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Abstract

The Macaulay2 [5] package AlgebraicOptimization implements methods for determining the alge-
braic degree of an optimization problem. We describe the structure of an algebraic optimization problem
and explain how the methods in this package may be used to determine the respective degrees. Spe-
cial features include determining FEuclidean distance degrees and maximum likelihood degrees. To our
knowledge, this is the first comprehensive software package combining different methods in algebraic op-
timization. The package is available at https://github.com/Macaulay2/Workshop-2020-Cleveland/
tree/ISSAC-AlgOpt/alg-stat/AlgebraicOptimization.

1 Introduction

The algebraic degree of an optimization problem is an important invariant in applied algebraic geometry.
It gives an algebraic measure of complexity to a problem and has been studied in the context of nearest
point problems [3], maximum likelihood estimation [2, 6], and semidefinite programming [4].

The optimization degree [7] can be determined by computing the degree of an ideal. Let X denote an
affine variety in C". Given an objective function : X — C with a gradient denoted by VW, our aim is to
compute the ideal of the set of isolated critical points of ¥ on the regular locus of X. We call the ideal
Crito(¥, X) the (nondegenerate) critical ideal of X with respect to W.

Suppose (f1, ..., fn) generate the radical ideal of X, and assume X has codimension ¢. Then Critg (¥, X)
is given by these steps. First, consider the ideal S, which consists of the generators of the ideal of X along
with minors of an augmented Jacobian matrix saturated by the ideal of the singular locus of X,

v
Vi
S = <f1,...,fN>+<(c+1) X (¢ + 1) minors of : > IR (1)
Vin
Then let P denote the ideal of positive dimensional components of the variety of S. Then,

Crito(¥,X) =S : P™.

In the special case when S is zero dimensional, this simplifies to Crito(¥, X) = S. The (nondegenerate)
optimization degree is the degree of Critg(¥, X). In this package we develop tools to generate these ideals
and compute the respective degrees.
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Figure 1: The variety X in Example 2 and related critical points given by Crito(¥, X). The
left pictures a data point and the minimizers of Euclidean distance while the right pictures
a data point and the corresponding MLE.

2 Package features

2.1 Euclidean distance degree

A classic example of the optimization degree is the Euclidean distance (ED) degree. The ED degree of X
is the optimization degree of the squared Euclidean distance function with a generic choice of data u. If
X is a projective variety, we can use the following, which is more efficient than eq. (1) in some cases

Crito(V, X) = (IX + <(c+ 2) X (¢4 2) minors of [Jac?lx)] >> f(Ixg,) - 10)%, (2)

where Q = {z € P""! : 23 + ... + 22 = 0} is the isotropic quadric, and Jac(Ix) is the Jacobian of the
generators of Ix. For more details on this formulation see [3, Section 2]. Our package implements ED degree
computations via eqs. (1) and (2) with the functions probabilisticEDDegree and symbolicEDDegree.
The former chooses a random data point u, while the latter carries out computations symbolically. These
are the main ED degree functions in our package.

If X is an irreducible projective variety in general position, there are several other ways to compute
the ED degree: via multidegree, projections or sections. By [3, Thm. 5.4], the ED degree is the sum of the
multidegrees of the conormal variety. The function symbolicMultidegreeEDDegree computes the multi-
degree symbolically, using the Hilbert polynomial, and probabilisticMultidegreeEDDegree computes
the multidegree by counting points in random linear slices of the ambient space.

The function projectionEDDegree projects X into a smaller ambient space such that the projection
has codimension 1. By [3, Cor. 6.1] the ED degree of the projected variety is equal to the ED degree of
X. This can provide speedups when the codimension of X is large.

Example 1. Consider the Veronese surface in P>. We can confirm using different functions that the ED
degree is thirteen.

i1 : R = QQ[x_0..x_5];
i2 I minors(2, matrix{{x_0, x_1, x_2}, {x_1,x_3,x_4}, {x_2,x_4,x_5}});
i3 : elapsedTime probabilisticEDDegree I
-- 206.523 seconds elapsed
03= 13
i4 : elapsedTime probabilisticMultidegreeEDDegree I
-- 473.283 seconds elapsed
o4 = 13
i5 : elapsedTime projectionEDDegree I
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-- 5.99635 seconds elapsed
o5 = 13

2.2 Maximum likelihood degree

The maximum likelihood estimate (MLE) of a statistical model is the minimizer of the likelihood function
of the data. Tools of computational algebra can be used when the statistical model is an algebraic variety.
The maximum likelihood (ML) degree is the number of complex critical points of the likelihood equations
for generic data.

Example 2. Let X C C? be defined by the ideal I = (4pops — p?) C C|po, p1, p2]. The intersection X N Ay
is the set of all possible probability distributions of a binomial random variable Y with two trials. This is
the blue curve pictured in Figure 1.

Suppose we observe Y and collect the results into a vector u = (ug, u1, uz) where u; is the number of
trials that resulted in ¢ “heads”. The likelihood function, i.e. the likelihood of observing u is

uo+u1+ug

U (po, p1,p2) = py°py Py /(o + p1 + p2)

The critical points of this model are precisely the points in Crito(¥, X). In this case the ML degree is one, so
there is a unique MLE. This can be confirmed by calling MLequationsDegree I. The data u = (17,29,12)
in purple and respective MLE in red are pictured on the right in Figure 1. The purple arrow shows the
direction of the gradient of the likelihood function at the MLE. o

In statistics, many models are given by a parametrization. Our package has methods to compute the
ML degree for these models. More precisely, let F : R — R™"! be a polynomial map whose image is
a parametric model. Each coordinate f; of F' is a polynomial in the model parameters 8 = (6, ..., 0,).
Assuming the summation of f;’s is equal to one, the likelihood function is fo(0)“ f1(6)"* - - - fn(6)"~, where
u = (ug,...,up) is a vector of natural numbers. The function parametricMLDegree computes the ML
degree for a parametric model. For more details on parametric likelihood equations see [6, Section 7].

Example 3. We can check that the ML degree of the twisted cubic model, given in parametric form, is 3.

il : R = QQ[t]; s=1;

i3 : F {s73%(-t"3-t"2-t+1), s72*%t, s*xt~2, t~3};
i4 : parametricMLDegree (F)

o4 = 3

2.3 Toric models

Toric models are a commonly used class of models in algebraic statistics which correspond to discrete
exponential families in statistics. Well known examples include discrete graphical models and hierarchical
models. Our package has specialized methods for these models which exploit their additional structure to
compute their ML degree more quickly.

Toric models are typically given parametrically by a full rank matrix A € Z4*"

and a vector ¢ € C".
The scaled toric variety, denoted X, corresponding to the pair (A, c) is the Zariski closure of the map

bac: (C)4— (C*)" in C" given by
¢A,c(917 e Hd) = (619(117 - 7CT0W).
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By Birch’s Theorem, if the vector (1,1,...1) € rowspan(A) then the ML degree of X¢§ is the number of
complex solutions to the equations

Au=nAp and p € X3\ X(pip2...pr(p1 +p2... + 1)) (3)

for generic data vectors u [1, Prop. 7]. Our package computes this degree using the parametric description
of the model with the function toricMLDegree. This method first chooses a random data point u and
then forms the ideal, 19 of equations given by Equation 3 but with p replaced by ¢4.(0). It then forms
the critical ideal of the likelihood function ¥ in terms of the parameters by computing the saturation
Crito(\I/, X) = IICL‘ : 1(9192 R ed(cle‘“ + 002 + crear))oo.

Example 4. Let A and c be as they are below. The toric variety X¢§ is a scaled Segre embedding so the
corresponding toric ideal is generated by 2 x 2 minors. The general method MLequationsDegree takes
some time, whereas the specialized method toricMLDegree computes the ML degree quickly.

i2 : A = matrix {{1,1,1,0,0,0,0,0,0}, {0,0,0,1,1,1,0,0,0%},
{0,0,0,0,0,0,1,1,1},{1,0,0,1,0,0,1,0,0},{0,1,0,0,1,0,0,1,0}}

i3 : ¢ ={1,2,3,1,1,1,1,1,1};

i4 : R = QQ[p_1..p_9];

i5 : M = matrix {{p_1, p_4, p_7}, {p_2/2, p_5, p_8}, {p_3/3, p_6, p_9}}
i6 : I = minors(2, M);

i7 : elapsedTime MLequationsDegree I
-- 228.037 seconds elapsed

o7 = 3

i8 : elapsedTime toricMLDegree(A, c)
-- 0.00849565 seconds elapsed

o8 3

2.4 Fritz John conditions and Lagrange multipliers

Instead of formulating the critical ideal using minors to specify a rank deficiency like in eq. (1), one can use
a null vector method. We implement null vector methods involving Lagrange multipliers and Fritz John
conditions.

Fritz John conditions are implemented for the ED degree computation. The determinental conditions in

egs. (1) and (2) are expressed by finding a (nonzero) kernel element of the augmented matrix ( Jaxc(_]u )>,
w

where Iy is an ideal generated by codim(Iy) polynomials, with Ix as a minimal prime. This is imple-
mented in symbolicFritzJohnEDDegree and probabilisticFritzJohnEDDegree. These functions tend to
work well when the number of generators of I is larger than the codimension. Corresponding functionality
using Lagrange multipliers is implemented in probabilisticLagrangeMultiplierOptimizationDegree.

il : R = QQ[x_1..x_6];
i2 I minors(2, matrix{{x_1, x_2, x_3}, {x_2, x_4, x_5}, {x_3, x_5, x_6}});
i3 : elapsedTime probabilisticEDDegree I
-- 179.771 seconds elapsed
03 = 13
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i4 : elapsedTime probabilisticFritzJohnEDDegree I
-- 4.95628 seconds elapsed
o4 = 13
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