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Abstract—In the past decade, the amount of attributed network
data has skyrocketed, and the problem of identifying their
underlying group structures has received significant attention.
By leveraging both attribute and link information, recent state-
of-the-art network clustering methods have achieved significant
improvements on relatively clean datasets. However, the noisy
nature of real-world attributed networks has long been over-
looked, which leads to degraded performance facing missing
or inaccurate attributes and links. In this work, we overcome
such weaknesses by marrying the strengths of clustering and
embedding on attributed networks. Specifically, we propose
GRACE (GRAph Clustering with Embedding propagation), to
simultaneously learn network representations and identify net-
work clusters in an end-to-end manner. It employs deep denoise
autoencoders to generate robust network embeddings from node
attributes, propagates the embeddings in the network to capture
node interactions, and detects clusters based on the stable state
of embedding propagation. To provide more insight, we further
analyze GRACE in a theoretical manner and find its underlying
connections with two canonical approaches for network modeling.
Extensive experiments on six real-world attributed networks
demonstrate the superiority of GRACE over various baselines
from the state-of-the-art. Remarkably, GRACE improves the
averaged performance of the strongest baseline from 0.43 to 0.52,
yielding a 21% relative improvement. Controlled experiments
and case studies further verify our intuitions and demonstrate
the ability of GRACE to handle noisy information in real-world
attributed networks.

Index Terms—network clustering, representation learning, in-
fluence propagation

I. INTRODUCTION

Nowadays, attributed networks have been widely leveraged
as a ubiquitous model for real-world interactive systems,
ranging from social and academic datasets, to biochemical
pathways and the Web [1]–[5]. Particularly, network clustering
has been shown important to various relevant tasks including
the discovery of functionally related objects [6], the study
of interactions among modules [7], the inference of missing
attributes [8], and the prediction of unobserved connections
[9], [10].

Typically, traditional clustering algorithms solely focus on
analyzing either the topological structures of networks [11]–
[13], or the contents of nodes [14]–[16]. Recent advances

on attributed network clustering have provided clear evidence
on the importance of integrating both kinds of information
[8], [17]–[22]. Accordingly, in this work, we focus on the
clustering of attributed networks, which is an urgent and
practical problem with much potential. However, properly
integrating attributes and links for network clustering is a
challenging task.

On one hand, while node attributes can be leveraged to
alleviate the sparsity of linkage data, attributes themselves in
a network can be very sparse and noisy. As shown in Table
I, our investigation into six real-world networks shows that
many social network users leave important attributes as blank
in their profiles, and many papers in the citation networks only
cover a small portion of keywords in the entire vocabulary.
Meanwhile, users may fill in random fake information, and
papers may use different terminology even for the same topics.
Therefore, traditional models assuming high-quality simple
attributes can become ineffective in capturing the deep and
complex semantics hidden in the sparse noisy attributes in
real-world attributed networks [8], [17]–[22].

On the other hand, although there has been substantial work
on network embedding to capture the link structures, most
of them do not consider network attributes at all [23]–[32],
whereas others either only employ shallow models that cannot
handle complex noisy attributes [2], [3], [33]–[35], or leverage
heavy neural networks in a supervised way where labeled data
are indispensable [1], [36]–[39]. More importantly, all existing
network embedding algorithms including [2], [3], [28]–[30],
[32], [34], [35] do not jointly learn embedding and clustering,
but rather separate the two processes, so the representations
they produce are not optimized towards the particular task of
network clustering.

In this work, we propose GRACE (GRAph Clustering with
Embedding propagation), for network clustering based on both
node attributes and link structures. For the first time, deep
embedding and unsupervised clustering are jointly trained on
attributed networks in an end-to-end fashion. By combining
a powerful attribute embedding module based on deep de-
noise autoencoders [40], [41] and a principled embedding
propagation module based on the influence propagation theory



[20], [21], [42], we compute the novel dynamic embedding
which effectively reveals the network clustering structures
while being robust to noisy attributes and links. Moreover,
by leveraging a self-training clustering module [14], [43], the
embedding and clustering results are refined in a closed loop
to further enhance each other.

We summarize the contributions in this work as follows:

1) Based on denoising autoencoder and influence propagation
techniques, we design an embedding propagation process
that jointly performs network clustering and embedding.
In the process, both node attributes and link structures are
leveraged to generate high-quality robust node representa-
tions tailored for network clustering.

2) To provide more insight into network clusters and cor-
roborate our model design, we theoretically analyze the
principle of influence propagation. We demonstrate that
our leverage of embedding propagation leads to a mathe-
matical model essentially related to two canonical network
modeling approaches. However, our model is more pow-
erful and efficient without sampling or supervision.

3) We conduct extensive experiments on six standard public
real-world datasets including both social networks and
citation networks with attributes. The performance of
GRACE is superior compared with various state-of-the-art
community detection and network embedding algorithms.
A series of controlled experiments and case studies are
further conducted to analyze the quality of learned repre-
sentations towards network clustering.

II. RELATED WORK

Network Community Detection. Most traditional network
community detection algorithms are unsupervised, based on
either the link density assumption alone or jointly with the
attribute homogeneity assumption. The former assumes that
communities should be constructed by densely connected
nodes, and the latter requires that nodes in communities should
also share similar attributes. Among various algorithms, the
most widely used ones are based on heuristic metrics such as
modularity [11], [12] and maximal clique [46]. They funda-
mentally leverage the link density assumption. As for attribute
homogeneity, some firstly augment the network with attribute
links before computing the clustering [19], [47], while others
attempt to find a network partition that yields the minimum
encoding cost based on information theory [48], [49]. [18],
[22], [50] leverage both link density and attribute homogeneity
by assuming communities to be formed by densely connected
homogeneous nodes. [20] leverages content propagation on
networks to detect communities by firstly propagating the
attributes among neighboring nodes. These shallow models
are efficient even with large networks, but are still incapable
of working with sparse noisy attributes.

As a novel treatment to high-dimensional sparse attributes
with noise in real-world networks, in this work, for the
first time, the power of deep embedding is combined with
the interpretation of network clustering as a consequence

of embedding propagation, to yield high-quality embeddings
optimized for network clustering.

Network Node Embedding. The objective of network em-
bedding is to find a compact node representation that captures
the proximities among nodes on the networks [23]–[25], [51]–
[53]. The propagation of embeddings has been studied on
networks, but existing works do not jointly consider the
embedding of networks jointly with a clustering objective
[54]–[57] Several recent works have studied the embedding
of networks jointly with clustering [58], [59], but they do not
consider attributes in networks. On the other hand, embedding
algorithms developed towards attributed networks mainly em-
ploy shallow neural networks for attribute modeling and do
not jointly learn network clustering [1]–[3], [33]–[35], [60]–
[62], so the representations they produce are less robust to
noises in real-world networks and are not optimized towards
the clustering objective.

To deeply integrate node attributes and link structures, deep
neural networks such as CNN [63], [64] and RNN [65], [66]
have also been adopted. For instance, to leverage the CNN
model, [37] uses graph labelling to select an ordering of nodes,
upon which fixed-sized receptive fields can then be computed,
[67], [68] utilize spectral filtering to emulate receptive fields
in the Fourier domain, and [38], [69], [70] treat convolution
as neighborhood matching in the spatial domain. Meanwhile,
RNN has been utilized to embed sequences of nodes such
as information cascade paths [39], [71], [72]. These models
are often deep and powerful in exploring high-dimensional
noisy attributes as well as complex network structures, but
they usually assume a supervised or semi-supervised learning
scenario, and their performance largely depends on the amount
of labeled data.

In this work, we aim at jointly learning embedding and
clustering on attributed networks to allow the mutual enhance-
ment between them in a fully unsupervised fashion. To the
best of our knowledge, this is the first work that combines
representation learning and clustering on attributed networks.

III. OVERVIEW

The goal of this work is unsupervised clustering on at-
tributed networks. We summarize the main challenges of this
task into the following three aspects.
• Node attributes are high-dimensional, sparse and noisy.
• Node interactions are also noisy and hard to integrate.
• No supervision is available to guide exploration.

To deal with all challenges above, we develop GRACE
(GRAph Clustering with Embedding propagation), which in-
herently combines deep embedding with influence propagation
to integrate network node attributes and link structures. A self-
training clustering framework is adopted to further improve the
performance.

A. Overall Framework

Input. We are given a network modeled by G = {V, E ,A, C},
where V is the set of n nodes (e.g., users on social networks,



Type Dataset #Attr. dim. Attr. sparsity #Nodes #Links #Clusters
Social

Networks
Facebook [22] 1,283 93.49% 4,039 88,234 193

Gplus [22] 15,907 98.85% 107,614 13,673,453 468
Twitter [22] 216,839 96.73% 81,306 1,768,149 4,065

Citation
Networks

Cora [44] 1,433 98.73% 2,708 5,429 7
Citeseer [44] 3,703 99.14% 3,312 4,715 6
PubMed [45] 500 89.98% 19,717 44,338 3

TABLE I: Summary of statistics of six real-world attributed networks.

papers in citation networks, etc.), and E is the set of m
observed links among the nodes in V . A is the set of observed
node attributes associated with V , where each ai is the set
of κ features on node vi. C is a set of ground-truth cluster
memberships, where cik = 1 means node vi is in the kth
ground-truth cluster. For unsupervised graph clustering, C is
only used for evaluation.

Output. Our model jointly learns a deep embedding X̃ and
a soft clustering Q on V . Each xi ∈ X̃ is a distributed
representation of node vi, capturing a prominent nonlinear
combination of its original features ai under the consideration
of vi’s contexts in its neighborhood Ni on the network. The
definition of Ni will be introduced in the following subsection
(Section IV.3), together with our specific treatment to X based
on the principle of influence propagation on networks. Each
qi ∈ Q is a K-dimensional probability distribution, where K
is the number of clusters to be detected and

∑
k qik = 1, ∀i,

characterizing the probability of node vi belonging to the kth
cluster.

Fig. 1: The overall architecture of GRACE.

Architecture. Figure 1 illustrates the overall architecture of
our GRACE framework. We take the input A for all nodes V
and compute their nonlinear deep embedding X . To integrate
network attributes and links for robust representation learning,
we propagate X in the network based on the structures of
neighborhoods N to generate the dynamic network embedding
X̃ , which is used to reconstruct the original node attributes
with an embedding loss J1. At the meantime, a soft clustering
loss J2 with a self-training mechanism is optimized based
on X̃ to produce high-quality graph clustering results Q.
Therefore, we have the overall loss function

J = J1 + λJ2, (1)

where λ is a weighting parameter. By minimizing Eq. 1, we
can jointly optimize the deep embedding and soft clustering

modules and allow them to mutually enhance each other in a
closed loop.

IV. GRACE

In this section, we introduce the details of different modules
in GRACE, and discuss how to jointly learn network clustering
and embedding in an end-to-end manner.

A. Deep Embedding of Sparse Noisy Attributes

Table I illustrates the nature, dimensionality and sparsity
of attributes in several real-world network datasets. Such high
dimensionality and sparsity are not surprising, because users
are known to be reluctant in filling out many attributes and
papers only cover their limited vocabularies. Moreover, users
are free to fill in fake attributes and papers can contain different
terminologies, which further make attributes in networks noisy
and inaccurate.

In our situation, it is desirable to capture attributes precisely,
because they often become the signatures of network clusters.
For example, in a football fans’ club, a popular player identi-
fied by the attributes of his/her tweets is likely to be the center
of a community, surrounded by fans posting their semantically
related tweets.

However, we note that existing network embedding algo-
rithms are ineffective with sparse noisy attributes because
they usually start from preserving the link structures among
non-attributed nodes [23]–[25], and then incorporate attributes
as augmented nodes [33], text feature matrices [60] or bag-
of-word vectors [36]. In such ways, attributes are shallowly
modeled as auxiliary information, and the deep semantics
within them can not be fully explored.

To deal with such a challenge, we get inspired by recent
successes in deep learning for feature composition [40], [41].
Specifically, we are interested in leveraging deep embedding
to discover the latent representations of node attributes in
networks, which, in an ideal case, are low-dimensional, dense
and robust to noise. To this end, we employ deep denoise
autoencoder (DAE) [40], [41], which has been proven ad-
vantageous in capturing the intrinsic features within high-
dimensional sparse noisy inputs in an unsupervised fashion.

To leverage the power of DAE, given a node vi’s original
feature vector ai, we firstly apply a GRACE-encoder, which
consists of multiple layers of fully connected feedforward
neural networks with Rectified Linear Unit (ReLU) activations.
The neural networks are in decreasing sizes and after them we
get a Z-dimensional latent representation xi as

xi = fHe (. . . f2e (f1e (ai)) . . .),where (2)



fhe (x) = ReLU(Wh
e Dropout(x) + bh

e ). (3)

H is the number of hidden layers in GRACE-encoder. Θe is
the set of parameters in the H encoder layers.

To ensure that xi captures the important information in ai,
we compute the reconstruction ãi of ai through stacking a
GRACE-decoder and apply random dropout to each of both
encoding and decoding layers [73]. The GRACE-decoder also
consists of multiple layers of fully connected feedforward
neural networks with ReLU activations. The sizes of neural
networks are in an increasing order, exactly the opposite as in
GRACE-encoder. So we have

ãi = fHd (. . . f2d (f1d (xi)) . . .),where (4)

fhd (x) = ReLU(Wh
dDropout(x) + bh

d). (5)

The number of hidden layers in GRACE-decoder is also H .
Θd is the set of parameters in the H decoder layers.

After decoding, an attribute reconstruction loss is

J1 =
n∑

i=1

l(ai, ãi), (6)

which is a summation over all nodes in V . Depending on the
nature of the attributes in the network, l can be implemented
either as a cross entropy (for binary features, such as bag-of-
word) or a mean squared error (for continuous features, such
as TF-IDF scores [74]).

B. Graph Clustering with Embedding Propagation

The major difference between network clustering and gen-
eral clustering lies in the availability of structural information,
such as users’ friendships on social platforms and papers’
citations in publication datasets. Such links, while providing
crucial information not necessarily captured by node attributes,
are hardly leveraged by existing content embedding frame-
works.

To reliably find clusters (or communities) on networks,
we study the nature of clusters and model them under the
consideration of network dynamics– nodes on networks are
constantly interacting with each other, sending and receiving
influences among themselves. Inspired by [8], [20], [75], we
assume that clustering is a consequence of such influence prop-
agation. Accordingly, they should be modeled based on the
consistency of propagated influences on the network when they
reach a stable state. Unlike traditional influence propagation
studies that model a single influence factor that corresponds to
node activations [76], [77], we assume Z-dimensional latent
factors propagated on the network, which jointly influence the
original K-dimensional node attributes.

To model the network dynamics regarding influence prop-
agation among nodes, we compute the dynamic embedding
X̃ of nodes V by propagating the attribute embedding X
in the network according to the link structures. Considering
the standard influence propagation model [78], we use an
adjacency matrix W to record the link structures in G. For
simplicity, we assume 0-1 weights and undirected links, while

the model generalizes trivially to weighted directed graphs. To
ensure that every node can receive influence from at least one
node, we also assume every node can propagate to itself. So
we have

wij =

{
1, if eij ∈ E , or eji ∈ E , or i = j,

0, otherwise.
(7)

Given W , we define D as a diagonal matrix with dii =∑n
j=1 wij , ∀i ∈ [1, n]. So we have T = D−1W as the

transition matrix on G. Then X1 = TX is the propagated
embedding through one step. With N b

i defined as the neigh-
borhood of vi with size b (∀b > 0), which includes all nodes
that are no more than b steps from vi on the network, xb

i

corresponds to the embedding of vi under the consideration
of vi’s network contexts in N b

i .
As we assume, the formation of clusters requires the prop-

agated embedding to reach a stable state. It corresponds to
infinite steps of propagation, or stationary as in random walk
terminology. Therefore, we consider a stochastic description
about the probability of a node influencing another with a
linear approximation of influence propagation. Specifically,
we use R to denote the stationary propagation matrix, where
we denote the probability that the influence of node vi is
propagated to node vj as rij , which satisfies

∀i 6= j ∈ [1, n] : rii = β + α
∑
elj∈E

riltli, rij = α
∑
elj∈E

riltlj ,

(8)

where tij ∈ T is the transition probability from vi to vj ,
β > 0 is a constant corresponding to the probability of a
node influencing itself, α is the damping coefficient of the
propagation process.

According to Eq. 8, we recompute R as

R = β(I − αT )−1 = β(I − αD−1W )−1. (9)

Subsequently, we have

X̃ = Xinf = RX = β(I − αD−1W )−1X, (10)

where β can be simply removed because it is the same for
every node and does not affect the clustering results.

Describing network clusters with stable influence propaga-
tion, we integrate the leverage of link structures into GRACE
by substituting the deep attribute embedding X with the
dynamic (i.e., propagated) embedding X̃ before both decoding
and clustering computation. By doing this, we require the
embeddings of two nodes to be close not only because
they share similar important attributes, but also because they
send/receive similar influence to/from their neighboring nodes
in the network.

C. Jointly Learning Clustering and Embedding

The final challenge of clustering on graphs lies in the lack
of labeled data. Most successful deep learning frameworks
on image or language processing are usually composed of
an unsupervised pre-training step and a supervised fine-tuning



step so that the intrinsic structures of data and supervision
can be combined to automatically capture meaningful visual
or semantic patterns. However, graph clustering is naturally
unsupervised, which means although our deep neural networks
can be powerful in exploring various patterns, they can not re-
ceive feedback from the environment and can never explicitly
know what patterns they find are useful.

To address this challenge, we get inspired by recent progress
on self-training neural networks. The idea is to let the model
iteratively make predictions and learn from its own high
confidence predictions, which in turn helps improve the low
confidence predictions [43]. Accordingly, we jointly train
clustering and embedding by leveraging the common strategy
of minimizing the KL divergence between a soft clustering
distribution Q and an auxiliary target distribution P [14]–[16],
which was originally used to cluster images and documents
without interactions.

Specifically, based on the propagated embedding X̃ , besides
reconstructing node attributes through GRACE-decoder, we
input X̃ into a GRACE-cluster module, which computes soft
clustering assignments Q to all nodes in V . We compute
Q as a kernel function that measures the similarity between
node embeddings and cluster centers according to the equation
of Student’s t-distribution, which measures the probability of
assigning node vi to the kth cluster [79] as

qik =
(1 + ||xi − uk||2)−1∑
j(1 + ||xi − uj ||2)−1

, (11)

To leverage the idea of self-training, we further improve
cluster purity and stress on confident assignments by raising q
to the second power and then normalizing across all clusters
by computing

pik =
q2ik/fk∑
j q

2
ij/fj

, (12)

where fk =
∑

i qik is the total number of nodes softly
assigned to the kth cluster. Our self-training clustering loss is
then defined as the KL divergence between the soft assignment
distribution Q and the auxiliary target distribution P as
following

J2 = KL(P||Q) =
∑
i

∑
k

piklog
pik
qik

. (13)

D. Training, Implementation, and Scalability

We achieve the joint learning of clustering and embedding
by combining pre-training and co-training. Initialization is
known to be crucial for most clustering algorithms. Therefore,
before assigning nodes to clusters for the first time, we
pre-train our GRACE-encoder and GRACE-decoder without
GRACE-cluster for T0 iterations.Then we run K-means on the
pre-trained embedding X 0 to initialize the cluster centers U0.
Next, we plug in GRACE-cluster, and simultaneously optimize
the embedding loss J1 and clustering loss J2 through co-
training for T iterations.

Besides training the neural networks, we need to compute
the inversion of a large n×n matrix for stationary propagation,

which could be quite time-consuming. Fortunately, this com-
putation needs to be done only once before training and can be
further approximated by multiplying T for multiple times. We
implement GRACE using TensorFlow, which runs efficiently
on GPU. The codes will be available upon the acceptance of
this work.

V. EXPERIMENTS

In this section, we evaluate GRACE for graph clustering
with extensive experiments on six real-world standard public
datasets.

A. Experimental Settings

Datasets. We use six real-world attributed network datasets.
In social networks, nodes correspond to users and links
correspond to observed user connections such as friendships
on Facebook and followings on Twitter. Each social network
datasets include multiple ego-networks, so all compared al-
gorithms are run on each of them with the final performance
averaged over all separate runs. In citation networks, nodes are
scientific publications (papers), and links are generated based
paper citations. A summary of statistics of these datasets are
presented in Table I before.

Compared algorithms. We compare with two groups of al-
gorithms from the state-of-the-art to comprehensively evaluate
the performance of GRACE.

Network Community detection algorithms. Some classic algo-
rithms are based on network links alone, while more recent
ones also leverage node attributes. We compare with them
to show the power of GRACE from deep embedding and
influence propagation.
• MinCut [12]: a classic community detection algorithm

based on modularity.
• CESNA [18]: a generative model of links and attributes

to detect communities.
• PCL-DC [19]: a unification of a conditional model for

link analysis and a discriminative model for attribute
analysis.

• CP [20]: a series of state-of-the-art community detection
methods based on content propagation. We compare with
the best variant called CPIP-SI.

Network node embedding algorithms. While we find unsuper-
vised node embedding helpful in capturing both link structures
and node attributes, we compare with the state-of-the-art
embedding algorithms to show that GRACE is advantageous
for clustering networks, especially those with sparse noisy
attributes. The embedding learned by these algorithms are
fed into the same k-means clustering algorithm to produce
network clustering results.
• node2vec [25]: state-of-the-art non-attributed network

embedding algorithm based on biased random walks. It
has been shown to be more stable and effective than other
competitive algorithms like DeepWalk [23] and LINE
[24] in various works.



• PTE [33]: a network embedding algorithm that general-
izes the popular LINE [24] algorithm by incorporating
node attributes through graph augmentation.

• NRCL [35]: a network embedding algorithm that bridges
the information gap by learning a robust consensus for
link-based and attribute-based network representations.

• ANRL [34]: a network embedding algorithm that lever-
ages a neighbor enhancement autoencoder to jointly
model node attributes and reconstruct target neighbors.

The number of clusters to detect is tuned via standard 5-fold
cross validation for all algorithms. The implementations of all
compared algorithms are provided by their original authors,
except for MinCut, which is provided in the SNAP project1.

B. Performance On Attributed Network Clustering

We quantitatively evaluate GRACE against all baselines,
based on two widely used metrics for evaluating clustering
results, i.e., F1 similarity (F1) and Jaccard similarity (JC), as
formulated in [20]. We run each non-deterministic algorithm
ten times to record the means and standard deviations. For de-
terministic algorithms, we run one time and treat the standard
deviations as 0. Then we conduct paired statistical t-tests by
putting GRACE against all baselines.

The parameters of baselines are all tuned to the best through
cross-validation. For GRACE, we empirically set the weight
of clustering loss λ to 0.1; for the embedding model, we
set the number of hidden layers H to 2, with the first
layer being half of the size as the original attributes (κ) and
following layers halving the sizes (i.e., κ → κ/2 → κ/4 and
κ/4 → κ/2 → κ for the encoder and decoder, respectively);
dropout rate is set to 0.5; for the influence propagation model,
we set the damping factor α to 0.9, stressing on link structures
in small local neighborhoods; for joint training embedding and
clustering, we set the number of epochs T0 = 100, T = 30
and S = 30 for pre-training and co-training, respectively.
As we will show in the following subsection, GRACE is not
very sensitive to the setting of hyper-parameters and no much
tuning is needed to achieve satisfactory performance.

Table II shows the mean F1 and JC scores evaluated for
all compared algorithms. The results all passed the significant
t-tests with p-value 0.005. GRACE constantly outperforms
all eight compared algorithms by large margins across all
six datasets in both F1 and JC scores, while baselines
have varying performances. This indicates the robustness and
general advantages of GRACE.

Taking a closer look, we observe that the advantage of
GRACE over baselines is more significant on the social
network datasets, where node attributes are known to be
noisier. Among the citation networks, GRACE outperforms
baselines more on Cora and Citeseer, the node attributes of
which are much sparser than PubMed. These two facts indicate
the effectiveness of the GRACE deep embedding module in
modeling sparse noisy node attributes.

1http://snap.stanford.edu/snap/index.html

For both community detection and network embedding
baselines, combining node attributes with link structures usu-
ally lead to better performance. However, this is not always
true (e.g., consider MinCut vs. CESNA on the citation net-
works, node2vec vs. ANRL on Twitter and Cora). It implies
the correctness and importance of our interpretation of clusters
as a consequence of network dynamics and subsequently
confirms our appropriate integration of attributes and links via
the influence propagation model.

All experiments are done on a server with four GeForce
GTX 1080 GPUs and a 12-core 2.2GHz CPU. The runtime
of GRACE is comparable to most baselines on a single CPU,
while it runs 10+ times faster on GPUs.

C. Robustness Towards Noisy Node Attributes

As we stress in this work, GRACE is robust to complex
attributes with sparse and noisy entries, because it employs
deep attribute embedding to capture the essential attributes,
and leverages network structures as well as the underlying
cluster assignments to refine the attribute embedding space.
To fully evaluate such robustness, we conduct a series of
controlled experiments by randomly removing and flipping the
original attributes in the datasets, and study the behaviors of
all compared algorithms.

Figures 2 and 3 show the performance curves of compared
algorithms when different amounts of attributes are removed
(changed from 1 to 0) or flipped (changed both from 1 to 0
or 0 to 1), respectively. As we can see from Figure 2, while
the performances of baseline algorithms clearly drop as more
attributes are removed, the performance of GRACE almost
does not change. This is especially true on Citeseer, where the
original attributes might be quite redundant. As we can also
see from Figure 3, the performances of baseline algorithms
rapidly drop as more attributes are flipped, but the performance
of GRACE only drops slightly. The performance changes are
the slightest on Facebook, where the original attributes are
already quite noisy.

Such results clearly indicate the robustness of GRACE
towards noisy node attributes regarding random missing and
inaccurate entries. Due to space limitations, we only show the
F1 scores on three datasets, but we observe very similar trends
of both metrics on all of the six datasets.

D. Model Selection

We comprehensively analyze the performance of GRACE
with different attribute embedding and influence propagation
architectures. The results confirm our insights about sparse
noisy attributes and network dynamics, while also justify our
design of deep embedding and stationary propagation models.

Embedding Size and Depth. As we believe deep embedding
is crucial for dealing with sparse noisy attributes, we explicitly
study the impact of embedding architectures by varying the
size Z and depth H of our encoder and decoder. Specifi-
cally, we vary the embedding size Z from 256 for datasets
with lower dimensions of original attributes (Facebook and



Algorithm Facebook Gplus Twitter Cora Citeseer PubMed
F1 JC F1 JC F1 JC F1 JC F1 JC F1 JC

MinCut 0.2272 0.0731 0.2212 0.1355 0.2956 0.0970 0.4876 0.2897 0.4189 0.2144 0.5786 0.3419
CESNA 0.4532 0.3019 0.2057 0.1989 0.2976 0.1970 0.4244 0.2115 0.3643 0.1321 0.4612 0.2724
PCL-DC 0.4621 0.2554 0.2373 0.2156 0.3058 0.2062 0.5459 0.3723 0.5041 0.3227 0.5848 0.3978

CP 0.6248 0.3605 0.1450 0.1027 0.2083 0.1580 0.6921 0.5192 0.6912 0.4959 0.7017 0.5212
node2vec 0.4956 0.1565 0.2135 0.2006 0.2742 0.1894 0.6314 0.4638 0.4671 0.2894 0.6604 0.5020

PTE 0.2135 0.1184 0.1697 0.0671 0.1880 0.1016 0.3848 0.2526 0.2807 0.1366 0.4876 0.2410
NRCL 0.4938 0.2135 0.2254 0.2097 0.2988 0.2015 0.5219 0.3283 0.4439 0.2794 0.6280 0.4898
ANRL 0.5362 0.2038 0.2247 0.1928 0.2517 0.1584 0.6486 0.4735 0.5301 0.3374 0.6872 0.5146

GRACE 0.7212 0.4436 0.3110 0.2559 0.4132 0.2620 0.7428 0.5579 0.7397 0.5362 0.7378 0.5766

TABLE II: Performance comparison with two groups of baselines on six real network datasets.

(a) Facebook (b) Cora (c) Citeseer

Fig. 2: F1 scores of compared algorithms when node attributes are randomly removed.

(a) Facebook (b) Cora (c) Citeseer

Fig. 3: F1 scores of compared algorithms when node attributes are randomly flipped.

PubMed) and 512 for the rest, to a small number like 16 or
32, to understand the attribute complexity of each dataset and
how compact the useful representations can be. Each time, we
halve the embedding dimension by 2. For each dataset, we
vary the embedding depth H from 1 to 4, to see how deep
neural networks can help to effectively capture the compact
representations. For simplicity, we do not use hidden layers of
decreasing or increasing sizes as in Section V.2. Instead, we
set the sizes of all hidden layers to be the same. For example,
with Z = 256 and H = 2, the encoder and decoder have
the architectures of κ → 256 → 256 and 256 → 256 → κ,
respectively.

Figure 4 shows the F1 scores on three datasets. The JC
scores on them and both metrics on other datasets show
similar trends and are omitted due to the space limitations.
For Facebook, the ranges of x-ticks are smaller, because their
original attributes are of lower dimensions. As we can observe,

the embedding size Z does not have a large impact on the
performance of GRACE, except for the cases where it is
too small for the embedding to capture the complex attribute
semantics. This happens apparently on Facebook, probably
because its attributes are less sparse and more complex, and
slightly Cora, indicating its attributes to be also more complex
than those of Citeseer. Setting Z to a value like half of the
size of the original attributes will usually lead to satisfactory
results.

As for the embedding depth H , shallower neural networks
with H = 1 perform significantly worse than their deeper
competitors on most social network datasets, for example,
Facebook, which are known to have noisier attributes. This
clearly confirms our insight of leveraging the power of deep
embedding to effectively capture network node attributes.
Since we apply dropout in both encoder and decoder, only
slight overfitting is observed on a few datasets that have rel-



(a) Facebook (b) Cora (c) Citeseer

Fig. 4: F1 scores of model selection experiments on embedding size and depth.

atively small networks (e.g., Facebook), when the embedding
depth is too large (H = 4). Setting H to a value like 2 or 3
tends to produce stable results.

Stable Propagation and Its Approximations. In this work,
we understand network clusters as a consequence of influence
propagation on networks, and we believe the cluster structures
are most significant when such propagation reaches stability,
i.e., the stationary distribution. In Eq. 9, we compute the
stationary transition matrix R, which involves the inversion of
a large matrix, which can be quite time comsuming. Here, we
simply use T b, the multiplications of T , as an approximation
of R, to show how well we can capture network clusters
without reaching the stationary distribution.

As we can observe from Figure 5, the number of propaga-
tion steps has a large impact on the performance of GRACE,
especially when the number is small. This demonstrates the
utility of our influence propagation model. As the number of
steps grows large and an approximated stationary distribution
is reached, the performance becomes stable. However, there
is still a performance gap between the approximated and the
true stationary distributions, because the damping effect cannot
be trivially approached through multiplying one-step transition
matrices, but cluster structures are often observed within small
network neighborhoods.

E. Case Studies with Visualization

To explicitly see how GRACE captures network clusters
through the end-to-end combination of deep embedding, in-
fluence propagation, and self-training clustering modules, we
visualize the original attribute space, together with the embed-
ding spaces computed by ANRL (the state-of-the-art attributed
network embedding algorithm) and GRACE on one of the real-
world Facebook egonetworks.

Figure 6 visualizes the embedding spaces reduced to 2-
dimensional through PCA [80]. We use different colors and
markers to draw nodes in different ground-truth clusters. As
we can see, nodes from different clusters clutter a lot in the
original attribute space, probably due to the attribute sparsity
and noise. The situation is better with the state-of-the-art
ANRL embedding, which jointly considers node attributes
and link structures. But the results still do not demonstrates

obvious structures for each of the clusters, thus posing more
challenges to the following clustering methods. This might be
because the embeddings are not properly optimized towards
the clustering objective. The embedding produced by our
GRACE model is much better than both of them, where nodes
within the same ground-truth clusters distribute tightly in the
embedding space, and those within different clusters lie far
apart.

Figure 7 visualizes the pair-wise node cosine similarities in
different spaces with heat maps. Since nodes on the x− and
y− axes are grouped by the ground-truth cluster assignments
in the same order, similarities among nodes in the diagonal
blocks corresponding to the clusters should have higher val-
ues. The embedding generated by our GRACE model is the
only one that demonstrates clear diagonal blocks, indicating
its power of refining the attribute embedding space through
combining deep attribute embedding and network influence
propagation to capture the underlying clustering structures.

VI. CONCLUSION

Recently, there has been a trend in applying deep learning
algorithms for network modeling. However, none of them
jointly considers the noisy node attributes and link structures
together with the underlying clustering structures in an end-
to-end unsupervised fashion. While GRACE is designed for
network clustering, it provides a promising way of deeply
exploring noisy network attributes and links. It is promising
to see the both products, i.e., the network representations
and clustering results, to be further leveraged for various
downstream applications on real-world attributed networks.
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Fig. 5: F1 scores of model selection experiments on stable influence propagation and its approximations.

(a) Original attributes (b) ANRL embedding (c) GRACE embedding
Fig. 6: Visualization of embedding spaces computed on ego-network 1684 from the Facebook dataset.

(a) Original attributes (b) ANRL mbedding (c) GRACE embedding
Fig. 7: Visualization of embedding pair-wise node similarities on ego-network 1684 from the Facebook dataset.
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