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Key Points:5

• Throughout California, the precipitation frequency determines how wet a water year6

is.7

• The precipitation frequency in parts of California is determined by the East Pacific8

jet stream location.9

• Up to 20% of California’s annual precipitation variations are predictable given summer10

SST in the Pacific.11
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Abstract12

Understanding and predicting precipitation characteristics on seasonal and longer timescales13

can help California prepare for long-term droughts and precipitation extremes. We find that14

interannual variations in total precipitation across California are primarily determined by15

precipitation frequency. As was shown previously for total precipitation, the precipitation16

frequency is linked to the North Pacific jet stream location. This indicates that California17

precipitation frequency is primarily controlled by where the jet guides precipitating weather18

systems, rather than by how moist or energetic the systems are. The jet’s position, in turn,19

depends on the states of the El Niño-Southern Oscillation (ENSO) and of the Pacific Decadal20

Oscillation (PDO). We use this to construct a regression model that predicts variations21

in California annual total precipitation and precipitation frequency. Up to 20% of the22

wintertime precipitation variance in Southern California is predictable using decorrelated23

ENSO and PDO indices in the previous summer.24

Plain Language Summary25

This study shows that the number of rainy days, rather than the rainfall intensity,26

determines whether a given year is wet or dry in California. How often it rains, in turn, is27

related to a specific pattern of Pacific sea surface temperatures several months before the28

rainy season, providing modest predictability of year-to-year rainfall variations for Southern29

California.30

1 Introduction31

California’s Mediterranean climate is characterized by hot and dry summers, while most32

of its rain falls in winter (Kottek et al., 2006). The seasonal differences in water supply33

make California vulnerable both to long-term droughts and to short-term extreme rainfall34

events, which result in flash floods and mudslides (Hanak, 2011). With recent climate35

models predicting more frequent extreme precipitation in the western U.S. in the future36

(Meehl et al., 2000; Leung et al., 2004; Dominguez et al., 2012), year-to-year predictability37

of California’s precipitation characteristics would be helpful in ensuring sustainable water38

management practices and preparedness for extreme events.39

California’s geographical diversity and latitudinal extent make prediction of California’s40

extreme precipitation events challenging. Because precipitation statistics are not spatially41

homogeneous, extreme events in different regions often have different characteristics and42

origins. Additionally, the focus on the total annual precipitation in many previous studies43

(Granger, 1979; Haston & Michaelsen, 1997; Berg & Hall, 2015) has obscured the extent to44

which the intensity and frequency of extreme events have different impacts and potentially45

different predictability characteristics.46

Most of California’s winter precipitation is imported by North Pacific storms. The47

location and variability of these storms are linked to the underlying Pacific sea surface48

temperatures (SSTs) and the associated atmospheric teleconnections (Palmer & Mansfield,49

1984; Baggett & Lee, 2015; X. Liu et al., 2016; Shaw et al., 2016; L. Dong et al., 2018; Amini50

& Straus, 2019), such as the El Niño-Southern Oscillation (ENSO), which dominates SST51

variability (Redmond & Koch, 1991; Straus & Shukla, 1997; Mo & Higgins, 1998; Cayan et52

al., 1999; Trenberth, 2011). Other studies (McCabe & Dettinger, 1999; Brown & Comrie,53

2004; Brown, 2011; Sung et al., 2014; Tamaddun et al., 2016) have found that the relation-54

ship between ENSO and California’s precipitation is additionally modulated by the Pacific55

Decadal Oscillation (PDO). However, because ENSO and PDO, as traditionally defined, are56

correlated, their use as independent predictors, e.g., of California rainfall characteristics has57

so far been limited. Wills et al. (2018) recently constructed closely related but uncorrelated58

indices PDO* and ENSO* via a low-frequency component analysis (LFCA). Here we explore59

their use in predicting California precipitation characteristics.60
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We perform an analysis of interannual precipitation variability in four geographically61

different regions of California (Figure 1a). For each region, we analyze precipitation extremes62

and quantify the contribution of the number of rainy days and their intensity to the annual63

totals. We further explore the physical links to the North Pacific SSTs and large-scale64

flow characteristics. We quantify the link between Pacific SSTs and California precipitation65

extremes using a linear regression model, with ENSO* and PDO* as the predictors.66

2 Data and Methods67

Daily gridded precipitation data (0.25◦× 0.25◦) between July 1, 1949 and June 30, 202068

were obtained from CPC US Unified Precipitation data provided by NOAA/OAR/ESRL69

PSL (https://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html).70

The data were divided into four Californian regions in Figure 1, namely Southern (S), North-71

ern (N), Central Coastal (CC), and Central Mountainous (CM). The gridded data were av-72

eraged over each region, producing four time series upon which we performed the statistical73

analysis. Each time series was partitioned into water years, defined to stretch from July 174

to June 30 (allowing each entire wet season to be in one water year).75

We used correlation and linear regression methods to analyze the contribution of an-76

nual precipitation associated with specific events (TPevent) to the annual total precipitation77

(TPsum) for each water year. TPevent is the annual sum of daily precipitation that occurred78

only during rainy days (i.e., days when precipitation exceeds a threshold, which we define79

as a rainy-day threshold). We then split TPevent into the average amount of precipitation80

per day in a water year (intensity, I) and the number of rainy days in the same period81

(duration, D). Therefore, TPevent = D × I. TPsum is the total annual precipitation from82

all days; it does not depend on the rainy-day threshold. By contrast, TPevent, D, and I do83

depend on the rainy-day threshold.84

Existing studies have used different thresholds to define a rainy day. For example, Pierce85

et al. (2013), Caldwell et al. (2009), and Englehart and Douglas (1985) chose an absolute86

value of daily precipitation across all their study regions. This can be problematic when87

comparing climatologically different regions, such as those investigated here. Alternatively,88

studies on extreme events tend to use percentile-based thresholds (Polade et al., 2017; Mass89

et al., 2011) to define a rainy day, which here would be the percentage of TPsum explained by90

TPevent. However, the extreme events identified by this approach may have different origins91

in the different regions. Here we present our results both in terms of value-based thresh-92

olds (rainy-day threshold) and percentile-based thresholds (TPevent/TPsum). We examine93

TPevent, D, and I under different thresholds by varying the rainy-day threshold between 194

and 25 mm day−1 with an interval of 0.1 mm day−1. The corresponding percentile-based95

thresholds are shown in Figure 1b.96

Using the approach of Wills et al. (2018), we calculate the mutually uncorrelated ENSO*
97

and PDO* indices for 1948–2020 by applying LFCA (https://github.com/rcjwills/98

lfca) to the NOAA Extended Reconstructed monthly Sea Surface Temperature data set99

v5. These are calculated using the first three empirical orthogonal functions of SST over100

the Pacific Ocean between 45◦S and 70◦N. The PDO* and ENSO* indices correspond to the101

second and third low-frequency components, and yield qualitatively comparable patterns to102

those of the (correlated) traditional PDO and ENSO indices (Wills et al., 2018). We use103

a multi-linear regression model to cross-correlate ENSO* and PDO* of each month in the104

preceding year with TPsum, TPevent, I, and D of a water year. We did this for a range105

of rainy-day thresholds to examine the different predictability of extreme and non-extreme106

precipitation.107
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3 Results108

Figure 1b shows how much of the annual total precipitation TPsum in California ac-109

cumulated between July 1948 and June 2020 is captured by the rainy-day precipitation,110

TPevent, as a function of the rainy-day threshold. For reference, we also supply the raw time111

series of TPsum in Figure S1. In the wettest region, N, the precipitation fraction captured112

by the rainy-day precipitation decays more slowly with the rainy-day threshold than in the113

other, drier regions, meaning that the N region exhibits a more continuous range of moder-114

ate to intense events. Thus, different rainy-day thresholds have a regionally different effect115

on the type of precipitation events that are being captured in TPevent.116

The interannual variability of TPsum is strongly correlated with TPevent and D, and117

less strongly with I, across different rainy-day thresholds (Figure 1c). The sensitivity of the118

correlations to the rainy-day threshold is comparable across all regions and for all statistics.119

Pearson’s r of TPsum with TPevent decreases from 1 as the threshold increases. Pearson’s r120

of TPsum with D is maximal at a threshold for TPevent/TPsum between 50–75%, which is121

greater than 10 mm day−1 in N and less than 10 mm day−1 in other regions. Pearson’s r122

of TPsum with I is greatest when the threshold is 1 mm day−1, and it rapidly decreases as123

the threshold increases. These correlations show that, in all regions, California’s interannual124

precipitation variability is primarily determined by the number of rainy days, D, as opposed125

to the intensity on rainy days, I.126

Despite the regional similarity in the correlations of the precipitation event statistics127

with the interannual variability of total water year precipitation (July–June), correlations128

of the interannual variability with monthly ENSO* and PDO* from the April preceding the129

water year to March of the water year are markedly different across the four regions (Figure130

2). The correlation of ENSO* and PDO* with total water year precipitation is stronger in131

S and CC than in N and CM.132

In N and CM, the interannual variability of TPsum correlates weakly and not sta-133

tistically significantly with ENSO* and PDO* for all months, except from December to134

February in CM. There is some significant positive correlation of ENSO* and PDO* with135

D and TPevent for low rainy-day thresholds (below 5 mm day−1), and with I for higher136

rainy-day thresholds (above 15 mm day−1).137

In S and CC, the correlations of interannual variability of TPsum, TPevent, and D with138

ENSO* and PDO* for all months are positive and statistically significant, except for April in139

CC. TPevent and D defined by lower rainy-day thresholds are more correlated with ENSO*
140

and PDO*, especially from June to March. On the contrary, the interannual variability of I141

in S and CC is weakly and rarely statistically significantly correlated with ENSO* and PDO*.142

With D being the main driver of TPsum variability, its significant correlation with ENSO*
143

and PDO* suggests potential predictive power of the two SST indices for precipitation in144

these regions.145

The relative predictive skill of ENSO* and PDO* shifts with the lead time (i.e., the146

month of the previous year from which SST was correlated with precipitation of the current147

year). The correlation coefficients for ENSO* and PDO* are comparable in spring/early148

summer. We show explicitly in the supplementary material (Figure S4) that the significantly149

higher correlation coefficients in spring/summer are attributable to the inclusion of PDO*,150

especially in S and CC. However, in winter, the ENSO* correlation is much stronger, and151

the inclusion of PDO* does not improve Pearson’s r substantially in any of the regions.152

Finally, we can approximately predict interannual variations of D, TPevent, and TPsum

from the interannual variations of ENSO* and PDO*, using the following regression models:
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Figure 1. (a) California precipitation regions: Northern California (N), Central Coastal region

(CC), Central Mountainous region (CM), and Southern California (S). (b) Ratio of total precipita-

tion from rainy days (TPevent) to total annual precipitation (TPsum) as a function of the rainy-day

threshold. The black marker on each curve indicates the rainy-day threshold used in our predic-

tions in Figures 3 and S5. (c) Pearson’s r values of TPsum with TPevent, D, and I as a function

of the rainy-day threshold. Correlations with p-values smaller than 0.05 are deemed statistically

significant (solid lines). Insignificant correlations are plotted in dotted lines.

D(τ, t) = b1(τ)ENSO*(t) + b2(τ)PDO*(t) + ε(τ, t) (1a)

TPevent(τ, t) = D(τ, t)I(τ, t) (1b)

≈
[
b1(τ)ENSO*(t) + b2(τ)PDO*(t)

]
Ī(τ) (1c)

TPsum(t) = g(τ)−1TPevent(τ, t) (1d)

≈ g(τ)−1
[
b1(τ)ENSO*(t) + b2(τ)PDO*(t)

]
Ī(τ). (1e)

Here, τ is the rainy-day threshold, b1 and b2 are the multi-linear regression coefficients, and153

ε is the zero-mean residual noise of the linear regression. The function g(τ) is the normalized154

cumulative PDF displayed in Figure 1b. Because of the weak and statistically insignificant155

correlation of I with ENSO* and PDO*, we use the time-mean precipitation event intensity156

Ī(τ) in our statistical model. The mean event intensity Ī(τ) is the multi-year average of157

I(τ, t) at a given τ . All of the variables are standardized to a mean 0 and standard deviation158
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Figure 2. Correlations of ENSO* and PDO* with California rainfall statistics of water years

(July–June). Top row: coefficients of multi-linear regression of TPsum with monthly ENSO* (red)

and PDO* (blue). The Pearson’s r coefficient of the multi-linear regression is shown in grey. The

solid line and solid circles represent statistically significant correlations with p < 0.05, where the

null hypothesis that zero correlation has a greater absolute Pearson’s r value than the calculated

one was rejected. Dashed lines and open circles denote insignificant correlations. The monthly

ENSO* and PDO* indices are evaluated between the April preceding the water year to the March

during the water year. Bottom three rows: Pearson’s r values resulting from correlating TPevent, D,

and I at different rainy-day thresholds (vertical axis) with monthly ENSO* and PDO* (horizontal

axis) using multi-linear regression. Stippling indicates significant correlations with p < 0.05.

1. The significance intervals were calculated by bootstrapping and training the multi-linear159

regression model with 70% of the data.160

We choose to demonstrate our regression models with ENSO* and PDO* in June be-161

cause that is when the two SST indices become markedly predictive of the interannual162

variability of TPsum (Figure 2). By using June SSTs, the model predicts California precipi-163

tation (which primarily occurs in winter) approximately 6 months in advance. In all regions,164

the correlations of the June ENSO* and PDO* with I are generally small and insignificant.165

But the contributions of June ENSO* and PDO* to the prediction of TPsum via D are166

significant and comparably important in the CC and S regions (Figure 2).167

In general, the estimates of b1, b2, and ε produce better predictions if the rainy days168

are defined using a moderate threshold (e.g., 50–70% TPevent/TPsum). For example, in the169

S region, when τ is 5.7 mm day−1 (threshold at which the correlation of ENSO* and PDO*
170

with D is maximized), Pearson’s r = 0.5, the bootstrapped medians of the coefficients are171

b1 = 0.44 days year−1 and b2 = 0.35 days year−1, and g(τ) = 0.56 (indicated by the black172

marker in Figure 1b). The bootstrapped median of the predicted time series of TPsum173

in Figure 3 captures 18% of the interannual variability of the observed TPsum. We also174
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repeated the same prediction but using the two SST indices from previous July and August.175

On average, the two SST indices in the previous summer (June, July, and August) can176

capture 20% of the interannual variability of the observed TPsum. The predictions for the177

three other regions account for far less of the total annual precipitation (Figure S5) since178

ENSO* and PDO* only weakly correlate with D in those regions.179

Figure 3. Time series of observed (blue) and predicted (red) TPsum using preceding June ENSO*

and PDO* based on the regression model in Eq. (1), for the Southern California (S) region. The

calendar years on the x-axis refer to a water year, such that 1949/1950 represents July 1949–June

1950. The red shade and the error bar on the 2020/2021 prediction are the range between the first

and third quartiles of bootstrapped TPsum predictions. The Ī(τ) in the calculation is the temporal

average of I(τ, t) over all years with threshold τ = 5.7 mm day−1.

4 Discussion180

Despite the regional differences in California’s geography, throughout the state, the181

number of rainy days is more important than the rainfall intensity in its contribution to182

the total rainy-day precipitation. That is, interannual precipitation variations are primarily183

driven by variations in the number of rainy days, suggesting that they are controlled mainly184

by large-scale weather systems associated with the North Pacific storm track. Wet years185

have more rainy days because the large-scale circulation in wet years guides more storm track186

eddies toward California (Branstator, 1995; Lau, 1988; Higgins & Schubert, 1993). This is187

particularly apparent in the Southern and Central Coastal regions, which are located under188

the upper-level climatological winter jet (Figure S2). This jet guides storm track eddies,189

and its latitudinal shifts determine which regions of the West Coast are impacted by those190

storms and their precipitation.191

Directly correlating the latitude of this jet (Archer & Caldeira, 2008) with the number192

of rainy days (Figure S3) yields negative correlations over all sub-regions, consistent with193

the notion that the jet is farther south (directed toward California) in California’s wet years.194

However, the magnitude of these correlations is small, because the jet latitude is a relatively195

noisy statistic.196

The jet location is modulated by the SSTs associated with both ENSO* and PDO*.197

ENSO* and PDO* are smoother measures of the large-scale climatological changes than the198

jet latitude, which is why they yield more robust and statistically significant correlations.199

Time-lagged correlations of multi-linear regression reveal that a substantial fraction (up to200

20% of the variance) of Southern California’s rainfall variations is potentially predictable201

from ENSO* and PDO* of the preceding summer, both with similar importance. Although202

the amount of total annual precipitation accounted for by both winter ENSO* and win-203

ter PDO* is comparable to using both indices from the early summer, ENSO* is a more204

important predictor than PDO* at shorter lead times, i.e., from October to March.205

–7–



manuscript submitted to Geophysical Research Letters

The different correlations of SST with precipitation across the four regions have been206

explained in previous papers. As Brown and Comrie (2004), Wise (2010), Sung et al. (2014)207

and others have discussed, Pacific SST variations drive a dipole pattern in precipitation208

over the western US. Since the N and CM regions are located in the transition zone of209

that dipole, their precipitation correlates less well with the SSTs. Instead, these regions are210

more susceptible to influences of the local geography. This poses a challenge for seasonal to211

subseasonal predictability of precipitation in those regions.212

The potential predictability of total precipitation in California has been previously213

linked to the modulation of the storm track by the Interdecadal Pacific Oscillation (IPO)214

(Dai, 2013; B. Dong & Dai, 2015), an SST pattern over the Pacific (Henley et al., 2015;215

Z. Liu & Alexander, 2007; Lau, 1988; Trenberth & Hurrell, 1994; Chang & Fu, 2002).216

IPO is often considered to include the SST signals from both ENSO and PDO (Folland et217

al., 2002; Verdon & Franks, 2006). ENSO* and PDO* together account for 94% of IPO218

variance. Using IPO alone, or in combination with the other indices, does not provide219

additional predictability beyond that implied by ENSO* and PDO* (Figure S4).220

There are other large-scale atmospheric patterns of variability that regulate the spatial221

storm track position and SST anomalies, such as the Arctic Oscillation (Strong & Davis,222

2008), the North Pacific Oscillation/West Pacific teleconnection (Linkin & Nigam, 2008),223

and the North Pacific Gyre Oscillation (X. Liu et al., 2016). We included these other modes224

of internal variability in our analysis, but they did not add predictive power. Knowledge of225

ENSO and PDO variability seems to be key for understanding how the large-scale circulation226

deflects the storm tracks and brings precipitation to Southern California.227

5 Conclusions228

We discussed the interannual variability of California precipitation and its decomposi-229

tion into the number of rainy days and precipitation intensity under both value-based and230

percentile-based thresholds. The results show that the frequency of rainy events is the most231

important determinant of interannual precipitation across all Californian regions, regardless232

of the rainy-day threshold. This highlights the large-scale impact of the North Pacific storm233

track, whereby interannual precipitation events reflect the landfall of storm track eddies.234

The eddy propagation itself is largely driven by variations of the Pacific SSTs on these235

timescales. We showed that the summer values of ENSO* and PDO*, two uncorrelated236

indices derived from SSTs, can be used to predict part of the annual precipitation variations237

in the Southern and Central Coastal regions on subseasonal to seasonal timescales. The cor-238

relations of June ENSO* and PDO* with TPevent are directly linked to the correlations with239

the number of rainy days. The combined predictive power of ENSO* and PDO* persists240

from summer to winter for precipitation in Southern California, while the relative impor-241

tance of PDO* increases with lead time. For predictions based on the previous summer,242

PDO* is as important a predictor as ENSO*. In other parts of California, where the effect243

of the Pacific SSTs is less pronounced, precipitation is less predictable using either of the244

two SST indices.245
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Geiger climate classification updated. Meteorologische Zeitschrift , 15 (3), 259–263.306

Lau, N.-C. (1988). Variability of the observed midlatitude storm tracks in relation to low-307

frequency changes in the circulation pattern. Journal of the atmospheric sciences ,308

–9–



manuscript submitted to Geophysical Research Letters

45 (19), 2718–2743.309

Leung, L. R., Qian, Y., Bian, X., Washington, W. M., Han, J., & Roads, J. O. (2004). Mid-310

century ensemble regional climate change scenarios for the western United States.311

Climatic Change, 62 (1-3), 75–113.312

Linkin, M. E., & Nigam, S. (2008). The North Pacific Oscillation–west Pacific teleconnection313

pattern: Mature-phase structure and winter impacts. Journal of Climate, 21 (9), 1979–314

1997.315

Liu, X., Ren, X., & Yang, X.-Q. (2016). Decadal changes in multiscale water vapor transport316

and atmospheric river associated with the Pacific Decadal Oscillation and the North317

Pacific Gyre Oscillation. Journal of Hydrometeorology , 17 (1), 273–285.318

Liu, Z., & Alexander, M. (2007). Atmospheric bridge, oceanic tunnel, and global climatic319

teleconnections. Reviews of Geophysics , 45 (2).320

Mass, C., Skalenakis, A., & Warner, M. (2011). Extreme precipitation over the west coast321

of North America: Is there a trend? Journal of Hydrometeorology , 12 (2), 310–318.322

McCabe, G. J., & Dettinger, M. D. (1999). Decadal variations in the strength of ENSO tele-323

connections with precipitation in the western United States. International Journal of324

Climatology , 19 (13), 1399-1410. doi: 10.1002/(SICI)1097-0088(19991115)19:13〈1399::325

AID-JOC457〉3.0.CO;2-A326

Meehl, G. A., Zwiers, F., Evans, J., Knutson, T., Mearns, L., & Whetton, P. (2000).327

Trends in extreme weather and climate events: Issues related to modeling extremes in328

projections of future climate change. Bulletin of the American Meteorological Society ,329

81 (3), 427-436. doi: 10.1175/1520-0477(2000)081〈0427:TIEWAC〉2.3.CO;2330

Mo, K. C., & Higgins, R. W. (1998). Tropical influences on California precipitation. Journal331

of Climate, 11 (3), 412–430.332

Palmer, T., & Mansfield, D. (1984). Response of two atmospheric general circulation models333

to sea-surface temperature anomalies in the tropical east and west Pacific. Nature,334

310 (5977), 483–485.335

Pierce, D. W., Cayan, D. R., Das, T., Maurer, E. P., Miller, N. L., Bao, Y., . . . others (2013).336

The key role of heavy precipitation events in climate model disagreements of future337

annual precipitation changes in California. Journal of Climate, 26 (16), 5879–5896.338

Polade, S. D., Gershunov, A., Cayan, D. R., Dettinger, M. D., & Pierce, D. W. (2017). Pre-339

cipitation in a warming world: Assessing projected hydro-climate changes in California340

and other Mediterranean climate regions. Scientific reports , 7 (1), 1–10.341

Redmond, K. T., & Koch, R. W. (1991). Surface climate and streamflow variability in the342

western United States and their relationship to large-scale circulation indices. Water343

Resources Research, 27 (9), 2381-2399. doi: 10.1029/91WR00690344

Shaw, T., Baldwin, M., Barnes, E. A., Caballero, R., Garfinkel, C., Hwang, Y.-T., . . . others345

(2016). Storm track processes and the opposing influences of climate change. Nature346

Geoscience, 9 (9), 656–664.347

Straus, D. M., & Shukla, J. (1997). Variations of midlatitude transient dynamics associated348

with ENSO. Journal of the Atmospheric Sciences , 54 (7), 777-790. doi: 10.1175/349

1520-0469(1997)054〈0777:VOMTDA〉2.0.CO;2350

Strong, C., & Davis, R. E. (2008). Variability in the position and strength of winter jet351

stream cores related to Northern Hemisphere teleconnections. Journal of Climate,352

21 (3), 584–592.353

Sung, M.-K., An, S.-I., Kim, B.-M., & Woo, S.-H. (2014). A physical mechanism of the pre-354

cipitation dipole in the western united states based on PDO-storm track relationship.355

Geophysical Research Letters , 41 (13), 4719-4726. doi: 10.1002/2014GL060711356

Tamaddun, K. A., Kalra, A., & Ahmad, S. (2016). Wavelet analyses of western US stream-357

flow with ENSO and PDO. Journal of Water and Climate Change , 8 (1), 26-39. doi:358

10.2166/wcc.2016.162359

Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research,360

47 (1-2), 123–138.361

Trenberth, K. E., & Hurrell, J. W. (1994). Decadal atmosphere-ocean variations in the362

Pacific. Climate Dynamics , 9 (6), 303–319.363

–10–



manuscript submitted to Geophysical Research Letters

Verdon, D. C., & Franks, S. W. (2006). Long-term behaviour of ENSO: Interactions with364

the PDO over the past 400 years inferred from paleoclimate records. Geophysical365

Research Letters , 33 (6). doi: 10.1029/2005GL025052366

Wills, R. C., Schneider, T., Wallace, J. M., Battisti, D. S., & Hartmann, D. L. (2018). Disen-367

tangling global warming, multidecadal variability, and El Niño in pacific temperatures.368

Geophysical Research Letters , 45 (5), 2487-2496. doi: 10.1002/2017GL076327369

Wise, E. K. (2010). Spatiotemporal variability of the precipitation dipole transition zone370

in the western United States. Geophysical Research Letters , 37 (7). doi: 10.1029/371

2009GL042193372

–11–


