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Cloud/Edge Computing Resource Allocation and
Pricing for Mobile Blockchain: An Iterative
Greedy and Search Approach
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Abstract—Blockchain can provide a dependable environment
for the Internet of Things (IoT), while the high computing power
and energy required by blockchain hinder its applications in
IoT. Offloading the computation at the resource-limited IoT
devices to a cloud/edge computing service provider (CESP) is
a feasible solution to the execution of computation-intensive
blockchain tasks. The CESP provides computing resources to
IoT users with a cloud and multiple edge servers that work
collaboratively such that the users are able to perform mobile
blockchain services. Resource allocation and pricing of computing
resources at the cloud/edges have a significant impact on the
revenues of CESP and users. Most of the existing works on
the cooperative edge—cloud for computation offloading assumes
that a user is mapped to a prespecified edge server or the
cloud. However, the CESP may choose a server from either the
edge servers or the cloud to run the offloaded tasks by jointly
considering the cost and income of the service provisioning.
In this article, we formulate a Stackelberg game with CESP as
the leader and users as the followers for cloud/edge computing
resource management. We prove the existence of Stackelberg
equilibrium and analyze the equilibrium. We then model the
resource allocation and pricing at the CESP as a mixed-integer
programming problem (MIP) with the objective to optimize the
CESP’s revenue and propose an efficient iterative greedy-and-
search-based resource allocation and pricing algorithm (IGS).
The algorithm solves two subproblems comprising the CESP’s
revenue optimization problem: resource allocation under a given
resource price and resource pricing based on a specified resource
allocation scheme. The first subproblem evaluates where to
execute the computing tasks via a greedy-and-search-based
approach, whereas the second subproblem estimates the resource
price through golden section search. We conduct experiments
through simulations. Simulation results show that the proposed
algorithm can effectively improve the revenue of both the CESP
and the IoT terminals.

Index Terms—Cloud computing, edge computing, mobile
blockchain, resource allocation, resource pricing.

I. INTRODUCTION

N 2008, Nakamoto [1] proposed an electronic transac-
tion system that does not rely on trust between system
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participants and for the first time explained the principles
of bitcoin and blockchain technology. Blockchain has the
characteristics of immutability, decentralization, distributed
ledgers, consensus, and so on, which enables blockchain
to overcome the problem of distrust among users in the
decentralized network and ensure the reliability and security
of transactions [2], [3]. Blockchain has a wide range of
applications from cryptocurrencies, financial services, and
the Internet of Things (IoT) to public social services [4].
As of December 2019, the cryptocurrency market capital-
ization statistics website coinmarketcap.com shows that there
were 4914 cryptocurrencies in the world with a total market
value of more than $200 billion, of which bitcoin market
value accounts for about 66.9% [5]. The annual revenue of
blockchain enterprises is expected to increase to approxi-
mately $20 billion in 2025 [6].

Consensus is the core of blockchain, which guarantees the
consistency and correctness of each transaction on all nodes
and enables the blockchain for efficient collaborative work on
a large scale without relying on a centralized organization.
Some consensus algorithms, such as proof of work (PoW),
require a large amount of computation. Users (miners) win
rewards through mining, where the users need to solve a
computationally challenging problem. The first miner who
successfully solves the computation problem and reaches an
agreement with other miners is considered as the winner of
the competition, and the winner will receive a reward for suc-
cessful mining. Since the energy consumption and computing
power required by the computation-intensive consensus are
prohibitively high, blockchain cannot be directly applied to
the resource-limited IoT devices, which hinders the practical
use of blockchain in mobile environments.

Offloading the computing tasks of the IoT devices to a
cloud/edge computing service provider (CESP) is a feasible
solution to computation resource-demanding blockchain in
mobile environments [7]. IoT devices can participate in the
mining by applying solo mining or pooled mining protocols
through mining task offloading [8], [9]. By providing more
computing resources with the CESP, computation offloading
can speed up the calculation process, improve the performance
of applications, and enable blockchain deployment on devices
with limited power supporting hashing and encryption algo-
rithms [10].

The CESP provides computing resources to the users with
cloud and multiple edge servers that work collaboratively such
that the users are able to perform mobile blockchain services,
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such as mining and encrypting. The resource allocation and
pricing scheme of computing resources at the cloud/edges has
a significant impact on the revenues of CESP and users.

Most of the existing works on the cooperative edge-cloud
for computation offloading assume that a user is mapped to
a prespecified edge server or the cloud. However, the CESP
may choose a server from either the edge servers or the
cloud to run the offloaded tasks by jointly considering the
cost and income of the service provisioning. In this article,
we study the cloud/edge computing resource allocation and
pricing problem for mobile blockchain under the computing
offloading framework in which a CESP provides both cloud
and multiple edge servers to run users’ offloaded tasks. The
contributions of this article are as follows.

1) We construct a computation offloading framework that
includes the cloud, multiple edge servers, and multiple
users (miners), and the cloud/edge servers are provided
by a CESP. We formulate a Stackelberg game with
CESP as the leader and users as the followers for
cloud/edge computing resource management. We prove
the existence of the Stackelberg equilibrium and analyze
the equilibrium.

2) We model the resource allocation and pricing at the
CESP as a mixed-integer programming problem (MIP)
with the objective to optimize the CESP’s revenue
and propose an efficient iterative greedy-and-search-
based resource allocation and pricing algorithm (IGS).
Algorithm IGS solves two subproblems comprising the
CESP’s revenue optimization problem: resource alloca-
tion under a given resource price and resource pricing
with a specified resource allocation scheme.

3) We conduct experiments through simulations. Simu-
lation results show that the proposed algorithm can
effectively improve the revenues of both the CESP and
the IoT users.

The rest of this article is organized as follows. Section II
introduces the related work. The system model is formulated
and analyzed in Section III. Section IV presents the proposed
resource allocation and pricing algorithm. The simulations are
given in Section V, and Section VI concludes this article.

II. RELATED WORK

Blockchain has the characteristics of security, reliability,
immutability, decentralization, and so on, and blockchain can
provide a reliable environment for IoT devices. For example,
Casado-Vara et al. [11] proposed an architecture based on
blockchain and edge computing to improve the quality of IoT
data and false data detection. Chamarajnagar and Ashok [12]
designed a decentralized architecture using the blockchain
technology, in order to promote distributed collabora-
tion among mobile I[oT devices to share their services
and redundant computing resources. In vehicle edge net-
works, Kang et al. [13] proposed a reputation-based data
sharing scheme, which introduces consortium blockchain
and smart contract technology to implement data storage
securely and prevent data sharing without authorization.
Kim and Moon [14] proposed an edge computing architecture

based on the blockchain technology to ensure the availability,
scalability, and integrity of edge computing; blockchain struc-
ture and protocols were modified to support the execution of
complex programs.

IoT devices can offload computation-intensive tasks to edge
servers. For example, Xiong et al. [7] proposed a mobile
blockchain framework that migrates computation-intensive
tasks, e.g., PoW that requires a lot of computing resources,
from IoT devices to the edge nodes with sufficient computing
resources.

Resource allocation and pricing are of vital importance for
the benefits of service providers and users. Some research
applied game theory to the allocation and pricing of the
cloud/edge computing resources. Xiong ef al. [15] modeled the
interaction between rational blockchain miners and cloud/fog
providers as a two-stage Stackelberg game and studied the
uniform pricing scheme and discriminatory pricing scheme
of cloud/fog providers. Zhang et al. [16] proposed a joint
optimization framework of fog nodes (FNs), data service
operators (DSOs), and data service subscribers (DSSs), which
implements the resource allocation scheme in a distributed
manner. In this framework, the Stackelberg game is used
to analyze the pricing problem of DSO and the resource
allocation problem of DSS; many-to-many matching is used
to study the matching problem between DSOs and FNs.
Dhamal et al. [17] studied a stochastic game in which players
(miners or computing power providers) can join and leave
during the mining of a block. Chiu and Koeppl, [18] formal-
ized the PoW protocol into a Cournot game, in which users
compete to update the blockchain for rewards and are restricted
from “double spending.”

Some research adopted auction for resource allocation and
pricing of cloud/edge resources. Jiao et al. [19] constructed
an auction-based market model to achieve the allocation of
computing resources; two bidding schemes, a fixed demand
scheme (each miner bids for a fixed amount of resources) and
a multiple demand scheme (miners can submit their preferred
demand and bid), were considered; aiming at the fixed demand
scheme, an optimal social welfare auction mechanism was
proposed. For the multiple demand scheme, an approximate
algorithm was designed with authenticity, individual rational-
ity, and computational efficiency. Jin ef al. [20] designed an
incentive-compatible auction mechanism (ICAM) to stimu-
late cloudlets to provide services to nearby mobile devices,
which reduces mobile device access delays and balances the
workload of the cloud by using the resources of cloudlets.
Luong et al. [21] proposed an optimal auction based on deep
learning for the edge resource allocation, which uses miners’
valuations as the training data to adjust the parameters of the
neural networks to minimize the negated revenue of the edge
computing service provider.

Some researchers managed the cloud/edge computing
resources for blockchain via optimization, credit-based
approach, and so on. Liu er al. [22] proposed a blockchain-
based mobile edge computing (MEC) framework with the
adaptive block size for video streaming; the tasks are offloaded
to nearby MEC nodes or device-to-device (D2D) users.
The problem of resource allocation, offload scheduling, and
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adaptive block size was formulated as an optimization prob-
lem, and an alternating direction multiplier algorithm was used
to solve the problem. Liu et al. [8] proposed a framework
combining MEC and blockchain; a joint optimization prob-
lem of mining task offloading and block cryptographic hash
cache was modeled, and an alternating direction multiplier
method was adopted to solve the problem. Wu et al. [23]
tackled the problem of mobile terminals acquiring computing
power from the edge server and proposed an optimization
problem to maximize the total net return of the mobile
terminals while maintaining the fairness between the mobile
terminals. Two algorithms were designed, with one for the
single edge server case and the other for the multiple edge
servers case, to determine the amount of computing power
the mobile terminals could obtain from different edge servers.
Abdellatif and Abdelmouttalib [6] studied the relationship
between the resources provided by edge service providers
and the needs of miners in the blockchain network and
proposed a resource allocation model based on bipartite graph
matching. Pan ef al. [24] designed an edge IoT framework
based on blockchain and smart contracts named “EdgeChain”;
the framework connects edge cloud resource pool with the
IoT device accounts and resources usage behavior through an
internal currency system and then uses a credit-based resource
management system to control the amount of resources a
device can obtain from an edge server according to predefined
priorities, application types, and previous behaviors.

Most of the existing works on the cooperative edge-cloud
for computation offloading assume that a user is mapped to
a prespecified edge server or the cloud. However, the CESP
may choose a server from either the edge servers or the
cloud to run the offloaded tasks by jointly considering the
cost and income of the service provisioning. In this article,
we study the cloud/edge computing resource allocation and
pricing problem for mobile blockchain under the computing
offloading framework consisting of a cloud, multiple edge
servers, and multiple users, where the cloud/edge servers are
provided by a CESP.

III. SYSTEM MODEL

Fig. 1 shows the system model. Each mobile terminal user
performs mobile blockchain services, e.g., mining, for rewards.
Due to the limited computing and energy resources, perform-
ing the blockchain services on the mobile terminals is chal-
lenging. A CESP provides computing resources to the users
through the cloud and the edge servers such that the users can
offload computation-intensive mining tasks to the cloud/edge
servers. In general, the cloud is far away from the users,
whereas the edge servers are close to the users. Assume that
the cloud has enough computing capacities to process all the
users’ tasks and each edge server has a limited computing
capacity.

The CESP gains revenue by providing paid resources to the
users. Each unit computing resource provided by the CESP
is denoted as a computing resource block (CRB). The CESP
sets the price p of each CRB, and the users determine the
amount of resources to purchase from the CESP based on the
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CRB’s price p. With more computing resources, the user is
more likely to perform successful mining and hence potentially
obtains more revenue [8], [25]. When the CRB’s price is
low, the users may be willing to purchase a large amount
of computing resources due to the potential high revenue of
successful mining. The users may be reluctant to buy the
computing resources, if the CRB’s price is high because of
the high purchase cost of computing resources. Therefore,
the CRB’s price has a significant impact on the revenues of
both CESP and users. Resource provisioning to the users also
imposes a cost on the CESP, where the cost includes the energy
consumption of the servers and the data transmission between
the user and the allocated server.

After evaluating the number of CRBs to purchase, the user
sends a resource purchase request to the CESP, who decides
which edge server or the cloud to serve the request under
the constraint of server’s computing capacity. The computing
tasks of a user will be offloaded to a server at either the cloud
or the edge side. After purchasing the required resources, the
user offloads the tasks to the allocated server.

During the interaction between the CESP and the users,
the CESP determines the price based on the users requests
and the users respond to the price by deciding the amount
of computing resources to be purchased. The two events are
sequential. Therefore, the interaction between the CESP and
the users can be formalized as a Stackelberg game with a
single leader and multiple followers, where the leader is the
CESP and the followers are the users.

The symbols and notations used in this article are shown in
Table I.

A. Computing Offloading Game Between CESP and Users

1) Stackelberg Game Between CESP and Users: The Stack-
elberg game between CESP and users consists of two sub-
games: 1) user subgame in which each user decides the amount
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TABLE I
TABLE OF SYMBOLS AND NOTATIONS
Notation Definition
b; User 1
B The set of users
M The number of users
e j-th edge server
E The set of edge servers
K The number of edge servers
T The amount of resources required by user ¢
Ti The server (edge server or cloud) currently serving
user ¢
cj Computing capacity of edge server e;
C The set of edge servers’ computing capacities
P The CRB’s price set by the CESP
o The computing power of each CRB
a; The revenue parameter of user b;
aj The unit energy consumption of computing resources
at edge server e;
Qeloud The unit energy consumption of computing resources
at the cloud
A1 The weighting coefficient of the data transmission
between users and edge servers
A2 The weighting coefficient of the data transmission
between users and cloud
d; The distance between user 4 and edge server e;
di cloud The distance between user i and the cloud

of CRBs to purchase from the CESP to maximize the user’s
revenue and 2) CESP subgame in which the CESP decides the
price of computing resources and chooses a server from either
the edge servers or the cloud to run the users’ offloaded tasks.

a) User subgame: If the user purchases a large amount
of computing resources from the CESP, the blockchain task
execution time is reduced, and hence, the user will potentially
obtain a high reward by finishing the blockchain services in a
short time. However, the revenue increase will slow down with
the increase of computing power when the user has obtained
a certain amount of computing resources. At the same time,
the computing resource purchase causes a cost to the user.
The more computing resources purchased, the higher the cost
to the user. We estimate the user revenue by the following
equation:

ui = a; In(1 4 ur;) — pri. (1)

The resource requirements of blockchain applications per-
formed by various users are different. Therefore, we assign
different revenue parameters to different users [24].

In user subgame, each user b; needs to maximize his revenue
by determining the amount of CRBs to purchase from the
CESP, that is, user b; is to

max u* = a; In(1 + ur;) — pri
s.t.ri > 0. )

b) CESP subgame: The CESP makes profit by selling
computing resources to the users, and the profit is affected
by the CRB’s price and the number of CRBs sold. Note
that the resource allocation to the user will impose a cost
on the CESP since the CESP needs to run the servers and
transmit data between the user and the allocated server. The
energy consumption used to run a task at a server is affected
by the unit energy consumption of computing resources at

the server and the amount of resources required by the task.
The communication cost is decided by the user-to-server
distance [26]. The computing tasks offloaded by user b; may
be deployed at the cloud or an edge server, and the cost of
accommodating the computing task offloading request from
user b;, cost;, is defined as

cost; = x; j(a;ri+A1d; j)+Xi cloud (Acloud?i +A2di cloud)  (3)

where x; ; (x; ; € {0, 1}) and X; cloud (Xi cloud € {0, 1}) represent

whether the tasks of user b; will be offloaded to edge server

e; and the cloud, respectively (=0, yes; =1, no). We say that

user b; is mapped/assigned to edge server e;/cloud, if the tasks

of user b; are run by edge server e;/cloud, and the computing

tasks of user b; are offloaded to one and only one server.
We define the CESP’s revenue as

M
u*P = Z(pri — cost;). 4)
i=1
The CESP maximizes the revenue by controlling the CRB’s
price, that is, the CESP is to

M
max u“P = E (pri — cost;)
P
i=1

st. Cl1: p> 0. 5)

2) Analysis of Stackelberg Game Between CESP and Users:
We first show that the Nash equilibrium exists in user subgame
and the optimal amount of CRBs to be purchased by a user
can be calculated at a given computing resource price. We then
prove the existence of equilibrium of the Stackelberg game
between the CESP and the users.

Lemma 1: Nash equilibrium exists in user subgame.

Proof: The user’s revenue function defined in (1) is
continuous, and the second derivative of the user’s revenue
function can be calculated as

aZu;lser ﬂzai
2 = 2 (6)
o(r) (1 + ur:)
Since u > 0, a; > 0, and r; > 0, we can get
2.
_L‘z < @)
(14 pury)

Therefore, the user’s revenue function defined in (1) is
quasi-concave about request ;. According to the Nash exis-
tence theorem, the Nash equilibrium exists in the user sub-
game. 0

Lemma 2: Given the CRB’s price p, the optimal amount of
CRBs to be purchased by user b; is calculated by the following

equation:
i1
rr = max(a— - —,0). )
P u

Proof: Tt can be seen from (6) and (7) that the second
derivative of the user’s revenue function with respect to r; is
less than 0, that is, the user’s revenue function with respect
to r; is a concave function. The first derivative of the user’s
revenue function is calculated as

ou™" o ua
or; 14 ur

- P ©)
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The extreme point of the user’s revenue function is calcu-
lated via the following equation by making (9) equal to 0, i.e.,
ou Jor; = 0:

r(:ai 1

p U

(10)

According to the property of the concave function, the
extreme point of the function is the maximum point of the
function. In (10), r/ may be less than 0. However, 7;* should
satisfy r* > 0. When r/ > 0, r =r/; when r/ < 0, 7 =0,
since the user’s revenue function decreases while r; > r/ and
r; > 0. Therefore, r} = max(r{ ,0). The lemma is proved. [

Theorem 1: The Stackelberg equilibrium exists in the
Stackelberg game between the CESP and the users.

Proof: According to Lemma 1, the users can always reach
a Nash equilibrium after the CRB’s price p is set by the CESP.
Next, we analyze the CESP’s revenue function of (4), which
can be rewritten as (11), shown at the bottom of the page,
based on Lemma 2.

The second derivative of CESP’s revenue function can be
calculated as (12), shown at the bottom of the page.

Since x;; > 0, Xicloud = 0, a; > 0, deioud > 0, £ > 0,
d,',j > 0, di,c]oud >0, 1, >0, 4 >0, ; >0, and p > 0,
we can get

62ucesp
op?

Therefore, there is an optimal price p* that maximizes
the CESP’s revenue, and the Stackelberg equilibrium exists.

We denote the Stackelberg equilibrium as (p*, i, 7, ..., 7).
O

13)

B. Resource Allocation and Pricing of CESP

The analysis of Stackelberg game between CESP and users
shows that the users can always reach a Nash equilibrium after
the CRB’s price is set by the CESP and the optimal amount of
CRBs to be purchased by a user can be calculated at a given
computing resource price. Therefore, it is important to decide
the resource allocation and pricing of the CESP.

The CESP maximizes the revenue by setting CRB’s price
p and deciding where to run the tasks offloaded by the users.

455

The CRB’s price affects the amount of computing resources
to be purchased by the users, which in turn has an impact on
the CESP’s revenue. Given CRB’s price p (p > 0) and the
amount of computing resources purchased by the users, the
CESP allocates each resource request to a server either at the
edge server side or at the cloud side, so as to minimize the
resource allocation cost and maximize the CESP’s revenue,
that is, the objective of CESP is to

max  u‘*P (14)

PsXi, j»Xicloud

where u“**P is defined in the following equation:

s.t. C1
M a; 1
C2: in,jmax(—l — —,O) <c; Ve eE
il p H
K
C3: Z(xi,j —i—xi,cloud) =1 Vb, eB
j=1

C4: x;; € {0, 1}, X cloua € {0, 1}.

Constraint C2 signifies that the edge servers cannot be
overloaded when running the tasks offloaded from the users.
Constraint C3 determines that the computing tasks of user
b; are offloaded to one and only one server. Constraint C4
dictates that the mapping relationship between the users and
the cloud/edge servers is represented by binary variables.

IV. RESOURCE ALLOCATION AND PRICING ALGORITHM

The Stackelberg game between CESP and users consists of
two subgames: user subgame and CESP subgame, as shown
in Fig 2. In the user sub-game, the users maximize revenue by
calculating the optimal amount of CRBs to purchase according
to Lemma 2. In the CESP sub-game, the CESP maximizes
revenue by deciding the price of computing resources and
choosing the servers to run the users offloaded tasks. The
problem of maximizing the CESP’s revenue is an MIP since
p > 0, Xi,j € {0, 1}, and Xi cloud € {0, 1}

In this section, we propose an efficient iterative greedy-and-
search-based resource allocation and pricing algorithm (IGS)
to solve the CESP’s revenue optimization problem that consists
of two subproblems: resource allocation under a given resource

K
ces]
u™r = E E xij(pri —ajri — Jid; j) + Xiclowd (Pri — delowari — A2di cloud)
i=1 j=1

M
M

p

i=1 j=

K
a; 1 i 1
E E Xi,j (max(— s 0) (p—aj)— /11di,j) + Xi cloud (max(; T 0) (p — aclowd) — lzdi,cloud) (11)
1

1
. 0, <0
62 cesp P U
oSk (12)
apz o i 1
i=l _? Zilxi,jaj + jv2xi,cloudac]0ud s T T ; >0

j=1
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CESP sub-game

User sub-game

Calculate the Resource price

5 Resource
optimal amount of pricing

CRBs to be

purchased The amount of CRBs IGS

Cloud xﬂ Edge server @@ The amount of CRBs $Resource price

8)’% User

@ Resource allocation scheme

Fig. 2. Diagram of Stackelberg game between CESP and users.

price and resource pricing with a specified resource allocation
scheme. Algorithm IGS initializes the resource price with a
high value. Algorithm IGS then solves the first subproblem
of resource allocation by evaluating where to execute the
computing tasks based on a specific resource price via a
greedy-and-search based approach while tackling the second
subproblem of resource pricing by estimating the resource
price based on a specified resource allocation scheme via
golden section search.

A. Resource Allocation

Resource allocation chooses a server from either the edge
servers or the cloud to run the computing tasks based on a
resource price. Given CRB’s price p (p > 0), the CESP’s rev-
enue maximization problem turns into an integer programming
problem. We propose a resource allocation algorithm based
on a greedy-and-search approach, as shown in Algorithm 1.
The algorithm is divided into two stages. The first stage
(lines 1-12) greedily finds the server for each task offloading
request, and the second stage (lines 13-32) conducts resource
reallocation to search for better resource allocation solutions.

1) Greedy Resource Allocation: We create a computing
resource request list Lo = {rf,r3,....r7, ..., r}}, where
each r (1 < i < M), calculated via (8), is the optimal
amount of CRBs purchased by user b; under a given CRB’s
price. We then construct a value matrix G, with M rows (M
users) and N = K+1 columns (K edge servers and a cloud)
as shown in (15). Each element v;; € G,, calculated by (16),
represents the revenue of serving user b; at the cloud if j = N;
otherwise, v;; indicates the revenue of edge server e; running
the tasks of user b;. Algorithm 1 is to choose an element from
each row of matrix G, to maximize the sum of the elements
under constraint C3

V11 ... Uik VIN

G, = (15)
UM UMK OMN

Vij = pri* — Cost;. (16)

We construct another auxiliary matrix G,, based on matrix
G,, as shown in (17), where element w;; = v;;/r/, indicating

Algorithm 1 Greedy-and-Search Based Resource Allocation
Input: User set B, Edge server set E,
Set C ={ci,c2,--+,¢j, - ,ck}, CRB’s price p.
Output: Resource allocation scheme x,
CESP’s revenue of u?.
1: Create computing resource request list /..,, where each
request in the list is calculated via Eq. (8);
2: Construct two auxiliary matrices of G, and G, as Egs. (15)
and (17);
3 B' < B,C' < C+{cljpua
4: while B’ # ¢ do

}, usP < 0;

5. Select user b} and server e; with w;; being the largest
element w;; in matrix G,;

6: if c¢; > r} then

7: xij < 1,¢j «<cj—rF, B < B —{b}};

8 uP «— ur +p;;, and w;j =7 (V1< j' < N);

9: else

10: set w;; < T,

11:  end if

12: end while

13: B < B;

14: while B’ # ¢} do
15:  Select the first user b; from B’, flag < 0;
16: for each b, € B do

17: if m(i, 7,1, r,v) > 0 and c’T’, +rf>r} and C/r,-/ +ri >
r’ then
18: Xig, <— Xity < 17 Xi'zy < Xirg, < 17
. / / ® ok / * k.
19: C‘L',' <~ CT,‘ + ri ri/’ C‘L','/ <~ CT," + ri/ ri ’
20: Ut — yP + (i, v, j, 1), flag < 1;
21: end if
22: end for
23:  for each ¢, € E do
24: if 72(i, 7, q) > 0 and ¢ > r; then
25: Xiz, < Xig < 1, c’rl_ <« c/Ti +r
26: Cy < g1l Ul —u P, i, q), flag < 1;
27: end if
28: end for

29: if flag = 0 then
30: B’ < B’ — {b}};
31:  end if

32: end while

33: return x, u““’,

the cost-effectiveness of serving user b; at edge server e;/cloud

w1 Uik WIN

G, = (17)

wpm1 Mg WMN

We define the unserved user set B’ = {b},b},..., b}, -}
(|B’] < K), in which each element is the user to be allocated
the computing resources. We also define server’s computing
capacity set C' = Ly ac'r =
N), with each element c;- indicating the available computing
capacity of edge server e¢; (1 < j < K) or cloud (j = N).
Since the computing resources of the cloud are sufficient,

/
we set ¢4 as a large value.

/ / / /
ClaChsvns €y oy Ces Cliond
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Algorithm 1 proceeds iteratively. In each iteration, the
algorithm selects the largest element w;; from matrix G,
with greedy strategy, that is, the algorithm selects the most
cost-effective user-server mapping. If the available computing
capacity of server e; can satisfy the resource request from user
b;, the tasks of b; are executed by server ¢; and all elements
in the ith row in matrix G,, are set as a small value 7, where
T < wpin and w,,;, is the smallest element in matrix G,;
otherwise, element w;; is set as 7. The process continues until
all the users are mapped to the servers.

2) Resource Reallocation: Once each user is mapped to
a server, the CESP’s revenue may be increased by exchang-
ing the mapping relationship of two user-server assignments.
Assume that users b; and by (i # i’) are currently mapped
to servers e, and e;, (tr; # i), respectively. The exchange
reassigns b; and b; to servers e; and e;, respectively.
We define m(i, 7,1, r,w), the benefit of exchange, as (18),
where 7 (i, 7;,i’, 7/) > 0 indicates that the CESP’s revenue
can be increased through the exchange

mi(i, 7 i’ 1) = (vie, +0ire,) — (Vig, +0ig,). (18)

Assigning the user to another server may also increase
the CESP’s revenue. We evaluate (i, 7;, ¢), the benefit of
reassignment, via (19). We can improve the CESP’s revenue
by performing the reassignment, if z,(i, 7;, ) > 0

m2(i, 7, q) = Vig — Vig, - (19)

Algorithm 1 conducts resource reallocation by exchange and
reassignment. The algorithm proceeds iteratively. Specifically,
for each user, the algorithm finds another user such that the
CESP’s revenue can be increased by exchanging the mapping
relationship of the two users (lines 16-22). For each user, the
algorithm also searches for another server to evaluate whether
reassigning the user to the server can increase the CESP’s
revenue (lines 23-28). The process continues until exchange
and reassignment are executed for all the users.

B. Resource Pricing

Resource pricing decides the resource price based on a
specified resource allocation scheme. After obtaining the com-
puting resource allocation scheme x by Algorithm 1 under a
given CRB’s price, we search for another CRB’s price p to
optimize the CESP’s revenue with resource allocation scheme
x. Since p > 0, we make p > ¢ during the resource pricing,
where ¢ is a small value close to 0.

The CESP’s revenue is related to the CRB’s price and the
amount of computing resources sold. A high price will make
the users reluctant to purchase the computing resources, and no
user will purchase any computing resources if CRB’s price p is
higher than a value pp.x, that is, the total amount of computing
resources purchased by all users will be 0 if p > ppax.

Theorem 2: When CRB’s price p > max{ua;|Vb; € B},
the total amount of computing resources purchased by all the
users is 0, that is, pm.x = max{ua;|Vb; € B}.

Proof: According to Lemma 2, when a; /p—1/u < 0, i.e.,
p > ua;, the amount of computing resources purchased by
user b; is 0. If max(a;/p — 1/u) < 0 for each user b; € B, i.e.,

p > max{uo;|Vb; € B}), no user will purchase the computing
resources. Therefore, pm.x = max{ua;|Vb; € B}. U

Since x;; (Vb; € B, 1 < j < K) and X;cioud (Vb; € B)
are known in a given resource allocation scheme x, the
optimization problem in Section III-B can be simplified with
(20) as the objective function under constraint C2’

M
max u“*P = Z (ﬁ - l) (p—ay =V ud,)

b o1 NP K

st.C2 1e < P = Pmax (20)

where 7; denotes the server providing computing services
to user b;. A/ = Ay if 7; is an edge server; V' = A, if
7; is the cloud. The revenue function in (20) is a continu-
ous concave function about price p under a given resource
allocation scheme x. We apply golden section search [27]
to find the optimal price p. The resource pricing process is
illustrated in Algorithm 2. The algorithm searches for the
optimal price by iteratively narrowing the search range of
values. Initially, the search range [left, right] is set as [&, pmax].
In each iteration, the algorithm updates the search range with
the golden ratio. Specifically, the algorithm calculates two
points in the range [left, right] as left + 0.382 % (right — left)
and left+0.618 % (right — left). The algorithm decides whether
the optimal price falls into [left, left + 0.618 * (right — left)] or
[left + 0.382 x (right — left), right] by comparing the revenues
at the two prices of left and right via Algorithm 1. The search
range narrowing process continues until the interval of the
search range is smaller than a predefined threshold J. The
algorithm outputs the middle value of the final search range
as the price.

Algorithm 2 Golden Section Search-Based Resource Pricing
Input: Resource allocation scheme x.

Output: CRB’s price p.

1: left < e, right < ppax,left’ < e, right’ < ppax;

2: while right — left > 6 do

3. p<«left, (valy, x) < Algorithm 1(p);

4 p < right', (valy,x) < Algorithm 1(p);

5. if val; > val, then

6: right < right’;
7

8

9

else
left < left';
. end if
10:  left' < left +0.382 % (right — lef't);
11 right’ < left 4+ 0.618 x (right — left);
12: end while
13: p < (right +left)/2;
14: return p.

C. Iterative Greedy-and-Search-Based Resource Allocation
and Pricing

The proposed iterative greedy-and-search-based resource
allocation and pricing algorithm is shown in Algorithm 3 by
iteratively solving the subproblems of resource allocation and
resource pricing. The algorithm initializes the resource price as
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Algorithm 3 IGS
Input: The user set B, Edge server set E,

Maximum number of iterations I',

Edge servers’ computing capacity set C.
Output: New feasible solution x,

Price p,

The revenue of CESP u?.
1: u? < 0, p < Pmax> Valyay < 0, iteration < 1;
2: while iteration < T do

3: (val,x/) <« Algorithm 1(p);
4: if val > u“? then

5: u®P <« pal,x < x’;

6: end if

7. p' <« Algorithm 2(x');

8. if |p — p’| < A then

9: break;

10:  end if

11: p < p;

12: end while
13: return x, p, value.

Pmax and the CESP’s revenue as 0. After the initialization, the
algorithm starts an iterative resource allocation and resource
pricing process. During each iteration, the algorithm decides
the resource allocation scheme x’ and the corresponding
CESP’s revenue val through Algorithm 1. If the CESP’s
revenue is increased with resource allocation scheme x’, the
algorithm updates x’ and val as the current best resource
allocation scheme and the current highest CESP’s revenue,
respectively. The algorithm then evaluates the optimal resource
price with the obtained allocation scheme x’ via Algorithm 2.
The iterative process continues until the change of resource
price is within a predetermined threshold A or the predefined
maximum number of iterations is reached. After the Stackel-
berg game between users and CESP reaches the equilibrium,
the users obtain the optimal amount of CRBs to purchase via
(8) according to Lemma 2.

V. PERFORMANCE EVALUATION

In this section, we investigate the impact of important
parameters on the proposed algorithm IGS. We also evaluate
the performance of algorithm IGS against the benchmarks.

A. Simulation Setup

The mobile terminal users and the edges servers are ran-
domly distributed in the region with 1.2 km radius. The
revenue parameter o; of all the mobile terminal users is the
same. The minimum resource price ¢ is 0.001. Parameters of &
and A are set as 0.001 and 0.01, respectively. Other simulation
parameters are shown in Table. II.

B. Impact of Different Parameters on the Proposed Algorithm

We investigate the impact of important parameters on the
proposed algorithm.

TABLE II
TABLE OF SIMULATION PARAMETERS
Simulation Parameters Value
Revenue parameter oy; of the user b; [5-60]
Computing power parameter [ [0-6]
Computing capacity each edge server [20-100]
The unit energy consumption of computing resources [1-10]
at each edge server
The unit energy consumption of computing resources 1
at the cloud
A1, weighting coefficient of the data transmission 0.1
between users and edge servers
A2, weighting coefficient of the data transmission 0.05
between users and cloud
1800 : : : 1800
—P— Users
1600 - 1600
1400 1400
[
@ o
2 1200 11200 @
w
3 o
5 1000 [ 11000 ©
g g
T 800 {800 &
8 8
T 600 1600 &
o =
°
400 1400
200 - 200
0 ‘ ‘ ‘ 0
5 10 15 20 25

Revenue parameter o

Fig. 3. Revenues of CESP and users versus different parameters a.

1) Impact of Different Parameters on the Revenue of CESP
and Users: Fig. 3 shows that the revenues of both the
CESP and the users increase with the increase of revenue
parameter ¢ when the computing power of each CRB is
1 (u = 1) and the number of users is 160 (M = 160). The
unit computing resource leads to more revenue with a higher
revenue parameter o than that with a lower one. Therefore,
with the increase in revenue parameter a, the users are willing
to purchase more computing resources to perform mobile
blockchain services to make more revenues. At the same time,
the CESP increases the revenue by providing more computer
resources and appropriately increasing computing resource
price p.

Fig. 4 shows that the revenues of both the CESP and
the users increase as parameter u increases when o = 15
and M = 160. u represents the computing power of each
CRB. As parameter u increases, the users can obtain more
computing power with the same amount of CRBs purchased
such that the users get more returns. The CESP increases the
revenue performance by adapting CRB’s price p to the amount
of CRBs required by the users.

2) Impact of Different Parameters on the Total Number of
CRBs Purchased by the Users: Fig. 5 shows the impact of
revenue parameter a on the total number of CRBs purchased
by all the users with a different number of users, assuming
u = 1. The total number of CRBs purchased by the users
increases with the increase of a. The higher parameter «, the
more revenues the users can obtain by executing each unit
computing resource for mobile blockchain services. Therefore,
the users are inclined to purchase more CRBs with a higher
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Fig. 4. Revenues of CESP and users with different parameters .
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Fig. 5. Total number of CRBs sold versus different parameters a.

o than with a lower a. The amount of computing resources
increases with more users since more users will buy more
computing resources to run the blockchain tasks.

Fig. 6 shows the impact of parameter x on the total number
of CRBs purchased by all the users with different a values,
assuming that the number of users is 160. The total number
of CRBs purchased by the users increases with the increasing
& when g is small and then decreases with the increasing
& when u is big. A higher ux indicates that each CRB is
more powerful and can reward the users more than a lower x.
Therefore, users are willing to buy a large number of CRBs
when u is low. After obtaining sufficient computing power
to serve the users’ offloading requests, the users will not buy
more CRBs. Therefore, with higher x, the users only need to
buy a smaller number of CRBs.

3) Impact of Different Parameters on the Resource Utiliza-
tion of Edge Servers: Fig. 7 shows the edge server resource
utilization performance versus different total number of CRBs
available at the edge servers, assuming M = 160, a = 15, and
u = 1. The edge servers’ resource utilization ratio is always
above 95% when the total capacity of all the edge servers is
within 225 CRBs. In this case, the transmission cost between
the users and the edge servers is low since the edge servers are
close to the users. The CESP will potentially prefer to provide
the computing resources of the edge servers. All the computing
resource demands can be satisfied by the edge servers when the
total capacity of all the edge servers is larger than 225 CRBs,

700 T T T T T

Total number of CRBs purchased by users

[

0 1 2 3 4 5 6
Parameter ;1

Fig. 6. Total number of CRBs sold with different parameters x.

—H— The number of CRBs served
—+— Resource utilization ratio

The number of CRBs served

The resource utilization ratio of edge servers(%)

0 I I I I 0
50 100 150 200 250 300

Total capacity of all edge servers

Fig. 7. Resource utilization of edge servers versus different total numbers
of CRBs available at the edge servers.

that is, the total number of CRBs served by the edge servers
keeps stable. Therefore, the edge servers’ resource utilization
ratio decreases as the total number of CRBs available at the
edge servers increases when the total capacity of all the edge
servers is larger than 225.

Fig. 8 shows the performance of the total number of CRBs
served by the edge servers by varying the unit energy con-
sumption of computing resources at the edge servers, assuming
that M = 160, a = 15, ¢ = 1, and the total number of CRBs
available at the edge servers is 75. When the unit energy
consumption of computing resources at the edge servers is
lower than 4.5, the edge servers have high resource utilization.
A high unit energy consumption of computing resources at
the edge servers makes the cost of serving users by the edge
servers exceed the cost of using the cloud to serve the users.
Fig. 8 shows the number of CRBs served by the edge servers
decreases rapidly to O when the unit energy consumption of
computing resources at the edge servers is higher than 4.5.

4) Impact of Different Parameters on the Income and Cost
of CESP: Fig. 9 shows the income and cost of CESP versus
different parameters o when u = 1. With the increase of
parameter o, the CESP’s cost increases. With a high a, the
users will buy a large amount of computing resources such
that the CESP needs to spend more cost on the resource
provisioning. At the same time, the CESP obtains more income
with the increase in the number of CRBs sold.
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Fig. 9. Income and cost of CESP versus different parameters a.

Fig. 10 shows that the income and cost of CESP with
various unit energy consumption of computing resources at
the edge servers. As the unit energy consumption of com-
puting resources at the edge servers increases, the cost of
providing services grows. When the unit energy consumption
of computing resources at the edge servers is large, some of
the users will be served by the cloud. In this case, the CESP
can lower the resource price p to increase the amount of
CRBs purchased by the other users who will be served by
the edge servers to increase the utilization of the edge servers.
Therefore, the CESP’s income increases although the service
provisioning cost also increases. The income and the cost will
tend to stabilize as the unit energy consumption of computing
resources at the edge servers increases to a certain value since
it is so large that all the users will be served by the cloud.

C. Iterative Procedure of Algorithm IGS

We discuss the iterative procedure of algorithm IGS and
how the algorithm reaches the Nash equilibrium.

Fig. 11 shows the iterative process of algorithm IGS,
assuming that M = 160, a = 15, and x = 1. The algorithm
first starts from a high resource price p, which makes all
users unwilling to purchase the computing resources. The
algorithm then dynamically adjusts the computing resource
price p. Users dynamically adjust the amount of computing
resources to purchase according to the resource price p. When

1200 T T T T T T T T T T

[ ]The income of CESP
The cost of CESP

1000 — —— The revenue of CESP | |

600 [-

400 - kaiy

The income and cost of CESP

0 1 1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10

Average unit energy consumption of computing resources at edge servers

Fig. 10. Income and cost of CESP with different unit energy consumption
of computing resources at the edge servers.
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Fig. 11. Tterative procedure of algorithm IGS.

the number of iterations is above 6, the resource price p keeps
stable at about 6.6, and the total number of CRBs purchased
by users stabilizes at about 200, that is, the Stackelberg game
between users and CESP reaches the equilibrium, and the
game between users reaches the Nash equilibrium.

D. Performance of the Proposed Algorithm Against
Benchmarks

We evaluate the performance of the proposed algorithm IGS
against benchmarks in two scenarios: a small-scale problem
and a big-scale problem. In the first scenario, the benchmarks
are the optimal solution OPT and the resource allocation
algorithm proposed in [16] which is the most similar state
of the art and denoted as Baseline in this article. The optimal
solution OPT to the resource allocation and pricing problem
defined in Section III-B is obtained via CPLEX 12.8.0 [28].
Baseline applies many-to-many matching to solve the resource
allocation problem. Baseline obtains the resource price via the
equilibrium analysis of a modeled game that is not applicable
in this article. Therefore, we use the proposed resource pricing
method in this article to decide the resource price for Baseline.
In the second scenario, we only compare algorithm IGS with
Baseline since we cannot obtain the optimal solution when the
problem has a big scale. We use the physical distance between
the user and the allocated server as an approximation of the
latency [26], [29].
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1) Small-Scale Problem: Fig. 12 shows the CESP’s revenue
performance of algorithms IGS, Baseline, and OPT versus
different parameters with a small-scale problem, assuming that
M = 20 and ¢ = 1. In general, IGS performs better than
Baseline and close to OPT. Fig. 12(a) shows that the CESP’s
revenues of all the three algorithms increase with the increase
of revenue parameter a. Algorithm IGS outperforms algorithm
Baseline by up to 15.3%. Fig. 12(b) shows that the CESP’s
revenues of the three algorithms decrease with the increase of

The number of edge servers
(b)

Fig. 14. Revenue of CESP with a large-scale problem. (a) Different number
of users. (b) Different number of edge servers.

average unit energy consumption of computing resources at the
edge servers. Algorithm IGS achieves very close performance
to OPT and increasingly better performance than Baseline.
In particular, algorithm IGS is better than algorithm Baseline
up to 83.9%. Fig. 12(c) shows that the CESP’s revenues of the
three algorithms increase with the increase of parameter u.
Algorithm IGS outperforms Baseline from 0.4% to 8.4%.

2) Big-Scale Problem: Fig. 13(a) shows the average com-
munication delay between users and servers obtained by
algorithms IGS and Baseline by varying the number of users,
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assuming that o = 15 and 4 = 1. The average communication
delay obtained by algorithm IGS is significantly lower than
that obtained by Baseline. Fig. 13(b) shows the average
communication delay between users and servers obtained by
algorithms IGS and Baseline with a different number of edge
servers, assuming that M = 160, a = 15, and ¢ = 1. The
average communication delay obtained by the two algorithms
decreases with the increasing number of edge servers. With
more edge servers, the users’ tasks are more likely be deployed
on edge servers. The average communication latency obtained
by algorithm IGS is better than that obtained by Baseline by
29.3%—46.7%.

Fig. 14(a) shows the CESP’s revenue performance of algo-
rithms IGS and Baseline by varying the number of users with
a large-scale problem, assuming that ¢ = 15 and u = 1.
The CESP’s revenues of the two algorithms increase with
the increase of the number of users since more users will
generate more computing resource requests and the CESP can
have more income. The improvement of algorithm IGS over
Baseline is up to 77.1%. Fig. 14(b) shows the CESP’s revenue
of algorithms IGS and Baseline with a different number of
edge servers, assuming that M = 160, « = 15, and u = 1.
The CESP’s revenues of the two algorithms increase with the
increasing number of edge servers. With more edge servers,
both of the two algorithms have more options to deploy
the users’ tasks. The results of algorithm IGS are always
better than those of Baseline. In particular, algorithm IGS
outperforms Baseline by 4.0%—14.7%.

VI. CONCLUSION AND FUTURE WORK

The introduction of cloud/edge computing paradigm makes
mobile blockchain possible, where the cloud/edge servers
execute the services offloaded by the IoT users. The CESP
provides computing resources to IoT users with a cloud and
multiple edge servers that work collaboratively. It is critical
for the CESP to decide the resource price and which server
to run the offloaded tasks to maximize the revenue. In this
article, we formulated a Stackelberg game with CESP as
the leader and users as followers for cloud/edge computing
resource management. We proved the existence of Stackelberg
equilibrium and analyzed the equilibrium. We then modeled
the resource allocation and pricing at the CESP as an MIP
with the objective to optimize the CESP’s revenue and pro-
posed an efficient iterative greedy-and-search-based resource
allocation and pricing algorithm (IGS). The algorithm solves
two subproblems comprising the CESP’s revenue optimization
problem: resource allocation under a given resource price to
decide where to run the offloaded tasks and resource pricing
based on a specified resource allocation scheme. Algorithm
IGS uses a greedy-and-search-based approach to solve the
first subproblem and adopts golden section search to tackle
the second subproblem. Simulation results showed that the
proposed algorithm could effectively increase the revenues of
both the CESP and the users, the revenues of both the CESP
and the users increase with the increase of revenue parameter
a; of users and the computing power of the servers, and the
proposed algorithm could also effectively reduce the delay.

In this article, we studied the problem of resource manage-
ment for mobile blockchain when the computation is offloaded
to a server from either the edge servers or the cloud. Note that
an edge server can also offload the computation to the other
edge servers or the cloud or both when the edge server is
overloaded. We will study the resource management problem
under the new computation offloading model in the future.
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