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Predicting the interannual variability of California’s
total annual precipitation
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Key Points:

e Throughout California, the precipitation frequency determines how wet a water year
is.

e The precipitation frequency in parts of California is determined by the East Pacific
jet stream location.

+ Up to 20% of California’s annual precipitation variations are predictable given summer
SST in the Pacific.
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Abstract

Understanding and predicting precipitation characteristics on seasonal and longer timescales
can help California prepare for long-term droughts and precipitation extremes. We find that
interannual variations in total precipitation across California are primarily determined by
precipitation frequency. As was shown previously for total precipitation, the precipitation
frequency is linked to the North Pacific jet stream location. This indicates that California
precipitation frequency is primarily controlled by where the jet guides precipitating weather
systems, rather than by how moist or energetic the systems are. The jet’s position, in turn,
depends on the states of the El Nino-Southern Oscillation (ENSO) and of the Pacific Decadal
Oscillation (PDO). We use this to construct a regression model that predicts variations
in California annual total precipitation and precipitation frequency. Up to 20% of the
wintertime precipitation variance in Southern California is predictable using decorrelated
ENSO and PDO indices in the previous summer.

Plain Language Summary

This study shows that the number of rainy days, rather than the rainfall intensity,
determines whether a given year is wet or dry in California. How often it rains, in turn, is
related to a specific pattern of Pacific sea surface temperatures several months before the
rainy season, providing modest predictability of year-to-year rainfall variations for Southern
California.

1 Introduction

California’s Mediterranean climate is characterized by hot and dry summers, while most
of its rain falls in winter (Kottek et al., 2006). The seasonal differences in water supply
make California vulnerable both to long-term droughts and to short-term extreme rainfall
events, which result in flash floods and mudslides (Hanak, 2011). With recent climate
models predicting more frequent extreme precipitation in the western U.S. in the future
(Meehl et al., 2000; Leung et al., 2004; Dominguez et al., 2012), year-to-year predictability
of California’s precipitation characteristics would be helpful in ensuring sustainable water
management practices and preparedness for extreme events.

California’s geographical diversity and latitudinal extent make prediction of California’s
extreme precipitation events challenging. Because precipitation statistics are not spatially
homogeneous, extreme events in different regions often have different characteristics and
origins. Additionally, the focus on the total annual precipitation in many previous studies
(Granger, 1979; Haston & Michaelsen, 1997; Berg & Hall, 2015) has obscured the extent to
which the intensity and frequency of extreme events have different impacts and potentially
different predictability characteristics.

Most of California’s winter precipitation is imported by North Pacific storms. The
location and variability of these storms are linked to the underlying Pacific sea surface
temperatures (SSTs) and the associated atmospheric teleconnections (Palmer & Mansfield,
1984; Baggett & Lee, 2015; X. Liu et al., 2016; Shaw et al., 2016; L. Dong et al., 2018; Amini
& Straus, 2019), such as the El Nifo-Southern Oscillation (ENSO), which dominates SST
variability (Redmond & Koch, 1991; Straus & Shukla, 1997; Mo & Higgins, 1998; Cayan et
al., 1999; Trenberth, 2011). Other studies (McCabe & Dettinger, 1999; Brown & Comrie,
2004; Brown, 2011; Sung et al., 2014; Tamaddun et al., 2016) have found that the relation-
ship between ENSO and California’s precipitation is additionally modulated by the Pacific
Decadal Oscillation (PDO). However, because ENSO and PDO, as traditionally defined, are
correlated, their use as independent predictors, e.g., of California rainfall characteristics has
so far been limited. Wills et al. (2018) recently constructed closely related but uncorrelated
indices PDO" and ENSO” via a low-frequency component analysis (LFCA). Here we explore
their use in predicting California precipitation characteristics.
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We perform an analysis of interannual precipitation variability in four geographically
different regions of California (Figure 1a). For each region, we analyze precipitation extremes
and quantify the contribution of the number of rainy days and their intensity to the annual
totals. We further explore the physical links to the North Pacific SSTs and large-scale
flow characteristics. We quantify the link between Pacific SSTs and California precipitation
extremes using a linear regression model, with ENSO™ and PDO" as the predictors.

2 Data and Methods

Daily gridded precipitation data (0.25°x 0.25°) between July 1, 1949 and June 30, 2020
were obtained from CPC US Unified Precipitation data provided by NOAA/OAR/ESRL

PSL (https://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conus.html).

The data were divided into four Californian regions in Figure 1, namely Southern (S), North-
ern (N), Central Coastal (CC), and Central Mountainous (CM). The gridded data were av-
eraged over each region, producing four time series upon which we performed the statistical
analysis. Each time series was partitioned into water years, defined to stretch from July 1
to June 30 (allowing each entire wet season to be in one water year).

We used correlation and linear regression methods to analyze the contribution of an-
nual precipitation associated with specific events (TPeyent) to the annual total precipitation
(TPgum) for each water year. TPoyent is the annual sum of daily precipitation that occurred
only during rainy days (i.e., days when precipitation exceeds a threshold, which we define
as a rainy-day threshold). We then split TPeyent into the average amount of precipitation
per day in a water year (intensity, I) and the number of rainy days in the same period
(duration, D). Therefore, TPoyent = D X I. TPgyy, is the total annual precipitation from
all days; it does not depend on the rainy-day threshold. By contrast, TPeyent, D, and I do
depend on the rainy-day threshold.

Existing studies have used different thresholds to define a rainy day. For example, Pierce
et al. (2013), Caldwell et al. (2009), and Englehart and Douglas (1985) chose an absolute
value of daily precipitation across all their study regions. This can be problematic when
comparing climatologically different regions, such as those investigated here. Alternatively,
studies on extreme events tend to use percentile-based thresholds (Polade et al., 2017; Mass
et al., 2011) to define a rainy day, which here would be the percentage of TPy, explained by
TPevent- However, the extreme events identified by this approach may have different origins
in the different regions. Here we present our results both in terms of value-based thresh-
olds (rainy-day threshold) and percentile-based thresholds (TPeyent/TPsum). We examine
TPevent, D, and I under different thresholds by varying the rainy-day threshold between 1
and 25 mm day ! with an interval of 0.1 mm day—!. The corresponding percentile-based
thresholds are shown in Figure 1b.

Using the approach of Wills et al. (2018), we calculate the mutually uncorrelated ENSO™
and PDO" indices for 1948-2020 by applying LFCA (https://github.com/rcjwills/
1fca) to the NOAA Extended Reconstructed monthly Sea Surface Temperature data set
vhH. These are calculated using the first three empirical orthogonal functions of SST over
the Pacific Ocean between 45°S and 70°N. The PDO" and ENSO™ indices correspond to the
second and third low-frequency components, and yield qualitatively comparable patterns to
those of the (correlated) traditional PDO and ENSO indices (Wills et al., 2018). We use
a multi-linear regression model to cross-correlate ENSO™ and PDO” of each month in the
preceding year with TPgum, TPevent, I, and D of a water year. We did this for a range
of rainy-day thresholds to examine the different predictability of extreme and non-extreme
precipitation.
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3 Results

Figure 1b shows how much of the annual total precipitation TPy, in California ac-
cumulated between July 1948 and June 2020 is captured by the rainy-day precipitation,
TPevent, as a function of the rainy-day threshold. For reference, we also supply the raw time
series of TPy, in Figure S1. In the wettest region, N, the precipitation fraction captured
by the rainy-day precipitation decays more slowly with the rainy-day threshold than in the
other, drier regions, meaning that the N region exhibits a more continuous range of moder-
ate to intense events. Thus, different rainy-day thresholds have a regionally different effect
on the type of precipitation events that are being captured in TP eyent-

The interannual variability of TPy, is strongly correlated with TPeyens and D, and
less strongly with I, across different rainy-day thresholds (Figure 1c¢). The sensitivity of the
correlations to the rainy-day threshold is comparable across all regions and for all statistics.
Pearson’s r of TPguym with TPeyent decreases from 1 as the threshold increases. Pearson’s r
of TPgum with D is maximal at a threshold for TPeyent/TPsum between 50-75%, which is
greater than 10 mm day ! in N and less than 10 mm day~! in other regions. Pearson’s r
of TP,y with I is greatest when the threshold is 1 mm day !, and it rapidly decreases as
the threshold increases. These correlations show that, in all regions, California’s interannual
precipitation variability is primarily determined by the number of rainy days, D, as opposed
to the intensity on rainy days, I.

Despite the regional similarity in the correlations of the precipitation event statistics
with the interannual variability of total water year precipitation (July—June), correlations
of the interannual variability with monthly ENSO" and PDO” from the April preceding the
water year to March of the water year are markedly different across the four regions (Figure
2). The correlation of ENSO" and PDO" with total water year precipitation is stronger in
S and CC than in N and CM.

In N and CM, the interannual variability of TP,y correlates weakly and not sta-
tistically significantly with ENSO™ and PDO”" for all months, except from December to
February in CM. There is some significant positive correlation of ENSO™ and PDO" with
D and TPyt for low rainy-day thresholds (below 5 mm day~!), and with I for higher
rainy-day thresholds (above 15 mm day~1!).

In S and CC, the correlations of interannual variability of TPgum, TPevent, and D with
ENSO" and PDO" for all months are positive and statistically significant, except for April in
CC. TPevent and D defined by lower rainy-day thresholds are more correlated with ENSO*
and PDO", especially from June to March. On the contrary, the interannual variability of I
in S and CC is weakly and rarely statistically significantly correlated with ENSO" and PDO".
With D being the main driver of TPgy,, variability, its significant correlation with ENSO”
and PDO” suggests potential predictive power of the two SST indices for precipitation in
these regions.

The relative predictive skill of ENSO" and PDO™ shifts with the lead time (i.e., the
month of the previous year from which SST was correlated with precipitation of the current
year). The correlation coefficients for ENSO" and PDO” are comparable in spring/early
summer. We show explicitly in the supplementary material (Figure S4) that the significantly
higher correlation coefficients in spring/summer are attributable to the inclusion of PDO",
especially in S and CC. However, in winter, the ENSO™ correlation is much stronger, and
the inclusion of PDO" does not improve Pearson’s 7 substantially in any of the regions.

Finally, we can approximately predict interannual variations of D, TPeyent, and TPgum
from the interannual variations of ENSO™ and PDO", using the following regression models:
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Figure 1. (a) California precipitation regions: Northern California (N), Central Coastal region
(CC), Central Mountainous region (CM), and Southern California (S). (b) Ratio of total precipita-
tion from rainy days (TPevent) to total annual precipitation (TPsum) as a function of the rainy-day
threshold. The black marker on each curve indicates the rainy-day threshold used in our predic-
tions in Figures 3 and S5. (c) Pearson’s r values of TPgum with TPevent, D, and I as a function
of the rainy-day threshold. Correlations with p-values smaller than 0.05 are deemed statistically

significant (solid lines). Insignificant correlations are plotted in dotted lines.

D(r,t) =b (T)ENSO*(t) + by (T)PDO*(t) + ¢e(7, 1) (1a)
TPevent(7,t) = D(7,t)I(T,1) (1b)
by (r)ENSO™ (t) + bg(T)PDo*(t)] I(r) (1c)

(1d)
(1e)

) TP ayent (T, 1) 1d
)L [bl(T)ENSO*(t) + bZ(T)PDo*(t)} (7). le

Here, 7 is the rainy-day threshold, b; and b, are the multi-linear regression coefficients, and
€ is the zero-mean residual noise of the linear regression. The function g(7) is the normalized
cumulative PDF displayed in Figure 1b. Because of the weak and statistically insignificant
correlation of I with ENSO™ and PDO", we use the time-mean precipitation event intensity

I(7) in our statistical model. The mean event intensity I(7) is the multi-year average of
I(7,t) at a given 7. All of the variables are standardized to a mean 0 and standard deviation
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Figure 2. Correlations of ENSO and PDO with California rainfall statistics of water years

(July—June). Top row: coefficients of multi-linear regression of TPy, with monthly ENSO™ (red)
and PDO" (blue). The Pearson’s r coefficient of the multi-linear regression is shown in grey. The
solid line and solid circles represent statistically significant correlations with p < 0.05, where the
null hypothesis that zero correlation has a greater absolute Pearson’s r value than the calculated
one was rejected. Dashed lines and open circles denote insignificant correlations. The monthly
ENSO" and PDO" indices are evaluated between the April preceding the water year to the March
during the water year. Bottom three rows: Pearson’s r values resulting from correlating TPevent, D,
and I at different rainy-day thresholds (vertical axis) with monthly ENSO" and PDO" (horizontal

axis) using multi-linear regression. Stippling indicates significant correlations with p < 0.05.

1. The significance intervals were calculated by bootstrapping and training the multi-linear
regression model with 70% of the data.

We choose to demonstrate our regression models with ENSO” and PDO" in June be-
cause that is when the two SST indices become markedly predictive of the interannual
variability of TPg,m (Figure 2). By using June SSTs, the model predicts California precipi-
tation (which primarily occurs in winter) approximately 6 months in advance. In all regions,
the correlations of the June ENSO™ and PDO" with I are generally small and insignificant.
But the contributions of June ENSO™ and PDO” to the prediction of TPy, via D are
significant and comparably important in the CC and S regions (Figure 2).

In general, the estimates of by, b, and € produce better predictions if the rainy days
are defined using a moderate threshold (e.g., 50-70% TPevent/ TPsum ). For example, in the
S region, when 7 is 5.7 mm day~! (threshold at which the correlation of ENSO" and PDO”
with D is maximized), Pearson’s r = 0.5, the bootstrapped medians of the coefficients are
by = 0.44 days year—! and by = 0.35 days year—!, and g(7) = 0.56 (indicated by the black
marker in Figure 1b). The bootstrapped median of the predicted time series of TPgym
in Figure 3 captures 18% of the interannual variability of the observed TPg,,. We also
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repeated the same prediction but using the two SST indices from previous July and August.
On average, the two SST indices in the previous summer (June, July, and August) can
capture 20% of the interannual variability of the observed TPg,,. The predictions for the
three other regions account for far less of the total annual precipitation (Figure S5) since
ENSO" and PDO" only weakly correlate with D in those regions.

S
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- ® 2020/2021 prediction
€ 400
~ 300 1 A
€
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F 1004
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Figure 3. Time series of observed (blue) and predicted (red) TPgum using preceding June ENSO”
and PDO" based on the regression model in Eq. (1), for the Southern California (S) region. The
calendar years on the x-axis refer to a water year, such that 1949/1950 represents July 1949—June
1950. The red shade and the error bar on the 2020/2021 prediction are the range between the first

and third quartiles of bootstrapped TPsum predictions. The I(7) in the calculation is the temporal

average of I(7,t) over all years with threshold 7 = 5.7 mm day ™"

4 Discussion

Despite the regional differences in California’s geography, throughout the state, the
number of rainy days is more important than the rainfall intensity in its contribution to
the total rainy-day precipitation. That is, interannual precipitation variations are primarily
driven by variations in the number of rainy days, suggesting that they are controlled mainly
by large-scale weather systems associated with the North Pacific storm track. Wet years
have more rainy days because the large-scale circulation in wet years guides more storm track
eddies toward California (Branstator, 1995; Lau, 1988; Higgins & Schubert, 1993). This is
particularly apparent in the Southern and Central Coastal regions, which are located under
the upper-level climatological winter jet (Figure S2). This jet guides storm track eddies,
and its latitudinal shifts determine which regions of the West Coast are impacted by those
storms and their precipitation.

Directly correlating the latitude of this jet (Archer & Caldeira, 2008) with the number
of rainy days (Figure S3) yields negative correlations over all sub-regions, consistent with
the notion that the jet is farther south (directed toward California) in California’s wet years.
However, the magnitude of these correlations is small, because the jet latitude is a relatively
noisy statistic.

The jet location is modulated by the SSTs associated with both ENSO" and PDO".
ENSO" and PDO" are smoother measures of the large-scale climatological changes than the
jet latitude, which is why they yield more robust and statistically significant correlations.
Time-lagged correlations of multi-linear regression reveal that a substantial fraction (up to
20% of the variance) of Southern California’s rainfall variations is potentially predictable
from ENSO" and PDO" of the preceding summer, both with similar importance. Although
the amount of total annual precipitation accounted for by both winter ENSO" and win-
ter PDO” is comparable to using both indices from the early summer, ENSO" is a more
important predictor than PDO™ at shorter lead times, i.e., from October to March.
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The different correlations of SST with precipitation across the four regions have been
explained in previous papers. As Brown and Comrie (2004), Wise (2010), Sung et al. (2014)
and others have discussed, Pacific SST variations drive a dipole pattern in precipitation
over the western US. Since the N and CM regions are located in the transition zone of
that dipole, their precipitation correlates less well with the SSTs. Instead, these regions are
more susceptible to influences of the local geography. This poses a challenge for seasonal to
subseasonal predictability of precipitation in those regions.

The potential predictability of total precipitation in California has been previously
linked to the modulation of the storm track by the Interdecadal Pacific Oscillation (IPO)
(Dai, 2013; B. Dong & Dai, 2015), an SST pattern over the Pacific (Henley et al., 2015;
Z. Liu & Alexander, 2007; Lau, 1988; Trenberth & Hurrell, 1994; Chang & Fu, 2002).
IPO is often considered to include the SST signals from both ENSO and PDO (Folland et
al., 2002; Verdon & Franks, 2006). ENSO" and PDO" together account for 94% of TPO
variance. Using IPO alone, or in combination with the other indices, does not provide
additional predictability beyond that implied by ENSO" and PDO" (Figure S4).

There are other large-scale atmospheric patterns of variability that regulate the spatial
storm track position and SST anomalies, such as the Arctic Oscillation (Strong & Davis,
2008), the North Pacific Oscillation/West Pacific teleconnection (Linkin & Nigam, 2008),
and the North Pacific Gyre Oscillation (X. Liu et al., 2016). We included these other modes
of internal variability in our analysis, but they did not add predictive power. Knowledge of
ENSO and PDO variability seems to be key for understanding how the large-scale circulation
deflects the storm tracks and brings precipitation to Southern California.

5 Conclusions

We discussed the interannual variability of California precipitation and its decomposi-
tion into the number of rainy days and precipitation intensity under both value-based and
percentile-based thresholds. The results show that the frequency of rainy events is the most
important determinant of interannual precipitation across all Californian regions, regardless
of the rainy-day threshold. This highlights the large-scale impact of the North Pacific storm
track, whereby interannual precipitation events reflect the landfall of storm track eddies.
The eddy propagation itself is largely driven by variations of the Pacific SSTs on these
timescales. We showed that the summer values of ENSO® and PDO”, two uncorrelated
indices derived from SSTs, can be used to predict part of the annual precipitation variations
in the Southern and Central Coastal regions on subseasonal to seasonal timescales. The cor-
relations of June ENSO™ and PDO" with TPeyent are directly linked to the correlations with
the number of rainy days. The combined predictive power of ENSO™ and PDO™ persists
from summer to winter for precipitation in Southern California, while the relative impor-
tance of PDO" increases with lead time. For predictions based on the previous summer,
PDO" is as important a predictor as ENSO". In other parts of California, where the effect
of the Pacific SSTs is less pronounced, precipitation is less predictable using either of the
two SST indices.
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