
Minimum Wireless Charger Placement

with Individual Energy Requirement

Xingjian Ding1, Jianxiong Guo2, Deying Li1(B), and Ding-Zhu Du2

1 School of Information, Renmin University of China, Beijing 100872, China
{dxj,deyingli}@ruc.edu.cn

2 Department of Computer Science, University of Texas at Dallas,
Richardson, TX 75080, USA

{jianxiong.guo,dzdu}@utdallas.edu

Abstract. Supply energy to battery-powered sensor devices by deploy-
ing wireless chargers is a promising way to prolong the operation time
of wireless sensor networks, and has attracted much attention recently.
Existing works focus on maximizing the total received charging power of
the network. However, this may face the unbalanced energy allocation
problem, which is not beneficial to prolong the operation time of wire-
less sensor networks. In this paper, we consider the individual energy
requirement of each sensor node, and study the problem of minimum
charger placement. That is, we focus on finding a strategy for placing
wireless chargers from a given candidate location set, such that each
sensor node’s energy requirement can be met, meanwhile the total num-
ber of used chargers can be minimized. We show that the problem to
be solved is NP-hard, and present two approximation algorithms which
are based on the greedy scheme and relax rounding scheme, respectively.
We prove that both of the two algorithms have performance guarantees.
Finally, we validate the performance of our algorithms by performing
extensive numerical simulations. Simulation results show the effective-
ness of our proposed algorithms.

Keywords: Wireless charger placement · Wireless sensor network ·
Individual energy requirement

1 Introduction

Over the past ten years, there is a growing interesting of using Wireless Sensor
Networks (WSNs) to collect data from the real world. A WSN system mainly
consists of lots of sensor nodes that are powered by on-board batteries. Due
to the inherent constraints on the battery technology, these on-board batteries
can only provide limited energy capacity, and thus it limits the operating time
of the wireless sensor networks. To achieve perpetual operation of the network

This work is supported by National Natural Science Foundation of China (Grant NO.
11671400, 12071478), and partially by NSF 1907472.

c© Springer Nature Switzerland AG 2020
W. Wu and Z. Zhang (Eds.): COCOA 2020, LNCS 12577, pp. 697–710, 2020.
https://doi.org/10.1007/978-3-030-64843-5_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64843-5_47&domain=pdf
https://doi.org/10.1007/978-3-030-64843-5_47


698 X. Ding et al.

system, prolonging the operation time of these battery-powered sensor nodes has
been an important task. The great progress in Wireless Power Transfer (WPT)
based on magnetic resonant coupling [8] bring a novel way to replenish the
batteries of wireless sensor networks. Prolonging the operation time of sensor
nodes by using WPT has many advantages. Such as, WPT is insensitive to
external environments and can provide relatively stable energy supply for each
sensor node; the charging power to sensor nodes is controllable and thus can
be flexibly adjusted according to the energy requirement of the wireless sensor
network; WPT provides an efficient way to charge sensor nodes without any
interconnecting conductors. As a promising way to deliver energy to wireless
sensor networks, the study of deploying wireless chargers has attracted significant
attention in a few years.

In previous studies, researchers mainly concentrate on charging utility max-
imization problem [3,4,15,18]. That is, their object is to get a maximum total
charging power of a given sensor network under some certain constraints, such as
the number of used chargers or the overall working power of deployed chargers.
These studies may face the unbalanced energy allocation problem. For example,
with the object of maximizing the total charging power of the network, there
might be some sensor nodes receive lots of wireless power, but others receive
rare or even no wireless power, which is not beneficial to prolong the lifetime of
the wireless network. Moreover, there are some studies focus on studying how
to efficient place wireless chargers so that a sensor device deployed anywhere
in the network area always can receive enough energy [6]. However, these works
didn’t consider the individual energy requirement of sensor nodes. In a real wire-
less sensor network application, the energy consumption rates of different sensor
nodes are significantly different [16]. On the one hand, sensor nodes may perform
different sensing tasks that require different energy support. On the other hand,
those sensor nodes that are around the base station need to forward data for
remote nodes and thus have much higher energy consumption rates than others.

In contrast to existing works, we consider a more practice scenario that sensor
nodes have different energy requirement. Our object is to get a charger placement
strategy with minimum number of used chargers so that every sensor node in a
network area can receive enough wireless power to meet its energy requirement.
The main contributions of this paper are as follows.

– In this paper, we consider the individual energy requirement of each sensor
node in a WSN, and study the problem of minimum charger placement with
individual energy requirement (problems PIO). We prove the problem to be
solved is NP-hard.

– We propose two approximation algorithms for the PIO problem, which are
based on greedy and relax rounding, respectively. Moreover, we give detail
theoretical performance analysis of the two algorithms.

– We validate the performance of the proposed algorithms by performing lots
of numerical simulations. The results show the effectiveness of our designs.

The rest of this paper is organized as follows. Section 2 introduces the state-
of-art work of this paper. Section 3 introduces the definition the problem to
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be solved. Sections 4 describes the two proposed algorithms for the PIO prob-
lem. Section 5 validates our algorithms through numerical simulations. Finally,
Section 6 draws the conclusion of this paper.

2 Related Works

In the past few years, replenish energy to sensor networks by placing wireless
chargers has been widely studied. There are lots of existing works that related
to ours. Some works consider the charging utility maximization problem from
different aspects. Dai et al. [4] focus on maximizing charging utility under the
directional charging model, they aim to get a charger placement strategy for a
certain number of directional chargers so that the overall charging utility of the
network can be maximized. Yu et al. [18] consider that wireless chargers could
communicate with each other, and they address the connected wireless charger
placement problem, that is, they aim to place a certain number of wireless charg-
ers into a WSN area to maximize the total charging utility under the constraint
that the deployed wireless chargers are connected. Wang et al. [15] first deal
with the problem of heterogeneous charger placement under directional charg-
ing model with obstacles. They aim to efficiently deploy a set of heterogeneous
wireless chargers such that the total charging utility can be maximized while
considering the effect of obstacles in the network area.

Different from the above works, some researchers focus on making sure that
each sensor node could get sufficient power to achieve perpetual operation. Li et
al. [9] investigate how to efficiently deploy wireless chargers to charge wearable
devices, and they aim to place wireless chargers in a 2-D area with minimum
cardinality to guarantee that the power non-outage probability of the wearable
device is not smaller than a given threshold. The work [10] is most similar to
ours, in which their object is to get a charger placement strategy with the mini-
mum cardinality to make sure that each sensor node can receive enough energy.
The key difference between this work and ours lies on we consider the individual
energy requirement of sensor nodes, other than with the assumption that the
same energy requirement of each sensor node is the same. Moreover, our pro-
posed algorithms have approximation ratios which guarantee the performance
in theory.

3 System Model and Problem Formulation

3.1 System Model and Assumptions

We consider a wireless sensor network that contains m rechargeable sensor nodes
denoted by S = {s1, s2, . . . , sm}. These sensor nodes are deployed in a limited
2-D area randomly, and their locations are fixed and known in advance. There
are n candidate locations in the network area which are chosen for placing wire-
less chargers. The candidate locations are chosen by end-users and at most one
wireless charger can be placed at each candidate location. The set of candidate
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Fig. 1. Omni charging model

locations is denoted by by C = {c1, c2, . . . , cn}. With a little abuse of notations,
the wireless charger placed at the i-th location is also denoted by ci.

As shown in Fig. 1, in this paper, we consider problem to be addressed under
omnidirectional charging model. In the omnidirectional charging model, both
rechargeable sensor nodes and wireless chargers are equipped with omni anten-
nas. Each charger symmetrically radiates its wireless power and shape a disk
charging area centering the charger. A sensor node can receive the wireless power
from any direction, it can be charged by a wireless charger as long as it located
within the charging area of the charger. In practice, the wireless power decays
with distance increases, and thus each wireless charger has a bounded charg-
ing area. We consider the scenario that all the wireless chargers of end-users are
homogeneous, and assume that each charger can only charge sensor nodes within
the range of D. Next we describe the energy transfer model and explain the way
to calculate the receiving power of a sensor node from wireless chargers.

Based on the Friis’s free space equation [2], the receiving radio frequency
(RF) power Pr of a receiver from a transmitter can be calculated as

Pr = GtGr

(

λ

4πd

)2

Pt, (1)

where Gt and Gr are antenna gains of transmitter and receiver, respectively, d

is the line-of-sight distance between transmitter and receiver, λ is the electro-
magnetic wavelength, and Pt is the transmitting RF power of the transmitter.

The Friis’s free space function is used for far-field wireless power transmission
such as satellite communication. For wireless rechargeable sensor networks, the
polarization loss should be considered. Based on this, He et al. [6] use a more
empirical model to formulate the wireless charging process in wireless recharge-
able sensor systems:

Pr =
GtGrη

Lp

(

λ

4π(d + β)

)2

Pt, (2)

where η is the rectifier efficiency, Lp is the polarization loss, and β is a parameter
to make Friis’s free space equation suitable for short distance wireless power
transmission.

As mentioned before, the wireless power decays with distance increases, it’s
difficult for a receiver which is very far from the transmitter to capture the
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wireless power as the RF signal is very weak. The symbol D is used to represent
the bound distance, that is, if d > D, Pr = 0. Therefore, in our omnidirectional
charging model, we use the following function to evaluate the RF power at sensor
node si receiving from charger cj :

Prx(si, cj) =

⎧

⎪

⎨

⎪

⎩

αPtx(cj)

(‖si − cj‖ + β)
2 , ‖si − cj‖ ≤ D

0 otherwise,

(3)

where α = GtGrη
Lp

(

λ
4π

)2
, Ptx(cj) is the antenna power of the charger cj , ‖si −

cj‖ is the line-of-sight distance between si and cj , and β is an empirically-
determined constant determined by the hardware parameters of chargers and
the surroundings.

To replenish energy to the batteries, receivers need to convert the RF energy
to electric energy. In practical applications, the conversion efficiency from RF to
electricity is non-linear [11]. We denote the electric power got by si from cj as
Pin(si, cj), and use ξ to denote the conversion efficiency, where ξ is related to
the receiving RF power Prx(si, cj), and is calculated as ξ = f(Prx(si, cj)). Then
Pin(si, cj) = ξPrx(si, cj) = f(Prx(si, cj))Prx(si, cj). This function also can be
expressed as Pin(si, cj) = g(Prx(si, cj)), where g(·) is a non-linear function. In
this work, we use the 2nd order polynomial model proposed by [17], we have

Pin(si, cj) = µ1(Prx(si, cj))
2 + µ2Prx(si, cj) + µ3, (4)

where µ1, µ2, µ3 ∈ R are the empirically-determined parameters.
We assume that all of the used chargers are homogeneous, and the transmit-

ting RF power of each charger is Ptx. According to the above charging model,
the minimum RF power that a sensor node receives from a charger can be cal-
culated by Pmin

rx = αPtx

(D+β)2 . Correspondingly, the minimum electric energy that

a sensor node got from a charger is estimated as Pmin
in = g(Pmin

rx ). In energy-
harvesting sensor systems, each sensor node needs to manage its electric energy
for achieving a long-term operation [7]. In order to make decision efficiently, the
sensor node use integers rather than reals to evaluate its energy. In this paper,
therefore, we use the charging levels present in [5] to evaluate the actual charging
power of a sensor node in a discretized way. The charging levels of a sensor node
si received from a charger cj can be calculated as follows.

L(si, cj) =

⌊

Pin(si, cj)

Pmin
rx

⌋

. (5)

According to [4,14], we can use multiple chargers to charge a sensor node
simultaneously, and the charging power of the sensor node got from these charg-
ers is accumulative. Thus we measure the charging levels of a sensor node from
multiple chargers as the summation of the charging levels provided by each
charger. Limited by the hardware of the sensor nodes, the charging levels of a
sensor node is bounded. We use Lth to denote the bounded charging levels of a
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sensor node. Then the charging levels of a sensor node si obtained from a given
charger set C is formulated as

L(si, C) =

⎧

⎨

⎩

∑

cj∈C

L(si, cj), if
∑

cj∈C

L(si, cj) ≤ Lth

Lth, otherwise.

(6)

3.2 Problem Formulation

In real wireless rechargeable sensor networks, sensor nodes may have different
energy requirement, as these sensor nodes may execute different tasks, besides,
the consumed energy for forwarding data is also variant. Therefore, in this work,
we study the strategy to place wireless chargers to meet the energy requirement
of every sensor node while the total number of used chargers can be minimized.
The problem to be addressed under omnidirectional charging model is formulated
as follows.

Problem 1. minimum charger Placement with Individual energy requirement
under Omnidirectional charging model (PIO). Given m rechargeable sensor
nodes S = {s1, s2, . . . , sm}, and n pre-determined candidate locations C =
{c1, c2, . . . , cn}. The charging levels requirement for each sensor node si ∈ S
is αi ≤ Lth. Our object is to find a subset C ⊆ C with minimum cardinality
to place wireless chargers, such that every sensor node meets its charging levels
requirement.

Formally, the PIO problem can be present as

min |C|

s.t. L(si, C) ≥ αi,∀si ∈ S

In our study, we assume that the PIO problem always has feasible solutions,
as end users will determine sufficient candidate locations to provide enough wire-
less power to wireless networks.

Next, we will prove that problem PIO is NP-hard through a theorem. The
following introduced problems are helpful for our proof.

The Set Cover Problem (SC): Given a set S ′ and a collection C′ of the subset
of S ′, assume that ∪c′

j
∈C′c′

j = S ′, the SC problem is to find a sub-collection

C ′ ⊆ C′ with minimum cardinality such that ∪c′

j
∈C′c′

j = S ′.

The Decision Version of the SC Problem (d-SC): For a given integer k,
whether there is a sub-collection C ′ ⊆ C′ so that ∪c′

j
∈C′c′

j = S ′ and |C ′| ≤ k?

The Decision Version of the PIO Problem (d-PIO): For a given integer
l, whether there is a location subset C ⊆ C, such that every sensor’s charging
levels requirement can be met and |C| ≤ l if we place wireless chargers on C?

Theorem 1. The PIO problem is NP-hard.
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Proof. We prove the theorem by reduction, where we reduce the well-known SC
problem to PIO. Consider such an instance of d-SC: given an integer k, a set
S ′ = {s′

1, s
′
2, . . . , s

′
m}, and a collection C′ = {c′

1, c
′
2, . . . , c

′
n}, where c′

j ⊆ S ′ for
any c′

j ∈ C′. Next, we construct an instance d-PIO as follows. For each s′
i ∈ S ′,

we generate a rechargeable sensor node si. We also generate a virtual candidate
location cj for each c′

j ∈ C′ , where the distance between cj and si is less than
the charging range D only when s′

i ∈ c′
j . Besides, we set the charging levels

requirement αi for each sensor si to be 1, and let l = k.
Obviously, this reduction will terminated in polynomial time, and we can

get a “yes” answer from the generated instance of problem d-PIO if and only if
the given instance of problem d-SC has a “yes” answer. As the SC problem is
a well-known NP-complete problem [13], we know that the PIO problem is at
least NP-hard.

4 Algorithms for the PIO Problem

In this section, we design two algorithms with performance guarantees for prob-
lem PIO: one is a greedy algorithm, named gPIO; another one is based on relax
and rounding, named rPIO. In the following, we will describe our algorithms
in detail, and given theoretical performance analysis of the two algorithms,
respectively.

4.1 The Greedy Based Algorithm

Algorithm Description. We first introduce some useful concepts for making
the description of algorithm gPIO more clearly. As each sensor node only needs to
meet its charging levels requirement, given a set of placed wireless chargers C, we
define the useful charging levels of a sensor si as LU (si, C) = min{L(si, C), αi}.
The overall useful charging levels provided by charger set C for the whole network
is calculated as LU (C) =

∑

si∈S LU (si, C). Clearly, LU (∅) = 0. Consider a
location set C which has been deployed with wireless chargers, the marginal
increment about total useful charging levels is the difference between LU (C ∪
{ci}) and LU (C), when a candidate location ci is selected for placing a wireless
charger.

The basic idea of algorithm gPIO is as follows. In each step, the candidate
location which brings maximum marginal increment of overall useful charging
levels will be selected to place wireless charger. After a candidate location is
selected to be placed a charger, algorithm gPIO will update the overall useful
charging levels. gPIO terminates after every sensor’s charging levels requirement
is achieved. Algorithm1 shows the details of algorithm gPIO.

In the following, we give the analysis of the time complexity of gPIO. The
calculation of LU (C ∪{ci}) costs O(mn) time, where m and n are the number of
sensor nodes and candidate locations, respectively. In each iteration of the while
loop, every candidate location in C\C needs to be checked to find the “best” one.
Therefore, it costs O(mn2) time for each iteration of the while loop. It’s easy
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Algorithm 1. The greedy algorithm for PIO (gPIO)

Input: S, C, and αi for each sensor si ∈ S
Output: a subset of candidate locations C

1: C ← ∅
2: while LU (si, C) < αi, ∃si ∈ S do

3: choose ci ∈ C\C that maximizes LU (C∪{ci})−LU (C), and break tie arbitrarily;
4: C ← C ∪ {ci};
5: end while

6: return C

to know that if the feasible solution exists, the gPIO algorithm must terminate
within n iterations after it scanned all the candidate locations. In summary, the
time complexity of algorithm gPIO is O(mn3).

Performance Analysis. We analyze the approximation ratio of algorithm gPIO

through the following theorem.

Theorem 2. gPIO is a (1+ln γ)-approximation algorithm for the PIO problem,
where γ = maxci∈C LU ({ci}).

Proof. We assume the solution found by algorithm gPIO contains g candidate
locations, and we renumber the locations in the order of their selection into the
solution, i.e., C = {c1, c2, . . . , cg}. We use Ci to denote the location set get by
gPIO after the i-th iteration, where i = 0, 1, . . . , g, i.e., Ci = {c1, c2, . . . , ci} and
C0 = ∅. Denote the optimal solution by C∗, and assume there are t number of
candidate locations in C∗. The PIO problem is to get a minimum set of candidate
locations to place wireless chargers such that every sensor node meets its charging
levels requirement, according to the definition of useful charging levels, the PIO
problem also can be described as to get a minimum set of candidate locations
so that the overall useful charging levels equals to

∑

si∈S αi. Obviously, we have

LU (C) = LU (C∗) =
∑

si∈S αi.

We use L−U (Ci) to represent the difference of useful charging levels between
LU (Ci) and LU (C∗), i.e., L−U (Ci) = LU (C∗) − LU (Ci). In other words, after
the i-th iteration of gPIO, there still need L−U (Ci) useful charging levels to meet
the charging levels requirement of every sensor node.

As the optimal solution contains t candidate locations, it’s easy to know
that given a location set Ci, there exists a set with no more than t locations in
C \ Ci that can provide L−U (Ci) useful charging levels for the network. By the
pigeonhole principle, there must exist a location cj ∈ C\Ci that provides at least
L−U (Ci)

t
marginal increment of useful charging levels. According to the greedy

criterion of algorithm gPIO, in each step, we select the location with maximum
marginal increase of overall useful charging levels. Therefore, we have

LU (Ci+1) − LU (Ci) ≥
L−U (Ci)

t
=

LU (C∗) − LU (Ci)

t
. (7)
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Equivalently, we get

LU (C∗) − LU (Ci+1) ≤
(

LU (C∗) − LU (Ci)
)

·

(

1 −
1

t

)

. (8)

By induction, we have

L−U (Ci) = LU (C∗) − LU (Ci)

≤ LU (C∗) ·

(

1 −
1

t

)i

≤ LU (C∗) · e− i
t .

(9)

In each iteration, L−U (Ci) decreases from LU (C∗) to 0, so we can always find
an positive integer i ≤ g such that L−U (Ci+1) < t ≤ L−U (Ci). Each location
selected by algorithm gPIO provides at least 1 useful charging levels. Thus we
can conclude that after (i + 1)-th iterations, the gPIO algorithm will terminate
after at most t − 1 more iterations (i.e., selects at most t − 1 more candidate

locations). Therefore, we get g ≤ i+ t. As t ≤ L−U (Ci) ≤ LU (C∗) · e− i
t , we have

i ≤ t · ln
(

LU (C∗)
t

)

≤ t · ln γ. Thus we have

g ≤ i + t ≤ t(1 + ln γ). (10)

Thus the theorem holds.

4.2 The Relax Rounding Algorithm

Algorithm Description. We first rewrite the PIO problem as an integer linear
program problem. We use n variables x1, x2, . . . , xn to be indicators to denote
whether the candidate locations are selected to be placed with wireless chargers.
If a location is selected, then xj = 1 and xj = 0 otherwise, for 1 ≤ j ≤ n. Then
problem PIO can be rewritten as

min
∑

cj∈C

xj

s.t.

∑

cj∈C

xj · L(si, cj) ≥ αi, ∀si ∈ S

xj ∈ {0, 1}, 1 ≤ j ≤ n.

(11)

By relaxing the constraints of xj ∈ {0, 1} to the constraints of 0 ≤ xj ≤ 1,
for 1 ≤ j ≤ n, the integer linear program is transformed into a linear program:

min
∑

cj∈C

xj

s.t.

∑

cj∈C

xj · L(si, cj) ≥ αi, ∀si ∈ S

0 ≤ xj ≤ 1, 1 ≤ j ≤ n.

(12)
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Solving the linear program problem (12) and we get its optimal solution.
To get a a feasible solution of (11), i.e., a feasible solution of PIO, we need to
rounding the optimal solution of (12) to integers. Next, we will show the details
of the rounding process.

Denote the optimal solution of problem (12) by X∗ = {x∗
1, x

∗
2, . . . , x

∗
n}, then

we sort the elements in X∗ in descending order of the value of x∗
j and renumber

them, that is, let x∗
1 ≥ x∗

2 ≥ · · · ≥ x∗
n. Note that we also renumber the candidate

location set according to X∗ such that x∗
j indicates whether location cj is selected

to be placed with a charger. We denote a solution of problem (11) as XA =
{xA

1 , xA
2 , . . . , xA

n }. In the beginning, we let xA
j = 0 for 1 ≤ j ≤ n, and then

we make XA feasible for problem (11) through iterative operations. In the j-th
operation, we let xA

j = 1. The iteration terminates until XA be a feasible solution
for the integer linear program problem (11), that is, every sensor node meets its
charging levels requirement. We show the details of rPIO in Algorithm2.

Algorithm 2. The relax rounding algorithm for PIO (rPIO)

Input: S, C, and αi for each sensor si ∈ S
Output: a feasible solution XA for problem (11)
1: Calculate L(si, cj) for each si ∈ S and cj ∈ C, and then convert the PIO problem

to an integer linear program as shown in (11);
2: Relax problem (11) and construct a corresponding linear program (12);
3: Solve the linear program (12) and get an optimal solution X∗;
4: Sort the elements in X∗ in descending order of the value of x∗

j , and renumber them
such that x∗

1 ≥ x∗
2 ≥ · · · ≥ x∗

n;
5: Renumber candidate locations such that x∗

j indicates whether location cj is
selected;

6: XA = {xA
1 , xA

2 , . . . , xA
n } = {0, 0, . . . , 0};

7: k = 1;
8: while

∑
cj∈C

xj · L(si, cj) < αi, ∃si ∈ S do

9: xA
k = 1;

10: k = k + 1;
11: end while

12: return XA

Next, we give the analysis of the time complexity of algorithm rPIO. It costs
O(mn) time to get L(si, cj) for each si ∈ S and cj ∈ C in the first line in
algorithm rPIO. Convert problem PIO to an integer linear program and then
relax it to a corresponding linear program takes O(1) time. Solving the linear
program costs O(n2.5L) according to [12], where L is the number of bits in the
input. Sort the elements in X∗ takes O(n log n) time by using the Quicksort
method. L(si, cj) has been calculated for each si ∈ S and cj ∈ C in the first line,
so the judgement of the while loop costs O(m) time. The while loop contains at
most n iterations, and thus the while loop costs O(mn) time. To sum up, the
time complexity of algorithm rPIO is O(mn) + O(n2.5L) + O(n log n) + O(mn),
that is O(mn + n2.5L) time.
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Performance Analysis. We use Ni to represent the summation of charging lev-
els of sensor si provided by every candidate location, that is, Ni =

∑

cj∈C

L(si, cj).

Then we have the following theorem.

Theorem 3. rPIO is a δ-approximation algorithm for the PIO problem, where
δ = max

si∈S
{Ni − αi + 1}.

Proof. To prove the theorem, we need first prove that for any xA
j ∈ XA, if

xA
j = 1, then x∗

j ≥ 1
δ
. We prove this condition by contradiction. We first divide

the candidate location set into two parts according to the values of elements in
X∗. For any cj ∈ C, we put location cj into C+ if x∗

j ≥ 1
δ
, otherwise, we put

location cj into C−, that is, C+ = {cj |x
∗
j ≥ 1

δ
} and C− = {cj |x

∗
j < 1

δ
}.

Assume that there exists an indicator xA
k ∈ XA where xA

k = 1 but x∗
k < 1

δ
.

According to condition of the while loop in algorithm rPIO, there must exist
a sensor si ∈ S such that

∑k−1
j=1 xj · L(si, cj) < αi, otherwise, algorithm rPIO

will terminates in k − 1 iterations, and then xA
k = 0. We can easy know that

|C+| ≤ k − 1, as x∗
k < 1

δ
and the elements in X∗ have been sorted in the

descending order of the value of each element. In other words, the candidate
location set C+ cannot provide enough charging levels for sensor si. We use L+

i

to denote the summation of the charging levels of si provided by each location
in C+, i.e., L+

i =
∑

cj∈C+ L(si, cj) < αi. Then the summation of the charging

levels of si provided by each location in C− can be calculated by Ni − L+
i .

∑

cj∈C

x∗
j · L(si, cj) =

∑

cj∈C+

x∗
j · L(si, cj) +

∑

cj∈C−

x∗
j · L(si, cj)

<
∑

cj∈C+

1 · L(si, cj) +
∑

cj∈C−

1

δ
· L(si, cj)

= L+
i + (Ni − L+

i ) ·
1

δ

(13)

As L+
i is an positive integer, and L+

i < αi, so we know that L+
i ≤ αi−1. We only

consider the case that problem PIO has feasible solutions, it’s easy to know that
δ ≥ 1, and then L+

i + (Ni − L+
i ) · 1

δ
hits its maximum value when L+

i = αi − 1.
Therefore, we have

∑

cj∈C

x∗
j · L(si, cj) < L+

i + (Ni − L+
i ) ·

1

δ

≤ αi − 1 + (Ni − αi + 1) ·
1

δ
≤ αi.

(14)

Inequation (14) contradicts the fact that X∗ is a feasible solution for linear
program (12), i.e., it violates the condition that

∑

cj∈C

x∗
j · L(si, cj) ≥ αi, ∀si ∈ S.

Hence, we now have prove that for any xA
j ∈ XA, if xA

j = 1, then x∗
j ≥ 1

δ
. Then

we have the following inequation,
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∑

cj∈C

xA
j ≤ δ ·

∑

cj∈C

x∗
j (15)

We complete the proof here.

5 Performance Evaluation

We assume that there is a wireless sensor network involves 200 rechargeable
sensor nodes that are randomly deployed in a 400 m× 400 m square area, and
each site of a sensor node is selected as a candidate location. We set the working
RF power Ptx of each wireless charger to be 106

µW. The parameters α and
β are set to be 2.5 and 15, respectively. The charging distance D is set to be
70 m. For the non-linear energy conversion, according to the data measured in
[1], we set µ1 = −0.00001, µ2 = 0.57 and µ3 = 10. The required charging levels
of each sensor node is randomly selected in [10, 20]. The data points plotted in
this section under different settings are the average of 100 runs.

5.1 Performance Comparison

We implement a random algorithm, named random, as the baseline for problem
PIO. Specifically, algorithm random repeatedly selects a candidate location in
a random way to place an omnidirectional wireless charger until every sensor
node’s charging levels requirement is met. Next, we compare our algorithms
with the baseline with different parameters.
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Fig. 2. Performance comparisons between our algorithms (gPIO and rPIO) and random

in omnidirectional charging.

(1) Effect of the number of sensor nodes (m): Figure 2(a) shows the effect
of the number of sensor nodes on the performance of our algorithms and the
baseline. We can see that with the number of sensor nodes increases, all of the
three algorithms will require more wireless chargers. However, our algorithms
gPIO and gPIO always outperforms the random algorithm. More specifically, the
growth rates of our algorithms are lower than that of the baseline algorithm. We
can also see that algorithm gPIO is better than algorithm rPIO, which implies
that the greedy algorithm is a simple but effective method to deal with the PIO
problem.
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(2) Effect of the number of the network area size: Figure 2(b) shows the effect
of the network area size on the number of used wireless chargers. We keep the
number of sensor nodes to be 200, and set the side length of the square area from
200 m to 400 m. We can see that, with the network area becomes larger, all of the
algorithms will need more wireless chargers to meet the sensor nodes’ charging
levels requirements, and our algorithms always outperform the baselines.

(3) Effect of the charging levels requirements of sensor nodes: To evaluate
the effect of the charging levels requirements of sensor nodes on the number of
used wireless chargers, we design two different experiments. One is set the lower
bound of the charging levels requirements to be 10, and range the upper bound
of the charging levels requirements from 14 to 22, as shown in Fig. 2(c). It can be
seen that with the upper bound of the charging levels requirements increases, the
number of used wireless chargers slightly increases for all algorithms. In another
set of experiments, we keep the upper bound of the charging levels requirements
always be two times of the lower bound, and range the lower bound from 1 to
11, as shown in Fig. 2(d). We can see that the performance of our algorithms
is always batter than the baseline, especially when the lower bound of charging
levels requirement is small, for example, when the lower bound is et to be 1,
the number of wireless chargers required by algorithm gPIO is only 27.6% of
algorithm random, and 37.6% of algorithm rPIO.

6 Conclusions

In this study, we investigate the minimum wireless charger placement problem by
considering individual energy requirement. We consider the problem under the
omnidirectional charging model. We present two algorithms with performance
guarantees for problem PIO. In addition, we give detail theoretical performance
analysis of the two proposed algorithms. We perform lots of numerical simula-
tions to validate the performance of our algorithms, simulation results show that
our designs perform better than the baseline. The study of this problem under
directional charging model will be our future work.
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