
2020 IEEE International Conference on Big Data (Big Data)

978-1-7281-6251-5/20/$31.00 ©2020 IEEE 818

Pattern-enhanced Named Entity Recognition with
Distant Supervision

Xuan Wang1, Yingjun Guan1, Yu Zhang1, Qi Li2, Jiawei Han1
1Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

2Department of Computer Science, Iowa State University, IA, USA
1{xwang174, yingjun2, yuz9, hanj}@illinois.edu, 2qli@iastate.edu,

Abstract—Supervised deep learning methods have achieved
state-of-the-art performance on the task of named entity recog-
nition (NER). However, such methods suffer from high cost and
low efficiency in training data annotation, leading to highly
specialized NER models that cannot be easily adapted to new
domains. Recently, distant supervision has been applied to replace
human annotation, thanks to the fast development of domain-
specific knowledge bases. However, the generated noisy labels
pose significant challenges in learning effective neural models
with distant supervision. We propose PATNER, a distantly
supervised NER model that effectively deals with noisy distant
supervision from domain-specific dictionaries. PATNER does not
require human-annotated training data but only relies on unla-
beled data and incomplete domain-specific dictionaries for distant
supervision. It incorporates the distant labeling uncertainty into
the neural model training to enhance distant supervision. We
go beyond the traditional sequence labeling framework and
propose a more effective fuzzy neural model using the tie-or-
break tagging scheme for the NER task. Extensive experiments
on three benchmark datasets in two domains demonstrate the
power of PATNER. Case studies on two additional real-world
datasets demonstrate that PATNER improves the distant NER
performance in both entity boundary detection and entity type
recognition. The results show a great promise in supporting high
quality named entity recognition with domain-specific dictionar-
ies on a wide variety of entity types.

Index Terms—named entity recognition, distant supervision,
pattern mining, neural network

I. INTRODUCTION

Named Entity Recognition (NER) is a fundamental task in
text mining that aims to recognize pre-defined types of entities
from text. NER is important for various applications, such as
information retrieval [35], knowledge base construction [27]
and relation extraction [24]. Recent deep learning methods
lead to state-of-the-art NER systems [2], [3], [8], [9], [11],
[13], [31]. However, such methods suffer from the high cost
and low efficiency in manual annotation of training data,
especially for the domains like biology and medicine where
expert annotation is expensive. Human annotation also leads to
highly specialized NER models that cannot be easily adapted
to new entity types.

Recently, distant supervision has been applied to replace
human annotation, thanks to the fast development of domain-
specific knowledge bases. For example, there are Medical Sub-
ject Heading (MeSH) and Unified Medical Language System
(UMLS) databases for the biomedical domain, and YAGO and

WiKiData for the general domain. These knowledge bases
provide comprehensive dictionaries that makes it possible to
annotate named entities in different domains in a large scale
automatically. A straightforward approach is to conduct a
dictionary matching: if a token is found in the dictionary, it
will be labeled as an entity of the corresponding type.

Dictionary-based distant supervision, however, encounters
several issues comparing with human supervision. A major
problem lies in the quality of the existing dictionaries. Most
dictionaries contain accurate entity names, but have limited
coverage, such as missing abbreviations, aliases names, and
colloquial names. Thus a simple dictionary matching may
lead to a low recall for the NER task. To overcome this
issue, some methods use the dictionary matching results as
distant supervision and then train neural models to improve
the recall [5], [6], [18], [26], [30]. However, this approach
suffers from high false negative rate of the training labels
due to the limited coverage of the dictionaries. A recent
work, AUTONER [26], addresses the false negative labeling
problem by introducing “unknown” type when using distant
supervision from entity dictionaries. This method improves
the performance comparing with existing distantly supervised
NER methods. However, it still utilize limited information
from the incomplete dictionaries and have a significant per-
formance gap compared with supervised NER methods.

We propose PATNER, a distantly supervised NER model
that effectively deals with noisy distant supervision from
domain-specific dictionaries. PATNER does not require
human-annotated training data but only relies on unlabeled
data and incomplete domain-specific dictionaries for distant
supervision. PATNER automatically mines the entity naming
principles (e.g., disease entities often contain the words “syn-
drome” or “disorder”) from the dictionaries to enhance distant
supervision. The entity naming principles are used to automat-
ically expand the input dictionaries by treating the unlabeled
word sub-sequences as a mixture of dictionary entities and
some random phrases. Based on the expanded dictionary, the
distant labels are generated as probability distributions over all
the entity types with a Gaussian mixture model (GMM) [28].
This distant labeling uncertainty is then incorporated into the
neural model training. We go beyond the traditional sequence
labeling framework and propose a more effective fuzzy neural
model using the tie-or-break tagging scheme for the NER task.

We demonstrate the power of PATNER in intensive exper-
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iments on real-world datasets in both biomedical and general
domains. PATNER outperforms existing distantly supervised
NER methods by a large margin. PATNER even outperforms
state-of-the-art supervised NER methods in the biomedical
domain. Case studies on two additional real-world datasets
demonstrate that PATNER improves the distant NER per-
formance in both entity boundary detection and entity type
recognition. These results show a great promise in supporting
high quality named entity recognition with user-specified
entity dictionaries on a wide variety of entity types.

We summarize our major contributions as follows.
• A distantly supervised NER model, PATNER, is proposed

that only relies on unlabeled data and incomplete domain-
specific dictionaries for distant supervision

• A distant label generation method is proposed that ex-
tracts the entity naming principles from dictionaries to
enhance the distant supervision.

• A fuzzy NER neural model is proposed to incorporate the
distant labeling uncertainty into the neural model training
to improve the NER performance.

• Experiments on three benchmark datasets demonstrate the
power of PATNER in the biomedical and technical re-
view domains. Case studies on two additional real-world
datasets demonstrate that PATNER improves the distant
NER performance in both entity boundary detection and
entity type recognition.

II. THE PATNER FRAMEWORK

In this section, we introduce the overall framework of
PATNER. It mainly includes two parts: distant label generation
and PATNER neural model.

A. Dictionary Preparation

PATNER takes a raw corpus and a domain-specific dictio-
nary as the input. The dictionary can be collected from public
databases. The corpus-aware dictionary is firstly tailored in
a similar way as proposed by Shang et al. [26]. We remove
the entities in the dictionary whose canonical name has never
appeared in the raw corpus to reduce the false-positive labels
by alias matching. Because some alias names are short abbre-
viations of the canonical names that can cause false positive
labeling during dictionary matching. Then we extract a list of
high-quality phrases as the candidate entities for dictionary
expansion. We utilize the state-of-the-art distantly supervised
phrase mining method, AUTOPHRASE [25], with the corpus
and dictionary given as the input. AUTOPHRASE generates
the candidate entities according to four criteria: popularity,
concordance, informativeness and completeness. Some low-
frequency entities may not be included as candidate entities
by AUTOPHRASE at this step, but may be recognized by the
trained neural model during inference.

B. Distant Label Generation

In order to improve the recall of the incomplete dictionary,
we first expand the dictionary with the candidate phrases

TABLE I
EXAMPLES OF DICTIONARY PREPROCESSING.

Before pre-processing After Preprocessing
visual field defects visual field defects
(R)-alpha-methylhistamine LETTER methylhistamine
1,25-dihydroxyvitamin DIGIT dihydroxyvitamin

generated from the previous step. The expanded dictionary is
used to generate distant labels for the neural model training.
Pattern Extraction. Dictionary expansion is based on the
frequent patterns automatically extracted from the input dic-
tionary. Some dictionary preprocessing are first conducted to
increase the frequent pattern coverage. All the entities in the
dictionary are normalized to lowercase. The digits like ‘1’, ‘2’,
‘3’, ‘I’, ‘II’, and the digit combinations like “1,25-”, “1-2-” are
normalized to a special token “DIGIT”. Similarly, the letter
characters like ‘a’, ‘b’, ‘c’, ‘x’, ‘y’, ‘z’, “alpha”, “gamma”
and the corresponding letter combinations are normalized to a
special token “LETTER”. All the non-alphanumeric characters
are changed to underscores. Some examples of the dictionary
preprocessing results are shown in Table I.

Then we conduct frequent continuous sequential pattern
miming [17] to extract two types of patterns from the dic-
tionary: character patterns and word patterns. The character
patterns are sub-word patterns mined from all the word to-
kens in the dictionary. The word patterns are the sub-phrase
patterns mined from all the n-gram phrases in the dictionary.
We further conduct a closed pattern filtering to remove the
less-informative short patterns. All the parameters of pattern
mining (e.g., the minimum support, the maximum length and
the closed pattern threshold) are automatically chosen so that
the extracted patterns cover more than 90% of the entities in
the dictionary. In our experiments, the minimum supports are
set to 6 and 2 for the character and word patterns, respectively.
The maximum lengths are set to 10 and 6 for the character and
word patterns, respectively. The ratio between each pattern and
its sub-patterns is set to 0.9 for closed pattern filtering. The
sub-word and sub-phrase patterns can then be used to discover
new entity names in the candidate list of high-quality phrases.
The character and word patterns are used to discover new
entities in the list of candidate phrases. The basic principle is
that the candidates following the same patterns extracted from
the entities in the dictionary should have a high probability
to be an entity of the corresponding type (e.g., in Figure
1, a candidate phrase contains “syndrome” is likely to be a
disease entity). Based on this principle, we propose a Gaussian
mixture model (GMM)-based expansion method for dictionary
expansion.
Gaussian Mixture Model (GMM)-based Expansion. The
intuition of GMM-based expansion is to treat the candidate
phrases as a mixture of dictionary entities and some random
phrases. We first give a score to each entity and candidate
phrase with the patterns extracted from the previous step. The
score distribution of the dictionary entities can be directly
calculated from the scores of dictionary entities. We use the
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Fig. 1. Bipartite graph of the entities and patterns.

Expectation-Maximization (EM) algorithm to infer the score
distribution of the random phrases from the scores of the
candidate phrases. Then we have the probability of each
candidate phrase being in the dictionary of a corresponding
entity type. An advantage of using the GMM model is that
we can label the expanded phrases as a probability distribution
over all the entity types and incorporate this label distribution
in the neural model training to improve the NER performance.

We first calculate a score of each entity and candidate phrase
with the patterns extracted from the previous step. Let P
denote the set of patterns extracted by the previous step; Ed
denote the set of entities in the dictionary; Ec denote the set
of phrases in the candidate list; Te denote the set of entity
types (e.g., Disease); and Tp denote the set of pattern types
(i.e., character and word patterns). The relations between the
entities, patterns and types are shown in Figure 1. The scoring
consists of two steps: pattern scoring and phrase scoring.

During pattern scoring, each pattern and pattern type is
given a score ρ and τ , respectively, based on its frequency
in the dictionary. For any p ∈ P , tp ∈ Tp and te ∈ Te,

ρ(p, te) =

∑
ed∈Ed,Te(ed)=te

C(p, ed)∑
ed∈Ed,Te(ed)=te

∑
p′∈P,Tp(p′)=Tp(p)

C(p′, ed)
,

(1)

τ(tp, te) =

∑
ed∈Ed,Te(ed)=te

∑
p∈P,Tp(p)=tp

C(p, ed)∑
ed∈Ed,Te(ed)=te

∑
p′∈P C(p

′, ed)
, (2)

where C(p, e) denotes the counts of pattern p matched to entity
e; Te(e) ∈ Te denotes the entity type of entity e; and Tp(p) ∈
Tp denotes the pattern type of pattern p (Figure 1).

During phrase scoring, each phrase in the candidate list is
given a score ω based on the patterns it matches. For any
ec ∈ Ec and te ∈ Te,

ω(ec, te) =

∑
tp∈Tp

∑
p∈P τ(tp, te) ∗ ρ(p, te) ∗ C(p, ec)

n(ec) + k
,

(3)

where n(ec) denotes the number of tokens of entity ec;

and k denotes an entity length normalization constant. We
choose k = 2 in our experiments. Similarly, each entity in
the dictionary is also given a score based on the patterns it
matches.

Based on the pattern and entity scoring results, we can
calculate the dictionary and phrase distributions. The empirical
dictionary distribution N (µ1, σ

2
1) is directly calculated as the

score distribution of the dictionary entities. For any te ∈ Te,

µ1 =

∑
e∈Ed,Te(e)=te

ω(e, te)

|{e | e ∈ Ed, Te(e) = te}|
, (4)

σ2
1 =

∑
e∈Ed,Te(e)=te

(ω(e, te)− µ1)
2

|{e | e ∈ Ed, Te(e) = te}|
. (5)

The random phrase distribution N (µ2, σ
2
2) is initialized as

a standard normal distribution. Then we use the EM algorithm
to infer the random phrase distribution.

During the E-step, we calculate an assignment matrix
A ∈ [0, 1]2 to get the probability of each phrase being in
the dictionary distribution and the random phrase distribution.
Let f1 denote the probability density function of N (µ1, σ

2
1)

and f2 the probability density function of N (µ2, σ
2
2). For any

ec ∈ Ec and te ∈ Te,

A(ec, f1) =
f1(ω(ec, te))

f1(ω(ec, te)) + f2(ω(ec, te))
, (6)

A(ec, f2) =
f2(ω(ec, te))

f1(ω(ec, te)) + f2(ω(ec, te))
. (7)

During the M-step, we re-calculate the parameters of the
random phrase distribution. For any te ∈ Te,

µ2 =

∑
ec∈Ec ω(ec, te) ∗A(ec, f2)

|Ec|
, (8)

σ2
2 =

∑
ec∈Ec(ω(ec, te)− µ2)

2

|Ec|
. (9)

After each E-M iteration, the KL divergence is calculated
between the inferred dictionary distribution N ′(µ′1, σ′21 ) and
the empirical dictionary distribution N (µ1, σ

2
1). For any ec ∈

Ec and te ∈ Te,

µ′1 =

∑
ec∈Ec ω(ec, te) ∗A(ec, f1)

|Ec|
, (10)

σ′21 =

∑
ec∈Ec(ω(ec, te)− µ

′
1)

2

|Ec|
, (11)

KL(N ,N ′) = log(
σ1
σ′1

) +
σ2
1 + (µ1 − µ′1)2

2σ′21
− 1

2
. (12)

The E-M algorithm converges when the change of the KL
divergence is smaller than a threshold of 1e− 5.

Label Distributions. There are two ways to utilize the prob-
abilities from the E-M algorithm. One way is to simply select
all the candidate phrases with f1 > 0.5 and add them into
the dictionary. The dictionary so expanded is used by our
methods PATNER (w/o neural model) and PATNER (w/o fuzzy
label). Since the GMM-based expansion is performed for each
entity type independently, one phrase could be expanded into
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Fig. 2. Illustration of PATNER neural model.

Algorithm 1 Distant Label Generation
Input: P , Ed, Ec, Te, Tp and ε = 1e− 5.
Output: Expanded dictionary D = {(e, Le(e))}.

1: Initialization: D ← {(Ed, Le(Ed))}, N (µ2, σ
2
2) ←

N (0, 1), δ ← 1, kl←∞.
2: for p ∈ P , tp ∈ Tp and te ∈ Te do
3: Calculate the pattern score Sp using Eq. 1.
4: Calculate the pattern type score Stp using Eq. 2.

5: for ed ∈ Ed, ec ∈ Ec and te ∈ Te do
6: Calculate the entity score Se using Eq. 3.
7: Calculate N (µ1, σ

2
1) using Eq. 4, 5.

8: while δ ≥ ε do
9: for ec ∈ Ec and te ∈ Te do

10: Calculate the assignment matrix A using Eq. 6, 7.
11: for ec ∈ Ec and te ∈ Te do
12: Calculate N (µ2, σ

2
2) using Eq. 8, 9.

13: Calculate N (µ′1, σ
′2
1 ) using Eq. 10, 11.

14: Calculate the KL-divergence between N (µ1, σ
2
1) and

N (µ′1, σ
′2
1 ) as klnew using Eq. 12.

15: δ = kl − klnew, kl← klnew.
16: for ec ∈ Ec and te ∈ Te do
17: Calculate Le(ec) using Eq. 13, 14, 15.
18: D = D ∪ {(ec, Le(ec))}.

the dictionary with multiple entity types. Another way is to
label each phrase as a probability distribution over all the
entity types. Let Le denote the label distribution of an entity,
|Le| = |Te|+ 1 that includes all the possible entity types and
a “None” type. For any ec ∈ Ec and tc ∈ Te,

Le(ec, te) =
f1(ω(ec, te))∑

t′e∈Te
f1(ω(ec, t′e)) + f1(None)

, (13)

Le(ec, None) =
f1(None)∑

t′e∈Te
f1(ω(ec, t′e)) + f1(None)

, (14)

f1(None) =
∏

t′e∈Te

(1− f1(ω(ec, t′e)). (15)

This label distribution is used by our final method PATNER.
The algorithm flow is shown in Algorithm 1.

C. PATNER Neural Model

The expanded dictionary is used to label the raw corpus as
distant supervision to train a neural model. Given the input
corpus and the expanded dictionary, we first conduct exact
string matching to generate distant labels. Conflicted matches
are resolved by maximizing the total number of matched
tokens on each sentence. Based on the dictionary-matching
results, we go beyond the traditional sequence labeling frame-
work and propose a more effective fuzzy neural model using
the tie-or-break tagging scheme. We first introduce the basic
network model with the “tie-or-break” tagging schema. Then
we introduce the fuzzy neural model of PATNER.

“Tie-or-break” Tagging Schema. For example, in Figure 2,
“sleep disturbance” is an entity that is expanded into the dictio-
nary; “drug action” is a candidate phrase that is not expanded
into the dictionary; and “interfere” and “with” are two tokens
that are not matched to any entities or candidate phrases. Thus
the connection between “sleep” and “disturbance” is labeled as
Tie; the connection between “drug” and “action” is labeled as
Unknown; and the connection between “disturbance” and “in-
terfere” is labeled as Break. Tokens between two consecutive
Breaks form a token span. Each token span is associated with a
label distribution we get from the previous GMM model. For
example, in Figure 2, “sleep disturbance” is expanded into
the dictionary with both the “Chemical” and “Disease” types.
The label of “sleep disturbance” is a probability distribution
[0.37, 0.60, 0.03] across the types “Chemical”, “Disease” and
“None”. An advantage of using the “tie-or-break” tagging
schema is that token spans with “unknown” type connections
can be skipped during the learning of entity type recognition,
which greatly reduces the false negative labeling problem for
distant supervision.

Tokens between two consecutive Breaks form a token span.
Each token span is associated with a label distribution we get
from the previous GMM model. For example, in Figure 2,
“sleep disturbance” is expanded into the dictionary with both
the “Chemical” and “Disease” types. The label of “sleep dis-
turbance” is a probability distribution [0.37, 0.60, 0.03] across
the types “Chemical”, “Disease” and “None”. An advantage
of using the “tie-or-break” tagging schema is that token spans
with “unknown” type connections can be skipped during the
learning of entity type recognition, which greatly reduces the
false negative labeling problem for distant supervision.
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TABLE II
BASIC STATISTICS OF THE DATASETS.

Dataset BC5CDR NCBI-Disease LaptopReview PubMed 3M Yelp 3M
Raw Sent. # 20,217 7,284 4,521 19,204 39,942
Dictionary MeSH + CTD MeSH + CTD ComputerHope.com Gene Ontology Open Food Facts

Entity
Types

Chemical,
Disease Disease Aspect Term Biological Process, Molecular

Function, Cellular Component Food

Fuzzy Neural Model. The tie-or-break tagging schema en-
codes the entity spans and entity types into two folds. There-
fore, the PATNER neural model learning is divided into two
steps: entity span detection and entity typing. For entity span
detection, a binary classifier is built to determine whether a
connection has a label of Break or Tie. A BiLSTM layer
is utilized to encode the character and word embeddings to
predict whether the connection yi between tokens wi−1 and
wi is Break. Then the output of the BiLSTM layer will be
concatenated as one vector ui and fed into a Sigmoid layer,

p(yi = Break|ui) = σ(wTui).

The loss function of entity span detection is

L1 =
∑

yi=Break

l(yi, p(yi = Break|ui)),

where l(·, ·) is the logistic loss.
After the entity boundary is determined, each token span is

represented with a new vector vj and fed into a Softmax layer
to determine its entity type. Let T = Te ∪ {None},

p(tj = t|vj) =
exp(eTt vj)∑

t′∈T exp(eTt′vj)
,

where tj denotes the label of entity span j and et is the
embedding vector of the entity type t ∈ T . The loss function
of entity type prediction is

L2 =
∑
j

H(p̂(·|vi, T ), p(·|vi)),

where H(·, ·) is the cross entropy function and p̂(·|vi, T ) is the
soft supervision distribution. Since Le is the label distribution
of entity etj that we get from the previous GMM model,

p̂(tj |vj , T ) =
Le(etj , tj) exp(e

T
tjvj)∑

t′∈T Le(et′ , t′) exp(eTt′vj)
.

III. EXPERIMENTAL EVALUATION

We evaluate the performance of PATNER on three bench-
mark datasets in two domains. We compare the performance
of PATNER with the supervised benchmark and the state-of-
the-art distantly supervised NER models on three benchmark
datasets. We also compare the performance of PATNER with
existing distantly supervised NER models on two additional
real-world datasets with new entity types (e.g., biological
process) where human annotation is not available. We further
investigate the effects of corpus size and dictionary size in
PATNER. The results demonstrate the power of PATNER on

a wide variety of entity types.

A. Experiment Setup

Datasets. The datasets and dictionaries used in our experi-
ments are summarized in Table II. Three benchmark datasets
(BC5CDR, NCBI-disease and LaptopReview) are used for
quantitative study. Two realworld datasets (PubMed and Yelp)
are used for case studies on new entity types without human
annotation.
• BC5CDR [10] is a benchmark dataset released in the

BioCreative V Chemical Disease Relation task. It con-
tains 1,500 articles with 15,935 Chemical and 12,852
Disease entity mentions. The whole corpus is divided
into three parts, each having 500 articles, for training,
development and testing.

• NCBI-Disease [4] is a benchmark dataset for disease
entity recognition. The corpus contains 793 abstracts with
6,881 Disease entities, and it is separated into three
subsets: training (593), development (100) and testing
(100).

• LaptopReview [6] is from the SemEval 2014 Challenge,
Task 4 Subtask 1, focusing on laptop Aspect Term (e.g.,
”disk drive”) Recognition. It consists of 3,845 review
sentences and 3,012 AspectTerm mentions.

• PubMed 3M is a subset of the PubMed1 abstracts of
biomedical literature. It consists of 19,204 unlabeled
sentences.

• Yelp 3M is a subset of the Yelp2 review dataset. It
consists of 39,924 unlabeled sentences.

The three benchmark datasets (BC5CDR, NCBI-disease
and LaptopReview) are publicly available. In addition to the
benchmark datasets, we collect two other datasets in the
biomedical domain (PubMed) and the general domain (Yelp),
respectively, as a case study for new entity type recognition.
We use the same data splitting as in [26] for the benchmark
datasets. For supervised method, the training and development
sets are used for training. For distantly supervised methods,
the entire corpus without human annotation is used as the raw
input corpus.

Domain-Specific Dictionaries. We use the same dictionaries
as in [26] for the benchmark datasets. For the biomedical
datasets, we use a combination of the MeSH3 and CTD4

1https://www.ncbi.nlm.nih.gov/pubmed/
2https://www.yelp.com/dataset
3https://www.nlm.nih.gov/mesh/
4http://ctdbase.org
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databases for the chemical and disease vocabularies. For
the laptop review dataset, we use 13,457 computer terms
crawled from a public website5. For the new entity types,
we collect three entity types (biological process, molecular
function and cellular component) from Gene Ontology6 for
PubMed 3M and one entity type (food) from Open Food
Facts7 for Yelp 3M. All the dictionaries are publicly available.

Baseline Methods. We evaluate the performance of PATNER
by comparing with four groups of methods.

Supervised benchmark:

• On the biomedical datasets, BiLSTM-CRFs [31] and
BioBERT [9] are used as supervised baselines. On
BC5CDR and NCBI-Disease, LM-LSTM-CRF [11] and
LSTM-CRF [8] are used respectively [31]. BioBERT [9]
is a recent work that train the BERT [3] word embedding
on the whole PubMed and PubMed Central. BioBERT is
fine-tuned on several text mining tasks including biomed-
ical named entity recognition.

• On the LaptopReview dataset, the highest score [19], [29]
in the SemEval2014 Challenge Task 4 Subtask 1 with the
in-domain training dataset are presented. Note that in the
SemEval2014 Challenge, a higher performance can be
achieved using additional annotated data for training and
feature extraction. BiLSTM-CRFs [1] and BERT [32] are
also used as supervised baselines on LaptopReview.

Domain-specific distantly supervised methods:

• SwellShark [5] is a benchmark distantly supervised
method in the biomedical domain. It needs no human
annotated data. However, it requires extra expert effort for
entity span detection on building POS tagger, designing
effective regular expressions, and hand-tuning for special
cases. It is compared on BC5CDR and NCBI-Disease
datasets only.

• Distant-LSTM-CRF [6] is specifically designed for As-
pect Terms Extraction using distant supervision. It uses
the sentiment lexicon and human provided syntactic rules
in the ATE task. It is compared on LaptopReview dataset
only.

Dictionary-based methods:

• Dictionary-Match is a simple baseline. We first generate
quality phrases using AutoPhrase [25] and then type the
entities if they can be matched from the dictionary.

• PATNER (w/o neural model) conducts a dictionary en-
richment by GMM-based Expansion (Section II-B).

Distantly supervised methods:

• Fuzzy-LSTM-CRF [26] is adapted from LSTM-CRF [8].
The char- and word-level BiLSTM architecture is retained
but the CRF layer becomes Fuzzy-CRF so that it can
support a “modified BIOES” scheme.

5https://www.computerhope.com/jargon.htm
6http://geneontology.org/
7https://world.openfoodfacts.org/

• AUTONER [26] uses Dictionary-Match result as training,
and then applies the BiLSTM-Softmax neural model with
“tie-or-break” scheme.

• PATNER (w/o fuzzy label) uses PATNER (w/o neural
model) result as training and then applies the BiLSTM-
Softmax neural model with “tie-or-break” scheme.

• PATNER is the proposed full model. It uses PATNER
(w/o neural model) result as training and then applies the
fuzzy BiLSTM-Softmax neural model with “tie-or-break”
scheme.

Parameters. The optimization method is gradient descent with
momentum. The batch size and the momentum are set to be
10 and 0.9. The learning rate is set to 0.05. The dropout ratio
is set to 0.5. Gradient clipping of 5.0 is used.

Pre-trained Word Embeddings. For the biomedical datasets,
we use the 200-dimension word embeddings8 from [16]. For
the laptop review dataset, we use the GloVe 100-dimension
word embeddings9.

Evaluation Metric. Evaluation is conducted on testing sets
for all methods. We compare the performance in terms of
precision, recall, and the micro-averaged F1 score.

B. Experiments on Benchmark Datasets

The performance (entity-level F1, precision and recall
scores) of each method on the benchmark datasets are shown
in Tables III, IV.

We first compare all the methods without human effort for
training data annotation. Among the dictionary-based methods,
Dictionary-Match has high precision on all benchmark datasets
(over 90%), but the recalls are rather low (lower than 60%
on biomedical domain and lower than 45% on technical
review). This result validates our observation that dictionaries
usually have precise entity names but low coverage. PATNER
(w/o neural model) achieves significantly better performance
than dictionary matching with a comparable precision and a
dramatically boosted recall. Noticeably and surprisingly, on
NCBI-Disease, the F1 score of PATNER (w/o neural model)
even outperforms a Supervised Benchmark BiLSTM-CRFs.
The key lies in the high precision and recall of the GMM-
based dictionary expansion. Among the distantly supervised
methods, since both AUTONER and PATNER (w/o fuzzy
label) use the same neural model, the key factor is the quality
of distant training. PATNER (w/o fuzzy label) outperforms
AUTONER by a substantial margin (4.76% for BC5CDR,
16.05% for NCBI-Disease and 5.27% for LaptopReview in
F1). Because the training set of PATNER (w/o fuzzy la-
bel) obtained from PATNER (w/o neural model) achieves
significantly better performance than Dictionary-Match, the
training set of AUTONER. PATNER uses the same training
as PATNER (w/o fuzzy label) but a different neural model. On
all benchmark datasets, PATNER constantly achieves better
performance compared with the ablation model PATNER (w/o

8http://bio.nlplab.org/
9https://nlp.stanford.edu/projects/glove/
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TABLE III
[BIOMEDICAL DOMAIN] NER PERFORMANCE COMPARISON. OUR METHODS ARE MARKED IN BOLD.

Method Human Effort BC5CDR NCBI-Disease
Prec Rec F1 Prec Rec F1

BiLSTM-CRFs [31] Gold Annotations 88.84 85.16 86.96 86.11 85.49 85.80
BioBERT [9] 90.45 90.86 90.65 89.04 89.69 89.36

SwellShark [5] Regex Design + Special Case 86.11 82.39 84.21 81.6 80.1 80.8
Regex Design 84.98 83.49 84.23 64.7 69.7 67.1

Dictionary-Match [26] None 93.93 58.35 71.98 90.59 56.15 69.32
PATNER (w/o neural model) 91.95 76.37 83.44 92.86 84.06 88.24

Fuzzy-LSTM-CRF [26]

None

88.27 76.75 82.11 79.85 67.71 73.28
AUTONER [26] 88.96 81.00 84.79 79.42 71.98 75.52

PATNER (w/o fuzzy label) 90.61 88.51 89.55 91.48 91.67 91.57
PATNER 90.92 89.69 90.31 92.54 91.77 92.15

TABLE IV
[TECHNICAL REVIEW] NER PERFORMANCE COMPARISON. OUR

METHODS ARE MARKED IN BOLD.

Method LaptopReview
Prec Rec F1

SemEval-2014 [29] 79.31 63.30 70.41
BiLSTM-CRFs [1] - - 81.08

BERT [32] - - 84.26
Distant-LSTM-CRF [6] 74.03 31.59 53.93
Dictionary-Match [26] 90.68 44.65 59.84

PATNER (w/o neural model) 91.00 54.13 67.88
Fuzzy-LSTM-CRF [26] 85.08 47.09 60.63

AUTONER [26] 72.27 59.79 65.44
PATNER (w/o fuzzy label) 78.65 64.22 70.71

PATNER 78.45 65.14 71.18

fuzzy label). These results demonstrate that the incorpora-
tion of uncertainty in the entity expansion can improve the
BiLSTM-Softmax neural model.

We also compare PATNER with the methods that require
human effort for special case tuning or training data annota-
tion. Among all the distantly supervised methods, even though
SwellShark and Distant-LSTM-CRF utilize more domain-
specific features and expert effort, PATNER outperforms them
by a large margin (6.08% for BC5CDR, 11.35% for NCBI-
Disease and 17.25% for LaptopReview in F1). Comparing
with the supervised NER methods, PATNER outperforms the
BiLSTM-CRFs by a substantial margin (3.35% for BC5CDR,
6.35% for NCBI-Disease in F1) on the biomedical datasets.
PATNER has comparable performance with BioBERT on
BC5CDR (90.31% v.s 90.65% in F1) and even outperforms
BioBERT on the NCBI-Disease dataset by a substantial margin
(2.79% in F1). One reason that PATNER has a better perfor-
mance in the biomedical domain could be that the biomedical
entities usually follow more standard naming principals that
enhance the PATNER performance. In summary, PATNER is
the most competitive distantly supervised NER method on
three benchmark datasets in both biomedical and technical
domains.

C. Top Patterns and Entities for Expansion

The above experiments show that all the components of
PATNER can improve the performance of the NER task under
distant supervision. To further illustrate the advantages of
PATNER, we list some top quality patterns and top quality
entities extracted by PATNER in Tables V and VI, respectively.

The top patterns extracted are of high quality, and thus can
accurately label more candidate entities. For example, words
that contain “ine” or “amin” are likely to be chemical-related
names. Phrases that contain the words such as “ acid ”,
“ antagonists ” or “ inhibitors ” are strong indicators that
certain phrase is a chemical name. Similarly, words that
contain “tion” or “som” are likely to be disease-related
names. Phrases that contain the words such as “ syndrome ”,
“ disorder ” or “ diseases ” are strong indicators that certain
phrase is a chemical name. In the technical review domain,
the word patterns are more abundant and informative for
dictionary expansion. For example, phrases that contain the
words such as “ DIGIT ”, “ screen ” and “ card ” are strong
indicators that certain phrase is a aspect term in the laptop
reviews.

The top entities extracted are also of high quality. For
example, the top entities extracted as chemicals are “R-(alpha)-
methylhistamine” and “metamphetamine”. The top entities
extracted for BC5CDR-Disease “hepatic complication” and
“hepatic dysfunction”. Similar results are also observed in the
technical review domain. The top entities extracted as aspect
terms are “16GB RAM” and “DDR5” that are of high quality.

D. Experiments with Different Factors

We further investigate the effect of corpus size and dictio-
nary size on the NER performance to better apply PATNER
in real-world applications. The results are shown in Figure 3.

To test the performance (F1 scores) with respect to the
size of raw corpus, we sample sentences uniformly random
from the given raw corpus and then evaluate the performance
of PATNER model on the selected sentences. When the raw
corpus is small, PATNER does not perform as good as the
Supervised Benchmark. Once the distantly labeled corpus is
moderate in size (5,000 sentences), PATNER already achieves
a similar performance compared with BiLSTM-CRF trained
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TABLE V
TOP PATTERNS FROM PATNER IN BENCHMARK DATASETS.

BC5CDR-Chemical BC5CDR-Disease NCBI-Disease LaptopReview-AspectTerm
Character Word Character Word Character Word Character Word

ne acid al syndrome ia DIGIT ard DIGIT
ine factor ion disorder er syndrome - screen

ine agents ic pain rom DIGIT LETTER - card
ate antagonists tion coronary eas ataxia - mouse
ami factor LETTER ion cancer ome TYPE DIGIT - drive

TABLE VI
TOP EXPANDED ENTITIES FROM PATNER IN BENCHMARK DATASETS.

BC5CDR-Chemical BC5CDR-Disease NCBI-Disease LaptopReview-AspectTerm
R-(alpha)-methylhistamine hepatic complication spinocerebellar ataxia 16GB RAM

metamphetamine hepatic dysfunction chromosome 15 anomaly DDR5
dexamphetamine atrial fibrillation cerebellar degeneration DDR3

amphetamine neuroleptic medications spinocerebellar ataxia type 3 Win7
5-hydroxytryptamine Staphylococcal infections Gardner syndrome Win8

Fig. 3. Left: test F1 scores vs. the number of distantly labeled training
sentences for BC5CDR. Right: test F1 scores vs. the number of entities in
the dictionary for BC5CDR.

on 20,000 human-annotated sentences. Further increasing the
corpus size beyond 8,000 sentences does not further improve
the PATNER performance.

To test the performance (F1 scores) with respect to the
size of the input dictionary, we sample entities uniformly
random from the given dictionary and then evaluate the
performance of PATNER on the raw corpus. When the input
dictionary is small, PATNER does not perform as good as
the Supervised Benchmark. Once the dictionary is moderate
in size (1,200 entities), PATNER already achieves a similar
performance compared with BiLSTM-CRF trained on 20,000
human-annotated sentences. Further increasing the dictionary
size tends to constantly increase the PATNER performance.
These results further demonstrate the importance of developing
a high quality dictionary expansion method in improving the
NER performance under distant supervision.

E. Running Time Comparison

We show that PATNER significantly outperforms the
most competitive supervised methods, BiLSTM-CRFs and
BioBERT, in Section III-B. In this section, we further show
the simplicity of our model compared with those methods.

BioBERT is trained on 8 NVIDIA V100 (32GB) GPUs
for the pre-training. It takes more than 10 days to pre-train
BioBERT on the whole PubMed and PubMed Central [9].

Both Supervised Benchmark and PATNER use pre-trained
word embeddings10 with word2vec on the same corpus (whole
PubMed and PubMed Central) [15], [16]. BioBERT is fine-
tuned on a single NVIDIA Titan Xp (12GB) GPU for each
BioNER task. Fine-tuning usually takes less than an hour
in average for each dataset [9]. Both BiLSTM-CRFs and
PATNER are trained on one GeForce GTX 1080 GPU. The
average training time for each dataset is an hour and 0.5
hour for Supervised Benchmark and PATNER, respectively.
The neural architecture of PATNER does not include a CRF
layer (Figure 2). Therefore, the distant training step can be
accelerated substantially in contrast to the popular LSTM-CRF
models.

F. New Entity Type Recognition

To further demonstrate the power of PATNER on recog-
nizing new entity types, we conduct some qualitative case
studies on two real-world datasets with no human annotation
available, in the biomedical domain (PubMed 3M) and the
general domain (Yelp 3M), respectively.

We show some NER tagging results on PubMed and Yelp
in Table VII. The new entities types are Biologcal Process
(BP), Molecular Function (MF) and Cellular Component (CC)
for PubMed and Food for Yelp. We compare three distant
supervision methods: Dictionary-Match, AUTONER and PAT-
NER. PATNER always shows the best performance both in
entity boundary and entity type recognition. For example, in
Sentence 1, the input dictionary cannot match any entities.
AUTONER recognizes a new entity “apoptotic cell death” as
biological process and PATNER recognizes both “apoptotic
cell death” and “oxidative damage” as biological process. In
Sentence 2, AUTONER recognizes “signaling” as biological
process, while PATNER recognizes the whole entity “signaling
pathway” as a biological process correctly. In Sentence 3, PAT-
NER recognizes a new entity “enzyme activity” as molecular

10http://bio.nlplab.org/
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TABLE VII
CASE STUDY OF THE DISTANT NER METHODS ON PUBMED AND YELP.

PubMed

1

Dictionary This results ... but also in ROS overproduction, oxidative damage, and apoptotic cell death ...
AUTONER This results ... but also in ROS overproduction, oxidative damage, and [apoptotic cell death]BP ...
PATNER This results ... but also in ROS overproduction, [oxidative damage]BP, and [apoptotic cell death]BP ...

2

Dictionary We focused on striatal alterations in intracellular signaling pathways, oxidative stress and [cell death]BP.
AUTONER We focused on striatal alterations in [intracellular]CC [signaling]BP pathways, oxidative stress and [cell death]BP.
PATNER We focused on striatal alterations in [intracellular]CC [signaling pathways]BP, [oxidative stress]BP and [cell

death]BP.

3

Dictionary Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested,
but it had no effect on CYP11B1 gene expression and enzyme activity.

AUTONER Resveratrol increased endogenous and substrate-supported cortisol production like nonhydroxylated flavones tested,
but it had no effect on CYP11B1 [gene expression]BP and enzyme activity.

PATNER Resveratrol increased [endogenous]CC and substrate-supported [cortisol production]BP like nonhydroxylated flavones
tested, but it had no effect on CYP11B1 [gene expression]BP and [enzyme activity]MF.

Yelp

4

Dictionary We had their beef tartar and pork belly to start and a [salmon]Food dish and lamb meal for mains.
AUTONER We had their [beef tartar]Food and [pork]Food belly to start and a [salmon]Food dish and [lamb]Food meal for mains.
PATNER We had their [beef tartar]Food and [pork belly ]Food to start and a [salmon]Food dish and [lamb meal]Food for mains.

5

Dictionary My two favourite dishes are the [rice flour]Food [rolls]Food and the chicken pho.
AUTONER My two favourite dishes are the [rice flour]Food [rolls]Food and the [chicken]Food pho.
PATNER My two favourite dishes are the [rice flour rolls]Food and the [chicken pho]Food.

6

Dictionary We ordered 3 appetizers : spinach and artichoke dip , [chicken]Food lettuce wraps , and the [mussels]Food.
AUTONER We ordered 3 appetizers : [spinach]Food and [artichoke dip]Food, [chicken]Food lettuce [wraps]Food, and the

[mussels]Food.
PATNER We ordered 3 appetizers : [spinach and artichoke dip]Food, [chicken lettuce wraps]Food, and the [mussels]Food.

function that has never been recognized by the other methods.
Similar results are observed in the Yelp dataset. For example,
in Sentence 4, AUTONER recognizes “pork” and “lamb” as
food, while PATNER recognizes the whole entity “pork belly”
and “lamb meal” as food correctly. Similary, in Sentence 5,
AUTONER recognizes “rice flour” and “rolls” as two separate
food entities, while PATNER recognizes the whole entity
“rice flour rolls” as food correctly. In Sentence 6, the input
dictionary matches some sort entities such as “chicken” and
“mussels”. AUTONER recognizes some new short entities,
such as “spinach”, “artichoke dip” and “wraps”. PATNER
recognizes all the three appetizers “spinach and artichoke
dip”, “chicken lettuce wraps” and “mussels” correctly. These
case studies on the real-world datasets further demonstrate the
power of PATNER and show the potential of dictionary-based
distant supervision in the NER task.

IV. RELATED WORK

As an important task in natural language processing, named
entity recognition (NER) has been studied for decades. Taken
expert-curated training data, early techniques explore hand-
crafted features, using methods like hidden Markov models
(HMMs) [33], [34] and conditional random fields (CRFs) [12],
[14]. In recent years, deep learning models, such as recurrent
neural networks (RNNs), have been widely applied to NER,
achieving state-of-the-art results [2], [7], [8], [11], [13], [31].

Aiming to reduce expensive human labor, distant super-
vision attracts recent attention especially in more specific
domains. The major research effort in the distantly supervised
NER task lies in how to better utilize entity information in

dictionaries or knowledge bases. In the general domain, Ren et
al. [20]–[23] link mentions to knowledge base and use linked
entities to infer the types of unlinked ones using label prop-
agation on heterogeneous graphs. Distant-LSTM-CRF [6] has
been proposed for the extraction of aspect terms, a task closely
related to NER. In the biomedical domain, there are also NER
designs for the distant supervision setting [5], [26]. SwellShark
[5], specifically designed for biomedical NER, leverages a
generative model to unify and model noise across different
supervision sources for named entity typing. However, it leaves
the named entity span detection to a heuristic combination
of dictionary matching and part-of-speech tag-based regular
expressions, which requires extensive expert effort to cover
many special cases.

The most related work to the proposed PATNER is AU-
TONER [26] that uses a “tie-or-break” tagging scheme to
leverage distant supervision from entity dictionaries. Compar-
ing with traditional “IOBES” tagging scheme, “tie-or-break”
tagging scheme can reduce the effects of false negative issue
brought by the low recall of dictionary, and thus achieves better
performance. However, comparing with human supervision,
there is still a significant gap in performance, due to the
low recall of dictionaries. The proposed PATNER addresses
this issue by mining patterns (i.e., entity naming principles)
to enhance the distant supervision. A fuzzy NER model is
developed by revising the neural model to incorporate the
uncertainty in dictionary expansion.
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V. CONCLUSIONS

We have proposed PATNER, a distantly supervised NER
model that effectively deals with noisy distant supervision
from domain-specific dictionaries. PATNER does not require
human-annotated training data but relies on unlabeled data
and incomplete domain-specific dictionaries for distant super-
vision. It automatically mines the entity naming principles
from dictionaries and enhances distant supervision with a
fuzzy NER neural model to incorporate the uncertainty of
dictionary expansion. Extensive experiments on three bench-
mark datasets in two domains demonstrate the power of
PATNER.Case studies on two additional real-world datasets
demonstrate that PATNER improves the distant NER per-
formance in both entity boundary detection and entity type
recognition. The results show a great promise in supporting
high quality named entity recognition with domain-specific
dictionaries on a wide variety of entity types. Future work
may include extending the study to more entity types and fine-
grained type levels.
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for biomedical named entity recognition without labeled data. arXiv
preprint arXiv:1704.06360, 2017.

[6] A. Giannakopoulos, C. Musat, A. Hossmann, and M. Baeriswyl. Unsu-
pervised aspect term extraction with b-lstm & crf using automatically
labelled datasets. In Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Media Analysis, pages
180–188, 2017.

[7] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser. Deep
learning with word embeddings improves biomedical named entity
recognition. Bioinformatics, 33(14):i37–i48, 2017.

[8] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer.
Neural architectures for named entity recognition. In NAACL-HLT, pages
260–270. ACL, 2016.

[9] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang.
Biobert: pre-trained biomedical language representation model for
biomedical text mining. arXiv preprint arXiv:1901.08746, 2019.

[10] J. Li, Y. Sun, R. Johnson, D. Sciaky, C.-H. Wei, R. Leaman, A. P.
Davis, C. J. Mattingly, T. C. Wiegers, and Z. Lu. Annotating chemicals,
diseases, and their interactions in biomedical literature. In Proceedings
of the fifth BioCreative challenge evaluation workshop, pages 173–182,
2015.

[11] L. Liu, J. Shang, F. Xu, X. Ren, H. Gui, J. Peng, and J. Han. Empower
Sequence Labeling with Task-Aware Neural Language Model. In AAAI,
pages 5245–5253, 2018.

[12] Y. Lu, D. Ji, X. Yao, X. Wei, and X. Liang. CHEMDNER system with
mixed conditional random fields and multi-scale word clustering. J.
Cheminf., 7(S1):S4, 2015.

[13] X. Ma and E. Hovy. End-to-end sequence labeling via bi-directional
lstm-cnns-crf. In ACL, pages 1064–1074, 2016.

[14] R. McDonald and F. Pereira. Identifying gene and protein mentions in
text using conditional random fields. BMC bioinformatics, 6(1), 2005.

[15] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Dis-
tributed representations of words and phrases and their compositionality.
In NIPS, pages 3111–3119. MIT Press, 2013.

[16] S. Moen and T. S. S. Ananiadou. Distributional semantics resources for
biomedical text processing. LBM, pages 39–44, 2013.

[17] J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen, U. Dayal,
and M.-C. Hsu. Mining sequential patterns by pattern-growth: The
prefixspan approach. TKDE, 16(11):1424–1440, 2004.

[18] M. Peng, X. Xing, Q. Zhang, J. Fu, and X. Huang. Distantly supervised
named entity recognition using positive-unlabeled learning. ACL, 2019.

[19] M. Pontiki, D. Galanis, H. Papageorgiou, I. Androutsopoulos,
S. Manandhar, A.-S. Mohammad, M. Al-Ayyoub, Y. Zhao, B. Qin,
O. De Clercq, et al. Semeval-2016 task 5: Aspect based sentiment
analysis. In SemEval, pages 19–30, 2016.

[20] X. Ren, A. El-Kishky, C. Wang, F. Tao, C. R. Voss, and J. Han.
Clustype: Effective entity recognition and typing by relation phrase-
based clustering. In KDD, pages 995–1004. ACM, 2015.

[21] X. Ren, W. He, M. Qu, L. Huang, H. Ji, and J. Han. Afet: Automatic
fine-grained entity typing by hierarchical partial-label embedding. In
EMNLPs, pages 1369–1378, 2016.

[22] X. Ren, W. He, M. Qu, C. R. Voss, H. Ji, and J. Han. Label noise
reduction in entity typing by heterogeneous partial-label embedding. In
KDD, pages 1825–1834. ACM, 2016.

[23] X. Ren, Z. Wu, W. He, M. Qu, C. R. Voss, H. Ji, T. F. Abdelzaher,
and J. Han. Cotype: Joint extraction of typed entities and relations with
knowledge bases. In WWW, pages 1015–1024. IW3C, 2017.

[24] S. Riedel, L. Yao, A. McCallum, and B. M. Marlin. Relation extraction
with matrix factorization and universal schemas. In ACL, pages 74–84,
2013.

[25] J. Shang, J. Liu, M. Jiang, X. Ren, C. R. Voss, and J. Han. Automated
phrase mining from massive text corpora. TKDE, 2018.

[26] J. Shang, L. Liu, X. Ren, X. Gu, T. Ren, and J. Han. Learning named
entity tagger using domain-specific dictionary. In EMNLP. ACL, 2018.

[27] W. Shen, J. Wang, P. Luo, and M. Wang. Linden: linking named entities
with knowledge base via semantic knowledge. In WWW, pages 449–458.
ACM, 2012.

[28] J. C. Spall and J. L. Maryak. A feasible bayesian estimator of quantiles
for projectile accuracy from non-iid data. Journal of the American
Statistical Association, 87(419):676–681, 1992.

[29] Z. Toh and W. Wang. Dlirec: Aspect term extraction and term polarity
classification system. In SemEval, pages 235–240, 2014.

[30] X. Wang, Y. Zhang, Q. Li, X. Ren, J. Shang, and J. Han. Distantly su-
pervised biomedical named entity recognition with dictionary expansion.
In IEEE-BIBM, pages=, year=2019.

[31] X. Wang, Y. Zhang, X. Ren, Y. Zhang, M. Zitnik, J. Shang, C. Langlotz,
and J. Han. Cross-type biomedical named entity recognition with deep
multi-task learning. Bioinformatics, page bty869, 2018.

[32] H. Xu, B. Liu, L. Shu, and P. S. Yu. Bert post-training for review
reading comprehension and aspect-based sentiment analysis. In NAACL,
jun 2019.

[33] G. Zhou and J. Su. Named entity recognition using an hmm-based chunk
tagger. In ACL, pages 473–480. ACL, 2002.

[34] G. Zhou and J. Su. Exploring deep knowledge resources in biomedical
name recognition. In Proc. Int. Jt. Work. Nat. Lang. Process. Biomed.
its Appl., pages 96–99, 2004.

[35] J. Zhu, V. Uren, and E. Motta. Espotter: Adaptive named entity
recognition for web browsing. In Biennial Conference on Professional
Knowledge Management/Wissensmanagement, pages 518–529. Springer,
2005.

Authorized licensed use limited to: University of Illinois. Downloaded on May 05,2021 at 20:55:00 UTC from IEEE Xplore.  Restrictions apply. 


