong et al. [15] modeled the

interaction between rational blockchain miners and cloud/fog

providers as a two-stage Stackelberg game and studied the

uniform pricing scheme and discriminatory pricing scheme

of cloud/fog providers. Zhang et al. [16] proposed a joint

optimization framework of fog nodes (FNs), data service

operators (DSOs), and data service subscribers (DSSs), which

implements the resource allocation scheme in a distributed

manner. In this framework, the Stackelberg game is used

to analyze the pricing problem of DSO and the resource

allocation problem of DSS; many-to-many matching is used

to study the matching problem between DSOs and FNs.

Dhamal et al. [17] studied a stochastic game in which players

(miners or computing power providers) can join and leave

during the mining of a block. Chiu and Koeppl, [18] formal-

ized the PoW protocol into a Cournot game, in which users

compete to update the blockchain for rewards and are restricted

from “double spending.”

Some research adopted auction for resource allocation and

pricing of cloud/edge resources. Jiao et al. [19] constructed

an auction-based market model to achieve the allocation of

computing resources; two bidding schemes, a fixed demand

scheme (each miner bids for a fixed amount of resources) and

a multiple demand scheme (miners can submit their preferred

demand and bid), were considered; aiming at the fixed demand

scheme, an optimal social welfare auction mechanism was

proposed. For the multiple demand scheme, an approximate

algorithm was designed with authenticity, individual rational-

ity, and computational efficiency. Jin et al. [20] designed an

incentive-compatible auction mechanism (ICAM) to stimu-

late cloudlets to provide services to nearby mobile devices,

which reduces mobile device access delays and balances the

workload of the cloud by using the resources of cloudlets.

Luong et al. [21] proposed an optimal auction based on deep

learning for the edge resource allocation, which uses miners’

valuations as the training data to adjust the parameters of the

neural networks to minimize the negated revenue of the edge

computing service provider.

Some researchers managed the cloud/edge computing

resources for blockchain via optimization, credit-based

approach, and so on. Liu et al. [22] proposed a blockchain-

based mobile edge computing (MEC) framework with the

adaptive block size for video streaming; the tasks are offloaded

to nearby MEC nodes or device-to-device (D2D) users.

The problem of resource allocation, offload scheduling, and
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adaptive block size was formulated as an optimization prob-

lem, and an alternating direction multiplier algorithm was used

to solve the problem. Liu et al. [8] proposed a framework

combining MEC and blockchain; a joint optimization prob-

lem of mining task offloading and block cryptographic hash

cache was modeled, and an alternating direction multiplier

method was adopted to solve the problem. Wu et al. [23]

tackled the problem of mobile terminals acquiring computing

power from the edge server and proposed an optimization

problem to maximize the total net return of the mobile

terminals while maintaining the fairness between the mobile

terminals. Two algorithms were designed, with one for the

single edge server case and the other for the multiple edge

servers case, to determine the amount of computing power

the mobile terminals could obtain from different edge servers.

Abdellatif and Abdelmouttalib [6] studied the relationship

between the resources provided by edge service providers

and the needs of miners in the blockchain network and

proposed a resource allocation model based on bipartite graph

matching. Pan et al. [24] designed an edge IoT framework

based on blockchain and smart contracts named “EdgeChain”;

the framework connects edge cloud resource pool with the

IoT device accounts and resources usage behavior through an

internal currency system and then uses a credit-based resource

management system to control the amount of resources a

device can obtain from an edge server according to predefined

priorities, application types, and previous behaviors.

Most of the existing works on the cooperative edge-cloud

for computation offloading assume that a user is mapped to

a prespecified edge server or the cloud. However, the CESP

may choose a server from either the edge servers or the

cloud to run the offloaded tasks by jointly considering the

cost and income of the service provisioning. In this article,

we study the cloud/edge computing resource allocation and

pricing problem for mobile blockchain under the computing

offloading framework consisting of a cloud, multiple edge

servers, and multiple users, where the cloud/edge servers are

provided by a CESP.

III. SYSTEM MODEL

Fig. 1 shows the system model. Each mobile terminal user

performs mobile blockchain services, e.g., mining, for rewards.

Due to the limited computing and energy resources, perform-

ing the blockchain services on the mobile terminals is chal-

lenging. A CESP provides computing resources to the users

through the cloud and the edge servers such that the users can

offload computation-intensive mining tasks to the cloud/edge

servers. In general, the cloud is far away from the users,

whereas the edge servers are close to the users. Assume that

the cloud has enough computing capacities to process all the

users’ tasks and each edge server has a limited computing

capacity.

The CESP gains revenue by providing paid resources to the

users. Each unit computing resource provided by the CESP

is denoted as a computing resource block (CRB). The CESP

sets the price p of each CRB, and the users determine the

amount of resources to purchase from the CESP based on the

Fig. 1. System model.

CRB’s price p. With more computing resources, the user is

more likely to perform successful mining and hence potentially

obtains more revenue [8], [25]. When the CRB’s price is

low, the users may be willing to purchase a large amount

of computing resources due to the potential high revenue of

successful mining. The users may be reluctant to buy the

computing resources, if the CRB’s price is high because of

the high purchase cost of computing resources. Therefore,

the CRB’s price has a significant impact on the revenues of

both CESP and users. Resource provisioning to the users also

imposes a cost on the CESP, where the cost includes the energy

consumption of the servers and the data transmission between

the user and the allocated server.

After evaluating the number of CRBs to purchase, the user

sends a resource purchase request to the CESP, who decides

which edge server or the cloud to serve the request under

the constraint of server’s computing capacity. The computing

tasks of a user will be offloaded to a server at either the cloud

or the edge side. After purchasing the required resources, the

user offloads the tasks to the allocated server.

During the interaction between the CESP and the users,

the CESP determines the price based on the users requests

and the users respond to the price by deciding the amount

of computing resources to be purchased. The two events are

sequential. Therefore, the interaction between the CESP and

the users can be formalized as a Stackelberg game with a

single leader and multiple followers, where the leader is the

CESP and the followers are the users.

The symbols and notations used in this article are shown in

Table I.

A. Computing Offloading Game Between CESP and Users

1) Stackelberg Game Between CESP and Users: The Stack-

elberg game between CESP and users consists of two sub-

games: 1) user subgame in which each user decides the amount
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TABLE I

TABLE OF SYMBOLS AND NOTATIONS

of CRBs to purchase from the CESP to maximize the user’s

revenue and 2) CESP subgame in which the CESP decides the

price of computing resources and chooses a server from either

the edge servers or the cloud to run the users’ offloaded tasks.

a) User subgame: If the user purchases a large amount

of computing resources from the CESP, the blockchain task

execution time is reduced, and hence, the user will potentially

obtain a high reward by finishing the blockchain services in a

short time. However, the revenue increase will slow down with

the increase of computing power when the user has obtained

a certain amount of computing resources. At the same time,

the computing resource purchase causes a cost to the user.

The more computing resources purchased, the higher the cost

to the user. We estimate the user revenue by the following

equation:

uuser
i = αi ln(1 + µri ) − pri . (1)

The resource requirements of blockchain applications per-

formed by various users are different. Therefore, we assign

different revenue parameters to different users [24].

In user subgame, each user bi needs to maximize his revenue

by determining the amount of CRBs to purchase from the

CESP, that is, user bi is to

max
ri

uuser
i = αi ln(1 + µri ) − pri

s.t. ri ≥ 0. (2)

b) CESP subgame: The CESP makes profit by selling

computing resources to the users, and the profit is affected

by the CRB’s price and the number of CRBs sold. Note

that the resource allocation to the user will impose a cost

on the CESP since the CESP needs to run the servers and

transmit data between the user and the allocated server. The

energy consumption used to run a task at a server is affected

by the unit energy consumption of computing resources at

the server and the amount of resources required by the task.

The communication cost is decided by the user-to-server

distance [26]. The computing tasks offloaded by user bi may

be deployed at the cloud or an edge server, and the cost of

accommodating the computing task offloading request from

user bi , costi , is defined as

costi = xi, j (a jri +λ1di, j )+xi,cloud(acloudri +λ2di,cloud) (3)

where xi, j (xi, j ∈ {0, 1}) and xi,cloud (xi,cloud ∈ {0, 1}) represent

whether the tasks of user bi will be offloaded to edge server

e j and the cloud, respectively (=0, yes; =1, no). We say that

user bi is mapped/assigned to edge server e j /cloud, if the tasks

of user bi are run by edge server e j /cloud, and the computing

tasks of user bi are offloaded to one and only one server.

We define the CESP’s revenue as

ucesp =

M
∑

i=1

(pri − costi). (4)

The CESP maximizes the revenue by controlling the CRB’s

price, that is, the CESP is to

max
p

ucesp =

M
∑

i=1

(pri − costi )

s.t. C1 : p > 0. (5)

2) Analysis of Stackelberg Game Between CESP and Users:

We first show that the Nash equilibrium exists in user subgame

and the optimal amount of CRBs to be purchased by a user

can be calculated at a given computing resource price. We then

prove the existence of equilibrium of the Stackelberg game

between the CESP and the users.

Lemma 1: Nash equilibrium exists in user subgame.

Proof: The user’s revenue function defined in (1) is

continuous, and the second derivative of the user’s revenue

function can be calculated as

∂2uuser
i

∂(ri)
2

= −
µ2αi

(1 + µri )
2
. (6)

Since µ > 0, αi > 0, and ri ≥ 0, we can get

−
µ2αi

(1 + µri )
2

< 0. (7)

Therefore, the user’s revenue function defined in (1) is

quasi-concave about request ri . According to the Nash exis-

tence theorem, the Nash equilibrium exists in the user sub-

game. �

Lemma 2: Given the CRB’s price p, the optimal amount of

CRBs to be purchased by user bi is calculated by the following

equation:

r∗
i = max

(

αi

p
−

1

µ
, 0

)

. (8)

Proof: It can be seen from (6) and (7) that the second

derivative of the user’s revenue function with respect to ri is

less than 0, that is, the user’s revenue function with respect

to ri is a concave function. The first derivative of the user’s

revenue function is calculated as

∂uuser
i

∂ri

=
µαi

1 + µri

− p. (9)
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The extreme point of the user’s revenue function is calcu-

lated via the following equation by making (9) equal to 0, i.e.,

∂uuser
i /∂ri = 0:

r ′
i =

αi

p
−

1

µ
. (10)

According to the property of the concave function, the

extreme point of the function is the maximum point of the

function. In (10), r ′
i may be less than 0. However, r∗

i should

satisfy r∗
i ≥ 0. When r ′

i ≥ 0, r∗
i = r ′

i ; when r ′
i < 0, r∗

i = 0,

since the user’s revenue function decreases while ri > r ′
i and

ri ≥ 0. Therefore, r∗
i = max(r ′

i , 0). The lemma is proved. �

Theorem 1: The Stackelberg equilibrium exists in the

Stackelberg game between the CESP and the users.

Proof: According to Lemma 1, the users can always reach

a Nash equilibrium after the CRB’s price p is set by the CESP.

Next, we analyze the CESP’s revenue function of (4), which

can be rewritten as (11), shown at the bottom of the page,

based on Lemma 2.

The second derivative of CESP’s revenue function can be

calculated as (12), shown at the bottom of the page.

Since xi, j ≥ 0, xi,cloud ≥ 0, a j > 0, acloud > 0, µ > 0,

di, j > 0, di,cloud > 0, λ1 ≥ 0, λ2 ≥ 0, αi > 0, and p > 0,

we can get

∂2ucesp

∂ p2
< 0. (13)

Therefore, there is an optimal price p∗ that maximizes

the CESP’s revenue, and the Stackelberg equilibrium exists.

We denote the Stackelberg equilibrium as (p∗, r∗
1 , r∗

2 , . . . , r∗
m).

�

B. Resource Allocation and Pricing of CESP

The analysis of Stackelberg game between CESP and users

shows that the users can always reach a Nash equilibrium after

the CRB’s price is set by the CESP and the optimal amount of

CRBs to be purchased by a user can be calculated at a given

computing resource price. Therefore, it is important to decide

the resource allocation and pricing of the CESP.

The CESP maximizes the revenue by setting CRB’s price

p and deciding where to run the tasks offloaded by the users.

The CRB’s price affects the amount of computing resources

to be purchased by the users, which in turn has an impact on

the CESP’s revenue. Given CRB’s price p (p > 0) and the

amount of computing resources purchased by the users, the

CESP allocates each resource request to a server either at the

edge server side or at the cloud side, so as to minimize the

resource allocation cost and maximize the CESP’s revenue,

that is, the objective of CESP is to

max
p,xi, j ,xi,cloud

ucesp (14)

where ucesp is defined in the following equation:

s.t. C1

C2 :

M
∑

i=1

xi, j max

(

αi

p
−

1

µ
, 0

)

≤ c j ∀e j ∈ E

C3 :

K
∑

j=1

(xi, j + xi,cloud) = 1 ∀bi ∈ B

C4 : xi, j ∈ {0, 1}, xi,cloud ∈ {0, 1}.

Constraint C2 signifies that the edge servers cannot be

overloaded when running the tasks offloaded from the users.

Constraint C3 determines that the computing tasks of user

bi are offloaded to one and only one server. Constraint C4

dictates that the mapping relationship between the users and

the cloud/edge servers is represented by binary variables.

IV. RESOURCE ALLOCATION AND PRICING ALGORITHM

The Stackelberg game between CESP and users consists of

two subgames: user subgame and CESP subgame, as shown

in Fig 2. In the user sub-game, the users maximize revenue by

calculating the optimal amount of CRBs to purchase according

to Lemma 2. In the CESP sub-game, the CESP maximizes

revenue by deciding the price of computing resources and

choosing the servers to run the users offloaded tasks. The

problem of maximizing the CESP’s revenue is an MIP since

p > 0, xi, j ∈ {0, 1}, and xi,cloud ∈ {0, 1}.

In this section, we propose an efficient iterative greedy-and-

search-based resource allocation and pricing algorithm (IGS)

to solve the CESP’s revenue optimization problem that consists

of two subproblems: resource allocation under a given resource

ucesp =

M
∑

i=1

⎧

⎨

⎩

K
∑

j=1

xi, j

(

pri − a jri − λ1di, j

)

+ xi,cloud

(

pri − acloudri − λ2di,cloud

)

⎫

⎬

⎭

=

M
∑

i=1

⎧

⎨

⎩

K
∑

j=1

xi, j

(

max

(

αi

p
−

1

µ
, 0

)

(

p − a j

)

− λ1di, j

)

+ xi,cloud

(

max

(

αi

p
−

1

µ
, 0

)

(p − acloud) − λ2di,cloud

)

⎫

⎬

⎭

(11)

∂2ucesp

∂ p2
=

M
∑

i=1

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0,
αi

p
−

1

µ
�0

−
αi

p3

⎛

⎝

K
∑

j=1

λ1xi, j a j + λ2xi,cloudacloud

⎞

⎠,
αi

p
−

1

µ
> 0

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(12)
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Fig. 2. Diagram of Stackelberg game between CESP and users.

price and resource pricing with a specified resource allocation

scheme. Algorithm IGS initializes the resource price with a

high value. Algorithm IGS then solves the first subproblem

of resource allocation by evaluating where to execute the

computing tasks based on a specific resource price via a

greedy-and-search based approach while tackling the second

subproblem of resource pricing by estimating the resource

price based on a specified resource allocation scheme via

golden section search.

A. Resource Allocation

Resource allocation chooses a server from either the edge

servers or the cloud to run the computing tasks based on a

resource price. Given CRB’s price p (p > 0), the CESP’s rev-

enue maximization problem turns into an integer programming

problem. We propose a resource allocation algorithm based

on a greedy-and-search approach, as shown in Algorithm 1.

The algorithm is divided into two stages. The first stage

(lines 1–12) greedily finds the server for each task offloading

request, and the second stage (lines 13–32) conducts resource

reallocation to search for better resource allocation solutions.

1) Greedy Resource Allocation: We create a computing

resource request list lreq =
{

r∗
1 , r∗

2 , . . . , r∗
i , . . . , r∗

M

}

, where

each r∗
i (1 ≤ i ≤ M), calculated via (8), is the optimal

amount of CRBs purchased by user bi under a given CRB’s

price. We then construct a value matrix Gv with M rows (M

users) and N = K+1 columns (K edge servers and a cloud)

as shown in (15). Each element vi j ∈ Gv , calculated by (16),

represents the revenue of serving user bi at the cloud if j = N ;

otherwise, vi j indicates the revenue of edge server e j running

the tasks of user bi . Algorithm 1 is to choose an element from

each row of matrix Gv to maximize the sum of the elements

under constraint C3

Gv =

⎛

⎜

⎝

v11 . . . v1K v1N

...
. . .

...
...

vM1 · · · vM K vM N

⎞

⎟

⎠
(15)

vi j = pr∗
i − costi . (16)

We construct another auxiliary matrix Gw based on matrix

Gv , as shown in (17), where element wi j = vi j/r∗
i , indicating

Algorithm 1 Greedy-and-Search Based Resource Allocation

Input: User set B , Edge server set E ,

Set C = {c1, c2, · · · , c j , · · · , cK }, CRB’s price p.

Output: Resource allocation scheme x,

CESP’s revenue of ucesp.

1: Create computing resource request list lreq , where each

request in the list is calculated via Eq. (8);

2: Construct two auxiliary matrices of Gv and Gw as Eqs. (15)

and (17);

3: B ′ ← B, C ′ ← C +
{

c′
cloud

}

, ucesp ← 0;

4: while B ′ 	= ∅ do

5: Select user b′
i and server e j with wi j being the largest

element wi j in matrix Gw;

6: if c j ≥ r∗
i then

7: xi j ← 1, c j ← c j − r∗
i , B ′ ← B ′ − {b′

i};

8: ucesp ← ucesp + vi j , and wi j ′ = T (∀1≤ j ′ ≤ N);

9: else

10: set wi j ← T ;

11: end if

12: end while

13: B ← B;

14: while B ′ 	= ∅ do

15: Select the first user b′
i from B ′, f lag ← 0;

16: for each b′
i ′ ∈ B do

17: if π1

(

i, τi , i ′, τi ′

)

> 0 and c′
τi

+ r∗
i ≥ r∗

i ′ and c′
τi′

+ r∗
i ′ ≥

r∗
i then

18: xiτi
← xiτi′

← 1, xi ′τi′
← xi ′τi

← 1,

19: c′
τi

← c′
τi

+ r∗
i − r∗

i ′ , c′
τi′

← c′
τi′

+ r∗
i ′ − r∗

i ;

20: ucesp ← ucesp + π1(i, τi , j, τi ′), f lag ← 1;

21: end if

22: end for

23: for each eq ∈ E do

24: if π2(i, τi , q) > 0 and c′
q ≥ r∗

i then

25: xiτi
← xiq ← 1, c′

τi
← c′

τi
+ r∗

i ;

26: c′
q ← c′

q −r∗
i , ucesp ← ucesp+π2(i, τi , q), f lag ← 1;

27: end if

28: end for

29: if f lag = 0 then

30: B ′ ← B ′ − {b′
i};

31: end if

32: end while

33: return x, ucesp.

the cost-effectiveness of serving user bi at edge server e j /cloud

Gw =

⎛

⎜

⎝

w11 . . . v1K w1N

...
. . .

...
...

wM1 · · · vM K wM N

⎞

⎟

⎠
. (17)

We define the unserved user set B ′ =
{

b′
1, b′

2, . . . , b′
i , · · ·

}

(|B ′| ≤ K ), in which each element is the user to be allocated

the computing resources. We also define server’s computing

capacity set C ′ =
{

c′
1, c′

2, . . . , c′
j , . . . , c′

K , c′
cloud

}

(|C ′| =

N), with each element c′
j indicating the available computing

capacity of edge server e j (1 ≤ j ≤ K ) or cloud ( j = N).

Since the computing resources of the cloud are sufficient,

we set c′
cloud as a large value.
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Algorithm 1 proceeds iteratively. In each iteration, the

algorithm selects the largest element wi j from matrix Gw

with greedy strategy, that is, the algorithm selects the most

cost-effective user-server mapping. If the available computing

capacity of server e j can satisfy the resource request from user

bi , the tasks of bi are executed by server e j and all elements

in the i th row in matrix Gw are set as a small value T , where

T < wmin and wmin is the smallest element in matrix Gw;

otherwise, element wi j is set as T . The process continues until

all the users are mapped to the servers.

2) Resource Reallocation: Once each user is mapped to

a server, the CESP’s revenue may be increased by exchang-

ing the mapping relationship of two user-server assignments.

Assume that users bi and bi ′ (i 	= i ′) are currently mapped

to servers eτi
and eτi′

(τi 	= τi ′), respectively. The exchange

reassigns bi and bi ′ to servers eτi′
and eτi

, respectively.

We define π1

(

i, τi , i ′, τi ′

)

, the benefit of exchange, as (18),

where π1

(

i, τi , i ′, τi ′

)

> 0 indicates that the CESP’s revenue

can be increased through the exchange

π1

(

i, τi , i ′, τi ′

)

=
(

viτi′
+ vi ′τi

)

−
(

viτi
+ vi ′τi′

)

. (18)

Assigning the user to another server may also increase

the CESP’s revenue. We evaluate π2(i, τi , q), the benefit of

reassignment, via (19). We can improve the CESP’s revenue

by performing the reassignment, if π2(i, τi , q) > 0

π2(i, τi , q) = viq − viτi
. (19)

Algorithm 1 conducts resource reallocation by exchange and

reassignment. The algorithm proceeds iteratively. Specifically,

for each user, the algorithm finds another user such that the

CESP’s revenue can be increased by exchanging the mapping

relationship of the two users (lines 16–22). For each user, the

algorithm also searches for another server to evaluate whether

reassigning the user to the server can increase the CESP’s

revenue (lines 23–28). The process continues until exchange

and reassignment are executed for all the users.

B. Resource Pricing

Resource pricing decides the resource price based on a

specified resource allocation scheme. After obtaining the com-

puting resource allocation scheme x by Algorithm 1 under a

given CRB’s price, we search for another CRB’s price p to

optimize the CESP’s revenue with resource allocation scheme

x. Since p > 0, we make p ≥ ε during the resource pricing,

where ε is a small value close to 0.

The CESP’s revenue is related to the CRB’s price and the

amount of computing resources sold. A high price will make

the users reluctant to purchase the computing resources, and no

user will purchase any computing resources if CRB’s price p is

higher than a value pmax, that is, the total amount of computing

resources purchased by all users will be 0 if p ≥ pmax.

Theorem 2: When CRB’s price p ≥ max{µαi |∀bi ∈ B},

the total amount of computing resources purchased by all the

users is 0, that is, pmax = max{µαi |∀bi ∈ B}.

Proof: According to Lemma 2, when αi/p−1/µ � 0, i.e.,

p ≥ µαi , the amount of computing resources purchased by

user bi is 0. If max(αi/p − 1/µ) � 0 for each user bi ∈ B , i.e.,

p ≥ max{µαi |∀bi ∈ B}), no user will purchase the computing

resources. Therefore, pmax = max{µαi |∀bi ∈ B}. �

Since xi, j (∀bi ∈ B , 1 ≤ j ≤ K ) and xi,cloud (∀bi ∈ B)

are known in a given resource allocation scheme x, the

optimization problem in Section III-B can be simplified with

(20) as the objective function under constraint C2′

max
p

ucesp =

M
∑

i=1

(

αi

p
−

1

µ

)

(

p − aτi
− λ′µdi,τi

)

s.t. C2′ : ε ≤ p ≤ pmax (20)

where τi denotes the server providing computing services

to user bi . λ′ = λ1 if τi is an edge server; λ′ = λ2 if

τi is the cloud. The revenue function in (20) is a continu-

ous concave function about price p under a given resource

allocation scheme x. We apply golden section search [27]

to find the optimal price p. The resource pricing process is

illustrated in Algorithm 2. The algorithm searches for the

optimal price by iteratively narrowing the search range of

values. Initially, the search range [left, right] is set as [ε, pmax].

In each iteration, the algorithm updates the search range with

the golden ratio. Specifically, the algorithm calculates two

points in the range [left, right] as left + 0.382 ∗ (right − left)

and left+0.618∗ (right− left). The algorithm decides whether

the optimal price falls into [left, left+ 0.618 ∗ (right− left)] or

[left + 0.382 ∗ (right − left), right] by comparing the revenues

at the two prices of left and right via Algorithm 1. The search

range narrowing process continues until the interval of the

search range is smaller than a predefined threshold δ. The

algorithm outputs the middle value of the final search range

as the price.

Algorithm 2 Golden Section Search-Based Resource Pricing

Input: Resource allocation scheme x.

Output: CRB’s price p.

1: le f t ← ε, right ← pmax, le f t ′ ← ε, right ′ ← pmax ;

2: while right − le f t � δ do

3: p ← le f t ′, (val1, x) ← Algori thm 1(p);

4: p ← right ′, (val2, x) ← Algori thm 1(p);

5: if val1 > val2 then

6: right ← right ′;

7: else

8: le f t ← le f t ′;

9: end if

10: le f t ′ ← le f t + 0.382 ∗ (right − le f t);

11: right ′ ← le f t + 0.618 ∗ (right − le f t);

12: end while

13: p ← (right + le f t)/2;

14: return p.

C. Iterative Greedy-and-Search-Based Resource Allocation

and Pricing

The proposed iterative greedy-and-search-based resource

allocation and pricing algorithm is shown in Algorithm 3 by

iteratively solving the subproblems of resource allocation and

resource pricing. The algorithm initializes the resource price as
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Algorithm 3 IGS

Input: The user set B , Edge server set E ,

Maximum number of iterations 	,

Edge servers’ computing capacity set C .

Output: New feasible solution x,

Price p,

The revenue of CESP ucesp.

1: ucesp ← 0, p ← pmax , valmax ← 0, i teration ← 1;

2: while i teration � 	 do

3:
(

val, x
′
)

← Algori thm 1(p);

4: if val > ucesp then

5: ucesp ← val, x ← x
′;

6: end if

7: p′ ← Algori thm 2
(

x
′
)

;

8: if |p − p′| � 
 then

9: break;

10: end if

11: p ← p′;

12: end while

13: return x, p, value.

pmax and the CESP’s revenue as 0. After the initialization, the

algorithm starts an iterative resource allocation and resource

pricing process. During each iteration, the algorithm decides

the resource allocation scheme x
′ and the corresponding

CESP’s revenue val through Algorithm 1. If the CESP’s

revenue is increased with resource allocation scheme x
′, the

algorithm updates x
′ and val as the current best resource

allocation scheme and the current highest CESP’s revenue,

respectively. The algorithm then evaluates the optimal resource

price with the obtained allocation scheme x
′ via Algorithm 2.

The iterative process continues until the change of resource

price is within a predetermined threshold 
 or the predefined

maximum number of iterations is reached. After the Stackel-

berg game between users and CESP reaches the equilibrium,

the users obtain the optimal amount of CRBs to purchase via

(8) according to Lemma 2.

V. PERFORMANCE EVALUATION

In this section, we investigate the impact of important

parameters on the proposed algorithm IGS. We also evaluate

the performance of algorithm IGS against the benchmarks.

A. Simulation Setup

The mobile terminal users and the edges servers are ran-

domly distributed in the region with 1.2 km radius. The

revenue parameter αi of all the mobile terminal users is the

same. The minimum resource price ε is 0.001. Parameters of δ

and 
 are set as 0.001 and 0.01, respectively. Other simulation

parameters are shown in Table. II.

B. Impact of Different Parameters on the Proposed Algorithm

We investigate the impact of important parameters on the

proposed algorithm.

TABLE II

TABLE OF SIMULATION PARAMETERS

Fig. 3. Revenues of CESP and users versus different parameters α.

1) Impact of Different Parameters on the Revenue of CESP

and Users: Fig. 3 shows that the revenues of both the

CESP and the users increase with the increase of revenue

parameter α when the computing power of each CRB is

1 (µ = 1) and the number of users is 160 (M = 160). The

unit computing resource leads to more revenue with a higher

revenue parameter α than that with a lower one. Therefore,

with the increase in revenue parameter α, the users are willing

to purchase more computing resources to perform mobile

blockchain services to make more revenues. At the same time,

the CESP increases the revenue by providing more computer

resources and appropriately increasing computing resource

price p.

Fig. 4 shows that the revenues of both the CESP and

the users increase as parameter µ increases when α = 15

and M = 160. µ represents the computing power of each

CRB. As parameter µ increases, the users can obtain more

computing power with the same amount of CRBs purchased

such that the users get more returns. The CESP increases the

revenue performance by adapting CRB’s price p to the amount

of CRBs required by the users.

2) Impact of Different Parameters on the Total Number of

CRBs Purchased by the Users: Fig. 5 shows the impact of

revenue parameter α on the total number of CRBs purchased

by all the users with a different number of users, assuming

µ = 1. The total number of CRBs purchased by the users

increases with the increase of α. The higher parameter α, the

more revenues the users can obtain by executing each unit

computing resource for mobile blockchain services. Therefore,

the users are inclined to purchase more CRBs with a higher

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on July 25,2021 at 23:41:53 UTC from IEEE Xplore.  Restrictions apply. 



FAN et al.: CLOUD/EDGE COMPUTING RESOURCE ALLOCATION AND PRICING FOR MOBILE BLOCKCHAIN 459

Fig. 4. Revenues of CESP and users with different parameters µ.

Fig. 5. Total number of CRBs sold versus different parameters α.

α than with a lower α. The amount of computing resources

increases with more users since more users will buy more

computing resources to run the blockchain tasks.

Fig. 6 shows the impact of parameter µ on the total number

of CRBs purchased by all the users with different α values,

assuming that the number of users is 160. The total number

of CRBs purchased by the users increases with the increasing

µ when µ is small and then decreases with the increasing

µ when µ is big. A higher µ indicates that each CRB is

more powerful and can reward the users more than a lower µ.

Therefore, users are willing to buy a large number of CRBs

when µ is low. After obtaining sufficient computing power

to serve the users’ offloading requests, the users will not buy

more CRBs. Therefore, with higher µ, the users only need to

buy a smaller number of CRBs.

3) Impact of Different Parameters on the Resource Utiliza-

tion of Edge Servers: Fig. 7 shows the edge server resource

utilization performance versus different total number of CRBs

available at the edge servers, assuming M = 160, α = 15, and

µ = 1. The edge servers’ resource utilization ratio is always

above 95% when the total capacity of all the edge servers is

within 225 CRBs. In this case, the transmission cost between

the users and the edge servers is low since the edge servers are

close to the users. The CESP will potentially prefer to provide

the computing resources of the edge servers. All the computing

resource demands can be satisfied by the edge servers when the

total capacity of all the edge servers is larger than 225 CRBs,

Fig. 6. Total number of CRBs sold with different parameters µ.

Fig. 7. Resource utilization of edge servers versus different total numbers
of CRBs available at the edge servers.

that is, the total number of CRBs served by the edge servers

keeps stable. Therefore, the edge servers’ resource utilization

ratio decreases as the total number of CRBs available at the

edge servers increases when the total capacity of all the edge

servers is larger than 225.

Fig. 8 shows the performance of the total number of CRBs

served by the edge servers by varying the unit energy con-

sumption of computing resources at the edge servers, assuming

that M = 160, α = 15, µ = 1, and the total number of CRBs

available at the edge servers is 75. When the unit energy

consumption of computing resources at the edge servers is

lower than 4.5, the edge servers have high resource utilization.

A high unit energy consumption of computing resources at

the edge servers makes the cost of serving users by the edge

servers exceed the cost of using the cloud to serve the users.

Fig. 8 shows the number of CRBs served by the edge servers

decreases rapidly to 0 when the unit energy consumption of

computing resources at the edge servers is higher than 4.5.

4) Impact of Different Parameters on the Income and Cost

of CESP: Fig. 9 shows the income and cost of CESP versus

different parameters α when µ = 1. With the increase of

parameter α, the CESP’s cost increases. With a high α, the

users will buy a large amount of computing resources such

that the CESP needs to spend more cost on the resource

provisioning. At the same time, the CESP obtains more income

with the increase in the number of CRBs sold.
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Fig. 8. Total number of CRBs served by the edge servers with various unit
energy consumption of computing resources at the edge servers.

Fig. 9. Income and cost of CESP versus different parameters α.

Fig. 10 shows that the income and cost of CESP with

various unit energy consumption of computing resources at

the edge servers. As the unit energy consumption of com-

puting resources at the edge servers increases, the cost of

providing services grows. When the unit energy consumption

of computing resources at the edge servers is large, some of

the users will be served by the cloud. In this case, the CESP

can lower the resource price p to increase the amount of

CRBs purchased by the other users who will be served by

the edge servers to increase the utilization of the edge servers.

Therefore, the CESP’s income increases although the service

provisioning cost also increases. The income and the cost will

tend to stabilize as the unit energy consumption of computing

resources at the edge servers increases to a certain value since

it is so large that all the users will be served by the cloud.

C. Iterative Procedure of Algorithm IGS

We discuss the iterative procedure of algorithm IGS and

how the algorithm reaches the Nash equilibrium.

Fig. 11 shows the iterative process of algorithm IGS,

assuming that M = 160, α = 15, and µ = 1. The algorithm

first starts from a high resource price p, which makes all

users unwilling to purchase the computing resources. The

algorithm then dynamically adjusts the computing resource

price p. Users dynamically adjust the amount of computing

resources to purchase according to the resource price p. When

Fig. 10. Income and cost of CESP with different unit energy consumption
of computing resources at the edge servers.

Fig. 11. Iterative procedure of algorithm IGS.

the number of iterations is above 6, the resource price p keeps

stable at about 6.6, and the total number of CRBs purchased

by users stabilizes at about 200, that is, the Stackelberg game

between users and CESP reaches the equilibrium, and the

game between users reaches the Nash equilibrium.

D. Performance of the Proposed Algorithm Against

Benchmarks

We evaluate the performance of the proposed algorithm IGS

against benchmarks in two scenarios: a small-scale problem

and a big-scale problem. In the first scenario, the benchmarks

are the optimal solution OPT and the resource allocation

algorithm proposed in [16] which is the most similar state

of the art and denoted as Baseline in this article. The optimal

solution OPT to the resource allocation and pricing problem

defined in Section III-B is obtained via CPLEX 12.8.0 [28].

Baseline applies many-to-many matching to solve the resource

allocation problem. Baseline obtains the resource price via the

equilibrium analysis of a modeled game that is not applicable

in this article. Therefore, we use the proposed resource pricing

method in this article to decide the resource price for Baseline.

In the second scenario, we only compare algorithm IGS with

Baseline since we cannot obtain the optimal solution when the

problem has a big scale. We use the physical distance between

the user and the allocated server as an approximation of the

latency [26], [29].
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Fig. 12. Revenue of CESP with a small-scale problem. (a) Different parameters α. (b) Different average unit energy consumption of computing resources
at the edge servers. (c) Different parameters µ.

Fig. 13. Average delay between users and servers with a large-scale problem.
(a) Different number of users. (b) Different number of edge servers.

1) Small-Scale Problem: Fig. 12 shows the CESP’s revenue

performance of algorithms IGS, Baseline, and OPT versus

different parameters with a small-scale problem, assuming that

M = 20 and µ = 1. In general, IGS performs better than

Baseline and close to OPT. Fig. 12(a) shows that the CESP’s

revenues of all the three algorithms increase with the increase

of revenue parameter α. Algorithm IGS outperforms algorithm

Baseline by up to 15.3%. Fig. 12(b) shows that the CESP’s

revenues of the three algorithms decrease with the increase of

Fig. 14. Revenue of CESP with a large-scale problem. (a) Different number
of users. (b) Different number of edge servers.

average unit energy consumption of computing resources at the

edge servers. Algorithm IGS achieves very close performance

to OPT and increasingly better performance than Baseline.

In particular, algorithm IGS is better than algorithm Baseline

up to 83.9%. Fig. 12(c) shows that the CESP’s revenues of the

three algorithms increase with the increase of parameter µ.

Algorithm IGS outperforms Baseline from 0.4% to 8.4%.

2) Big-Scale Problem: Fig. 13(a) shows the average com-

munication delay between users and servers obtained by

algorithms IGS and Baseline by varying the number of users,
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assuming that α = 15 and µ = 1. The average communication

delay obtained by algorithm IGS is significantly lower than

that obtained by Baseline. Fig. 13(b) shows the average

communication delay between users and servers obtained by

algorithms IGS and Baseline with a different number of edge

servers, assuming that M = 160, α = 15, and µ = 1. The

average communication delay obtained by the two algorithms

decreases with the increasing number of edge servers. With

more edge servers, the users’ tasks are more likely be deployed

on edge servers. The average communication latency obtained

by algorithm IGS is better than that obtained by Baseline by

29.3%–46.7%.

Fig. 14(a) shows the CESP’s revenue performance of algo-

rithms IGS and Baseline by varying the number of users with

a large-scale problem, assuming that α = 15 and µ = 1.

The CESP’s revenues of the two algorithms increase with

the increase of the number of users since more users will

generate more computing resource requests and the CESP can

have more income. The improvement of algorithm IGS over

Baseline is up to 77.1%. Fig. 14(b) shows the CESP’s revenue

of algorithms IGS and Baseline with a different number of

edge servers, assuming that M = 160, α = 15, and µ = 1.

The CESP’s revenues of the two algorithms increase with the

increasing number of edge servers. With more edge servers,

both of the two algorithms have more options to deploy

the users’ tasks. The results of algorithm IGS are always

better than those of Baseline. In particular, algorithm IGS

outperforms Baseline by 4.0%–14.7%.

VI. CONCLUSION AND FUTURE WORK

The introduction of cloud/edge computing paradigm makes

mobile blockchain possible, where the cloud/edge servers

execute the services offloaded by the IoT users. The CESP

provides computing resources to IoT users with a cloud and

multiple edge servers that work collaboratively. It is critical

for the CESP to decide the resource price and which server

to run the offloaded tasks to maximize the revenue. In this

article, we formulated a Stackelberg game with CESP as

the leader and users as followers for cloud/edge computing

resource management. We proved the existence of Stackelberg

equilibrium and analyzed the equilibrium. We then modeled

the resource allocation and pricing at the CESP as an MIP

with the objective to optimize the CESP’s revenue and pro-

posed an efficient iterative greedy-and-search-based resource

allocation and pricing algorithm (IGS). The algorithm solves

two subproblems comprising the CESP’s revenue optimization

problem: resource allocation under a given resource price to

decide where to run the offloaded tasks and resource pricing

based on a specified resource allocation scheme. Algorithm

IGS uses a greedy-and-search-based approach to solve the

first subproblem and adopts golden section search to tackle

the second subproblem. Simulation results showed that the

proposed algorithm could effectively increase the revenues of

both the CESP and the users, the revenues of both the CESP

and the users increase with the increase of revenue parameter

αi of users and the computing power of the servers, and the

proposed algorithm could also effectively reduce the delay.

In this article, we studied the problem of resource manage-

ment for mobile blockchain when the computation is offloaded

to a server from either the edge servers or the cloud. Note that

an edge server can also offload the computation to the other

edge servers or the cloud or both when the edge server is

overloaded. We will study the resource management problem

under the new computation offloading model in the future.
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