2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 978-1-7281-6215-7/20/$31.00 ©2020 IEEE DOI: 10.1109/BIBM49941.2020.9313126

2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

Fine-Grained Named Entity Recognition with
Distant Supervision in COVID-19 Literature

Xuan Wang!, Xiangchen Song!, Bangzheng Li!, Kang Zhou?, Qi Li?, Jiawei Han!
IDepartment of Computer Science, University of Illinois at Urbana-Champaign, IL, USA
2Department of Computer Science, Iowa State University, IA, USA
Lfxwang174,xs22,bl17 hanj} @illinois.edu, 2{kangzhou,qli } @iastate.edu,

Abstract—Biomedical named entity recognition (BioNER) is
a fundamental step for mining COVID-19 literature. Existing
BioNER datasets cover a few common coarse-grained entity
types (e.g., genes, chemicals, and diseases), which cannot be
used to recognize highly domain-specific entity types (e.g., animal
models of diseases) or emerging ones (e.g., coronaviruses) for
COVID-19 studies. We present CORD-NER, a fine-grained
named entity recognized dataset of COVID-19 literature (up
until May 19, 2020). CORD-NER contains over 12 million
sentences annotated via distant supervision. Also included in
CORD-NER are 2,000 manually-curated sentences as a test set
for performance evaluation. CORD-NER covers 75 fine-grained
entity types. In addition to the common biomedical entity types, it
covers new entity types specifically related to COVID-19 studies,
such as coronaviruses, viral proteins, evolution, and immune
responses. The dictionaries of these fine-grained entity types are
collected from existing knowledge bases and human-input seed
sets. We further present DISTNER, a distantly supervised NER
model that relies on a massive unlabeled corpus and a collection
of dictionaries to annotate the COVID-19 corpus. DISTNER
provides a benchmark performance on the CORD-NER test set
for future research.

Index Terms—fine-grained named entity recognition; distant
supervision; COVID-19

I. INTRODUCTION

COVID-19 is an infectious disease that was first identified
in December 2019 and has since spread globally, resulting
in the 2019-2020 coronavirus pandemic. Scholarly literature
about COVID-19, SARS-CoV-2, and the coronavirus group
has been pouring into the COVID-19 Open Research Dataset
(CORD-19) [9] just in the past few months. It is critical to au-
tomatically extract the most relevant and accurate information
from this large-scale and fasting growing COVID-19 literature
corpus to facilitate COVID-19 studies.

Biomedical named entity recognition (BioNER) is a funda-
mental step for mining COVID-19 literature. Existing BioNER
datasets (e.g., BCSCDR [10], JINLPBA [2], and BIONLP13CG
[6]) cover a few common coarse-grained entity types (e.g.,
genes, chemicals, and diseases), which cannot be used to
recognize highly domain-specific (e.g., animal models of
diseases) or emerging entity types (e.g., coronaviruses) for
COVID-19 studies.

We present CORD-NER, a fine-grained named entity
recognized dataset of COVID-19 literature (up until May
19, 2020). CORD-NER contains over 12 million sentences
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annotated via distant supervision. Also included in CORD-
NER are 2,000 manually-curated sentences as a test set for
performance evaluation. CORD-NER covers 75 fine-grained
entity types. In addition to the common biomedical entity
types, it covers new entity types specifically related to COVID-
19 studies, such as coronaviruses, viral proteins, evolution, and
immune responses. These fine-grained entity types are highly
related to research on COVID-19 related virus, spreading
mechanisms, and potential vaccines. The dictionaries of these
fine-grained entity types are collected from existing knowledge
bases and human-input seed sets.

We further present DISTNER, a distantly supervised NER
model that relies on the massive unlabeled corpus and dictio-
naries to annotate the COVID-19 corpus. DISTNER achieves
high performance with dictionaries of different scales (from
dozens to thousands of entities). It leverages a dictionary-
guided representation learning model to expand the small
dictionaries and further incorporates the newly-learned word
embeddings into a NER neural model training. DISTNER
automatically annotates the COVID-19 corpus with high qual-
ity and provides a benchmark performance on the CORD-
NER test set for future research. Based on the DISTNER
model, CORD-NER allows adding new documents as well as
new entity types when needed by adding dozens of seeds as
the input examples. CORD-NER can help the NLP commu-
nity for downstream applications, such as relation extraction,
knowledge graph construction, and information retrieval, in
COVID-19 literature.

II. CORD-NER DATASET

In this section, we first introduce how we collected the input
corpus and the fine-grained entity type dictionaries for CORD-
NER. Then we introduce DISTNER, the distantly supervised
NER model used to annotate the input corpus.

A. Corpus

The input corpus is generated from the CORD-19 dataset
(up until May 19, 2020). We first combined the title and
abstract of each paper in the meta-data file with their cor-
responding full-text from all the data sources (CZI, PMC,
bioRxiv, and medRxiv) in CORD-19. This input corpus con-
tains 12,698,615 sentences from 128,492 documents. Then
we conducted automatic phrase mining and tokenization on
the input corpus using AutoPhrase [7]. This tokenized corpus
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is used for further NER annotations. We observed that in-
corporating the AutoPhrase tokenization results can improve
the distantly supervised NER performance as it provides
additional information for entity boundary detection.

B. Fine-Grained Entity Type Dictionaries

For each entity type to be annotated, we collect a dictionary
containing a list of entities belonging to that type.

Existing Knowledge Bases. We use UMLS! knowledge base
to collect the large-scale dictionaries. We collect the latest
version of UMLS (the year 2020) that contains 127 fine-
grained entity types. We further merged some fine-grained
types into their more coarse-grained parent types according
to the corpus counts and suggestions from domain experts. It
results in 48 fine-grained types in UMLS used for our entity
annotation. Each UMLS type includes thousands of entities as
the input dictionary.

Human-Input Seed Sets. In addition to the types in UMLS,
biomedical scientists and medical doctors are interested in
some additional entity types specifically related to COVID-
19 studies. These types are either new or too specific that
have not been incorporated in the UMLS knowledge base.
We included nine new types (coronaviruses, viral proteins,
livestocks, wildlifes, evolution, physical science, substrates,
materials, and immune responses) defined by the scientists and
doctors. For each new type, the scientists and doctors provide
20 seed entities as the input dictionary.

C. Distantly Supervised NER Model

Based on the entity type dictionaries we collected in
different scales (from dozens to thousands of entities), we
propose DISTNER, a distantly supervised NER model that
can automatically annotate the CORD-19 corpus.

Dictionary-Guided Representation Learning. The first step
of DISTNER is dictionary-guide embedding learning. It takes
the input dictionaries (Section II-B) as weak supervision and
jointly embeds the entities, types and words into a shared
space. The entities and types are from the input dictionaries
(Section II-B). The words are from the input corpus (Section
II-A). Note that the words here also include the phrases that
we previously discovered during corpus tokenization.

To achieve the goal of making the words form discrete clus-
ters around the types, we learn the joint embedding of entities,
types and words by satisfying two criteria: Coherence and
Discriminativeness. Coherence means that the entities should
have embeddings that are close to their corresponding types’
embeddings. Discriminativeness means that the embeddings of
different types should be far apart from each other. Inspired by
CatE [3], a category-guided embedding learning method, we
first formulate a joint type and text generative process under
the guidance of the input dictionary. Then we cast the learning
of the generative process as a dictionary-guided embedding
learning model.

Thttps://www.nlm.nih.gov/research/umls/META3_current_semantic_types.
html
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The input to our dictionary-guided embedding learning
model consists of two parts: (1) a set of dictionaries {D;},
where each dictionary D; = {ei,es,,...,€p,|} contains
entities e for the type ¢t € T, and (2) a text corpus containing
sentences s = [wy, wa, ..., w|s ], where each sentence consists
of words and entities that can be matched to the sentence. For
ease of notation, we use w to denote both words and entities
in the sentence.

We assume a joint type and text generative process in two
steps: (1) each type ¢ is generated conditioned on the semantics
of the entities e in the dictionary D;; and (2) surrounding
words and entities C(w;, h) of a word/entity w; in a sentence
s are generated conditioned on the semantics of the center
word/entity w;, where C(w;, h) = {w; :i—h < j <i+h,i#
j}. h is the context window size. Putting the above two steps
together, we have the following expression for the likelihood
of the joint type and text generative process:

J :H H p(tle) - H H p(C(wy, h)|w;).

t eeD: s w;ESs
The first part [[, [[.cp, p(t[e) of the likelihood J indicates
the probability of observing all the types (e.g., “Coronavirus”)
given the entities (e.g., “SARS” and “MERS”) in our input
dictionaries. The second part [ [, [, ¢, p(C(w;, h)|w;) of the
likelihood .J indicates the probability of observing the input
corpus.

L= —Z Z log(p(tle)) (Liype)

t eeDy

IDIEDD

s wi€sw;eC(w;,h)

(D
log(p(wj|w;)).

Then we formulate the optimization of the objective in Eq.
(1) as an embedding learning problem. Similar to [4], we
define the two conditional probabilities in Eq. (1) via log-
linear models in the embedding space:

exp(tle)

o) = 5= ey @)

eXP(ijwz‘)

1T o0\’
wieC(ws, by EXP(WS wi)

p(wjlwi) = 5 3)
where t is the embedding vector of the type t; e is the
embedding vector of the entity e; and w is the embedding
vector of the word or entity w.

Egs. (2) and (3) can be directly plugged into Eq. (1) to
train the joint type and text embeddings. To this end, we have
enforced the first Coherence criterion in Eq. (2). Then we
show how to satisfy the second Discriminativeness criterion.
Let p. = [p(ti]e), ..., p(t7le)] be the probability distribution
of e over all types. To satisfy the second Discriminativeness
criterion, if an entity e is known to belong to type ¢, p.
computed from Eq. (2) should become a one-hot vector
l. (ie., the type of e) with p(tle) = 1. To achieve this
property, we minimize the KL divergence from each seed
entity’s distribution p(t|e) to its corresponding discrete delta
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distribution .. Formally, given a dictionary of seed entities
D, for type t, the first term in Eq. (1) is implemented as:

Elype - Z Z KL(le”pe) (4)

t e€Dy

From the embedding learning perspective, Eq. (4) is equiv-
alent to a cross-entropy regularization loss, encouraging the
type embeddings to become discriminative in the embedding
space and are far apart from each other.

Finally, based on the newly-learned representations of the
types and words, we expand each type’s dictionary with the
words that have high embedding cosine similarity (> 0.5) with
its type embedding. Note that the words here also include the
phrases that we previously discovered with AutoPhrase during
corpus tokenization. We further incorporate the newly-learned
word embeddings into the NER neural model training.

NER Neural Model. We adopt the AutoNER [8] neural model
as the benchmark distant NER model on the CORD-19 corpus.
The neural model learning is divided into two steps: entity
span detection and entity typing.

For entity span detection, a binary classifier is built to
determine whether a connection between two adjacent tokens
should be labeled as Break or Tie. A BIiLSTM layer is
utilized to encode the character and word embeddings (learned
from the Dictionary-Guided Representation Learning step) to
predict whether the connection y; between tokens w;_; and
w; is Break. Then the output of the BiLSTM layer will be
concatenated as one vector u; and fed into a Sigmoid layer:

p(y; = Break|u;) = o(w” ;).

where y; is the label between the i-th and its previous tokens,
o is the sigmoid function, and w is the sigmoid layer’s
parameter. The loss function of entity span detection:

Ly= Y Uy ply; = Breaklu;)),

y;=Break

where [(-,-) is the logistic loss.

After the entity boundary is determined, each candidate
entity span (tokens within two adjacent Break) is represented
with a new vector v; and fed into a Softmax layer to determine
its entity type:

exp(th'uj)
p(t; =tlvj) = ,
( J | J) Zt’GT’ exp(t’TUj)
where t; is the label of candidate entity span j and 7' =
T U {None}. The loss function of entity type prediction:

£2 = Z H(ﬁ(h’u T/)ap('lvi))a
J
where H(-,-) is the cross entropy function and p(-|v;, T) is
the supervision distribution.
III. EVALUATION

Experimental Setup. Given the input corpus and the expanded
dictionaries, we first conduct exact string matching [8] on a

493

subset corpus of 3,000,000 sentences to generate a distantly
labeled training corpus. Conflicted matches are resolved by
maximizing the total number of matched tokens on each
sentence. We split the distantly labeled training corpus into 9:1
for training and development. We randomly selected another
2,000 sentences from our input corpus and asked domain
experts for manual annotation. We use this manually-annotated
test set to compare the performance of different BioNER
models on the CORD-19 corpus. We compare DISTNER
with AutoNER [8], the benchmark method for distantly su-
pervised BioNER. We also compare DISTNER with pre-
trained supervised BioNER models, such as SciSpacy [5],
a commercial supervised BioNER tool, and SciBERT [1], a
benchmark method for supervised BioNER. We report the
precision, recall, and F1 scores? of each method on our human-
annotated test set.

Test Set Annotation. Three domain experts annotated each
sentence. Due to a large number of fine-grained entity types,
we only annotated 7 out of the 75 types in this test set
for evaluation and resulted in 2,000 annotated sentences.
The seven types include genes, chemicals, diseases, signs or
symptoms, coronaviruses, evolution, and immune responses.
Each pair of annotators reach a substantial agreement with a
Fleiss’s s of 0.72.

Parameters. We used PyTorch for model implementations.
For the baseline model AutoNER, we use 200-dimension
word embeddings® trained on the entire Pubmed database of
abstracts and full-text articles together with the Wikipedia
corpus. For DISTNER, we use the dictionary-guided word
embeddings learned using our dictionary-guided representa-
tion learning model. The DISTNER neural model parameter
settings are the same as AutoNER. The character embedding
dimension is 30, and the hidden state size for both the
character-level BiLSTM and word-level BiLSTM is 300. The
optimization method is gradient descent with momentum. The
batch size and the momentum are set to be 10 and 0.9. The
learning rate is set to 0.05. The dropout ratio is set to 0.5. For
better stability, a gradient clipping of 5.0 is used.

Results. Table I shows the performance comparison of DIS-
TNER and AutoNER, the benchmark distantly supervised
BioNER model. We use the original implementation of Au-
toNER* and trained the model on our distantly labeled training
corpus. Then we evaluate the performance of DISTNER and
AutoNER on our test set. DISTNER outperforms AutoNER
by a large margin on the F1 scores. The performance gain
is more significant when the input dictionary is small (e.g.,
dictionaries contain 20 seed entities used for types such as
coronavirus, evolution, and immune response).

Table I also shows the performance breakdown of DIs-
TNER on the ablation models. DISTNER /0 Emp USES
Word2Vec embeddings and the expanded dictionary. DIST-
NER /, Exp uses our dictionary-guided word embeddings and

Zhtps://github.com/chakki-works/seqeval
3http://bio.nlplab.org/
“https://github.com/shangjingbo1226/AutoNER
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Supervision UMLS (13K entities)

Seed Set (20 entities)

Seed Set (20 entities)

Seed Set (20 entities)

Type Sign or Symptom Coronavirus Evolution Immune Response
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
AutoNER 63.18 7254 6754 47770 2421 32,12 43.11 7578 5496 13.22 21.70 1643
DISTNER/oEmy 6029  77.85 6795 46.18 5656 50.84 17.22 80.62 2838 6.52 2453 10.30
DISTNER oy 7413 7542 7477 7472 7533 7503 9259 7874 8511 9412 9057 9231
DISTNER 72.07 78.69 7523 7281 7696 7483 91.87 8898 90.40 92.66 95.28 93.95

TABLE I: Performance of DISTNER and AutoNER, the benchmark distantly supervised BioNER model, evaluated on our
manually-annotated test set. We also show the performance of our ablation models.

Model Supervision Chemical Disease or Syndrome Gene or Genome
Prec Rec F1 Prec Rec F1 Prec Rec F1
SciSpacy ~ Human (BIONLP13CG) 5546 36.74 4420 5455 3.5 7.02  21.66 80.99 34.18
SciSpacy Human (BC5CDR) 78.37 5735 6623 7349 61.25 66.81 - - -
SciBERT Human (BC5CDR) 68.24 6194 6494 6225 5929 60.73 - - -
DISTNER Dictionary (UMLS) 7332 659 6941 06921 7055 69.87 57.54 60.05 58.77

TABLE II: Performance of DISTNER and fully-supervised BioNER models on our manually-annotated test set.

the original input dictionary. We see that both the dictionary
expansion and the dictionary-guided word embeddings help
improve the DISTNER performance compared to AutoNER.
The dictionary-guided word embeddings (DISTNER s xp)
bring a more significant performance improvement compared
to dictionary expansion (DISTNER /o gmb). The dictionary-
guided word embeddings (DISTNER y, gxp) improve both
the precision and recall significantly, while the expanded
dictionary (DISTNER /o mb) introduces an increase in recall
but a decrease in precision compared to AutoNER.

Table II shows the performance comparison between DIS-
TNER and the fully-supervised BioNER models, SciSpacy
and SciBERT. For SciSpacy, we use its published pre-trained
models® on both BIONLP13CG [2] and BC5CDR [10]. For
SciBERT, since it does not release its pre-trained models, we
use its SciBERT embeddings® and re-trained the model on
BC5CDR. Then we conduct prediction and evaluation on our
test set. DISTNER shows better performance on chemical and
disease prediction compared to both SciSpacy and SciBERT
due to a higher recall. DISTNER also shows better perfor-
mance for gene prediction compared with SciSpacy trained
on BIONLP13CG. We observe that SciSpacy tends to predict
most coronaviruses as genes, leading to a very low precision.

IV. CONCLUSION

We present CORD-NER, a fine-grained named entity rec-
ognized dataset of COVID-19 literature (up until May 19,
2020). CORD-NER contains over 12 million sentences anno-
tated via distant supervision. Also included in CORD-NER
are 2,000 manually-curated sentences as a test set for perfor-
mance evaluation. We further present DISTNER, a distantly
supervised NER model that is used to annotate the COVID-
19 corpus. DISTNER provides a benchmark performance on
the CORD-NER test set for future research. CORD-NER
can help other downstream NLP tasks for COVID-19 studies,
such as relation extraction, knowledge graph construction, and
information retrieval.

Shttps://allenai.github.io/scispacy/
Shttps://github.com/allenai/scibert
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