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Abstract

Entity set expansion and synonym discovery
are two critical NLP tasks. Previous studies
accomplish them separately, without exploring
their interdependences. In this work, we hy-
pothesize that these two tasks are tightly cou-
pled because two synonymous entities tend to
have similar likelihoods of belonging to var-
ious semantic classes. This motivates us to
design SynSetExpan, a novel framework that
enables two tasks to mutually enhance each
other. SynSetExpan uses a synonym discovery
model to include popular entities’ infrequent
synonyms into the set, which boosts the set
expansion recall. Meanwhile, the set expan-
sion model, being able to determine whether
an entity belongs to a semantic class, can gen-
erate pseudo training data to fine-tune the syn-
onym discovery model towards better accuracy.
To facilitate the research on studying the in-
terplays of these two tasks, we create the first
large-scale Synonym-Enhanced Set Expansion
(SE2) dataset via crowdsourcing. Extensive
experiments on the SE2 dataset and previous
benchmarks demonstrate the effectiveness of
SynSetExpan for both entity set expansion and
synonym discovery tasks.

1 Introduction

Entity set expansion (ESE) aims to expand a
small set of seed entities (e.g., {“United States™,
“Canada’}) into a larger set of entities that belong
to the same semantic class (i.e., Country). En-
tity synonym discovery (ESD) intends to group all
terms in a vocabulary that refer to the same real-
world entity (e.g., “America” and “USA” refer to
the same country) into a synonym set (hence called
a synset). Those discovered entities and synsets in-
clude rich knowledge and can benefit many down-
stream applications such as semantic search (Xiong
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Figure 1: An illustrative example of joint entity set
expansion and synonym discovery.

et al., 2017), taxonomy construction (Shen et al.,
2018a), and online education (Yu et al., 2019a).
Previous studies regard ESE and ESD as two
independent tasks. Many ESE methods (Mamou
et al., 2018b; Yan et al., 2019; Huang et al., 2020;
Zhang et al., 2020; Zhu et al., 2020) are developed
to iteratively select and add the most confident en-
tities into the set. A core challenge for ESE is to
find those infrequent long-tail entities in the target
semantic class (e.g., “Lone Star State” in the class
US_States) while filtering out false positive en-
tities from other related classes (e.g., “Austin” and
“Dallas” in the class City) as they will cause se-
mantic shift to the set. Meanwhile, various ESD
methods (Qu et al., 2017; Ustalov et al., 2017a;
Wang et al., 2019; Shen et al., 2019) combine string-
level features with embedding features to find a
query term’s synonyms from a given vocabulary or
to cluster all vocabulary terms into synsets. A ma-
jor challenge here is to combine those features with
limited supervisions in a way that works for enti-
ties from all semantic classes. Another challenge
is how to scale a ESD method to a large, extensive
vocabulary that contains terms of varied qualities.
To address the above challenges, we hypothe-
size that ESE and ESD are two tightly coupled
tasks and can mutually enhance each other because
two synonymous entities tend to have similar like-
lihoods of belonging to various semantic classes
and vice versa. This hypothesis implies that (1)
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knowing the class membership of one entity en-
ables us to infer the class membership of all its
synonyms, and (2) two entities can be synonyms
only if they belong to the same semantic class. For
example, we may expand the US_States class
from a seed set {“Illinois”, “Texas”, “California”}.
An ESE model can find frequent state full names
(e.g., “Wisconsin”, “Connecticut’’) but may miss
those infrequent entities (e.g., “Lone Star State”
and “Golden State”’). However, an ESD model may
predict “Lone Star State” is the synonym of “Texas”
and “Golden State” is synonymous to “California’
and directly adds them into the expanded set, which
shows synonym information help set expansion.
Meanwhile, from the ESE model outputs, we may
infer (“Wisconsin”, “WI”) is a synonymous pair
while (“Connecticut”, “SC”) is not, and use them
to fine-tune an ESD model on the fly. This relieves
the burden of using one single ESD model for all
semantic classes and improves the ESD model’s
inference efficiency because we refine the synonym
search space from the entire vocabulary to only the
ESE model outputs.

B

In this study, we propose SynSetExpan, a novel
framework jointly conducting two tasks (cf. Fig. 1).
To better leverage the limited supervision signals
in seeds, we design SynSetExpan as an iterative
framework consisting of two components: (1) a
ESE model that ranks entities based on their prob-
abilities of belonging to the target semantic class,
and (2) a ESD model that returns the probability of
two entities being synonyms. In each iteration, we
first apply the ESE model to obtain an entity rank
list from which we derive a set of pseudo training
data to fine-tune the ESD model. Then, we use this
fine-tuned model to find synonyms of entities in the
currently expanded set and adjust the above rank
list. Finally, we add top-ranked entities in the ad-
justed rank list into the currently expanded set and
start the next iteration. After the iterative process
ends, we construct a synonym graph from the last
iteration’s output and extract entity synsets (includ-
ing singleton synsets) as graph communities.

As previous ESE datasets are too small and con-
tain no synonym information for evaluating our
hypothesis, we create the first Synonym Enhanced
Set Expansion (SE2) benchmark dataset via crowd-
sourcing. This new dataset' is one magnitude larger
than previous benchmarks. It contains a corpus of
the entire Wikipedia, a vocabulary of 1.5 million

"http://bit.ly/SE2-dataset.

terms, and 1200 seed queries from 60 semantic
classes of 6 different types (e.g., Person, Location,
Organization, efc.).

Contributions. In summary, this study makes the
following contributions: (1) we hypothesize that
ESE and ESD can mutually enhance each other
and propose a novel framework SynSetExpan to
jointly conduct two tasks; (2) we construct a new
large-scale dataset SE2 that supports fair compari-
son across different methods and facilitates future
research on both tasks; and (3) we conduct exten-
sive experiments to verify our hypothesis and show
the effectiveness of SynSetExpan on both tasks.

2 Problem Formulation

We first introduce important concepts in this work,
and then present our problem formulation. A term
is a string (i.e., a word or a phrase) that refers to
a real-world entity>. An entity synset is a set of
terms that can be used to refer to the same real-
world entity. For example, both “USA” and “Amer-
ica” can refer to the entity United States and thus
compose an entity synset. We allow the singleton
synset and a term may locate in multiple synsets
due to its ambiguity. A semantic class is a set of
entities that share a common characteristic and a
vocabulary is a term list that can be either provided
by users or derived from a corpus.

Problem Formulation. Given (1) a text corpus D,
(2) a vocabulary V derived from D, and (3) a seed
set of user-provided entity synonym sets Sy that
belong to the same semantic class C, we aim to
(1) select a subset of entities Vo from V that all
belong to C'; and (2) clusters all terms in V¢ into
entity synsets Sy, where the union of all clusters
is equal to V. In other words, we expand the seed
set Sp into a more complete set of entity synsets
Sp U Sy, that belong to the same semantic class C'.
A concrete example is presented in Fig. 1.

3 The SynSetExpan Framework

In this study, we hypothesize that entity set expan-
sion and synonym discovery are two tightly cou-
pled tasks and can mutually enhance each other.

Hypothesis 1. Two synonymous entities tend to
have similar likelihoods of belonging to various
semantic classes and vice versa.

The above hypothesis has two implications.
First, if two entities e; and e; are synonyms and

In this work, we use “term” and “entity” interchangeably.
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Figure 2: Overview of one iteration in our proposed SynSetExpan framework. Starting from the current set F/, we
first run a set expansion model to obtain an entity rank list L. based on which we generate pseudo training data
D,y to fine-tune a generic synonym discovery model M. We then apply this fine-tuned model to get a new rank
list L, ; merge it with L, to obtain the final entity rank list, and add top ranked entities into the current set F.

e; belongs to semantic class C, e; likely also be-
longs to class C even if it is currently outside C.
This reveals how synonym information can help set
expansion by directly introducing popular entities’
infrequent synonyms into the set and thus increas-
ing the expansion recall. The second implication
is that if two entities are not from the same class
C, then they are likely not synonyms. This shows
how set expansion can help synonym discovery by
restricting the synonym search space to set expan-
sion outputs and generating additional training data
to fine tune the synonym discovery model.

At the beginning, when we only have limited
seed information, this hypothesis may not be di-
rectly applicable as we do not have complete knowl-
edge of either entity class memberships or entity
synonyms. Therefore, we design our SynSetExpan
as an iterative framework, shown in Fig. 2.

Framework Overview. Before the iterative pro-
cess starts, we first learn a general synonym dis-
covery model M using distant supervision from
a knowledge base (cf. Sect. 3.1). Then, in each
iteration, we learn a set expansion model based
on the currently expanded set F (initialized as all
entities in user-provided seed synsets Sp) and ap-
ply it to obtain a rank list of entities in V, denoted
as Lge (cf. Sect. 3.2). Next, we generate pseudo
training data from L, and use it to construct a new
class-dependent synonym discovery model M. by
fine-tuning M. After that, for each entity in V,
we apply M. to predict its probability of being the
synonym of at least one entity in E' and use such
synonym information to adjust L. (cf. Sect. 3.3).
Finally, we add top-ranked entities in the adjusted
rank list into the current set and start the next itera-

tion. After the iterative process ends, we identify
entity synsets from the final iteration’s output using
a graph-based clustering method (cf. Sect. 3.4).

3.1 Proposed Synonym Discovery Model

Given a pair of entities, our synonym discovery
model returns the probability that they are syn-
onymous. We use two types of features for entity
pairs®: (1) lexical features based on entity surface
names (e.g., Jaro-Winkler similarity (Wang et al.,
2019), token edit distance (Fei et al., 2019), etc),
and (2) semantic features based on entity embed-
dings (e.g., cosine similarity between two entities’
SkipGram embeddings). As these feature values
have different scales, we use a tree-based boost-
ing model XGBoost (Chen and Guestrin, 2016) to
predict whether two entities are synonyms. An-
other advantage of XGBoost is that it is an additive
model and supports incremental model fine-tuning.
We will discuss how to use set expansion results to
fine-tune a synonym discovery model in Sect. 3.2.

To learn the synonym discovery model, we first
acquire distant supervision data by matching each
term in the vocabulary V with the canonical name
of one entity (with its unique ID) in a knowledge
base (KB). If two terms are matched to the same
entity in KB and their embedding similarity is
larger than 0.5, we treat them as synonyms. To
generate a non-synonymous term pair, we follow
the same “mixture” sampling strategy proposed
in (Shen et al., 2019), that is, 50% of negative pairs
come from random sampling and the other 50% of
negative pairs are those “hard” negatives which are
required to share at least one token. Some concrete

3We list all features in supplementary materials Section A.
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examples are shown in Fig. 2. Finally, based on
such generated distant supervision data, we train
our XGBoost-based synonym discovery model us-
ing binary cross entropy loss.

3.2 Proposed Set Expansion Model

Given a set of seed entities Fy from a semantic
class C, we aim to learn a set expansion model
that can predict the probability of a new entity
(term) e; € V belonging to the same class C, i.e.,
P(e; € C). We follow previous studies (Mela-
mud et al., 2016; Mamou et al., 2018a) to represent
each entity using a set of 6 embeddings learned on
the given corpus D, including SkipGram, CBOW
in word2vec (Mikolov et al., 2013), fastText (Bo-
janowski et al., 2016), SetExpander (Mamou et al.,
2018b), JoSE (Meng et al., 2019) and averaged
BERT contextualized embeddings (Devlin et al.,
2019). Given the bag-of-embedding representa-
tion [f1(e;), f2(e;),...,fB(e;)] of entity e; and
the seed set Ey, we define the entity feature

xi = Gl [\ fdle dby, (d@)2]. where <"
represents the concatenation operation, and di-’j =
cos(f®(e;), £%(e;)) is the cosine similarity between
two embedding vectors. One challenge of learning
the set expansion model is the lack of supervision
signals — we only have a few “positive” examples
(i.e., entities belonging to the target class) and no
“negative” examples. To solve this challenge, we
observe that the size of target class is usually much
smaller than the vocabulary size. This means if
we randomly select one entity from the vocabulary,
most likely it will not belong to the target semantic
class. Therefore, we can construct a set of | Eg| x K
negative examples by random sampling. We also
test selecting only entities that have a low embed-
ding similarity with the entities in the current set.
However, our experiment shows this restricted sam-
pling does not improve the performance. Therefore,
we choose to use the simple yet effective “random
sampling” approach and refer to K as “negative
sampling ratio”. Given a total of |Ep| x (K + 1)
examples, we learn a SVM classifier ¢(-) based on
the above defined entity features.

To further improve set expansion quality, we re-
peat the above process 1" times (i.e., randomly sam-
ple T different sets of | Ey| x K negative examples
for learning T separate classifiers {g*(-)}|Z_;) and
construct an ensemble classifier. The final classifier
predicts the probability of an entity e; belonging to
the class C by averaging all individual classifiers’

Algorithm 1: SynSetExpan Framework.

Input: A seed set So, a vocabulary V, a
knowledge base I, maximum iteration
number max_iter, maximum size of
expanded set Z, and model
hyper-parameters { K, T, N, H}.

Qutput: A complete set of entity synsets Sy, .

1 Learn a general ESD model M, using distant
supervision in /C;

E + Union of all synsets in Sp;

for iter from 1 to max_iter do

Lse <+ ESEModel(E, V, K, T),

Generate pseudo training data D), from L.;

Construct a class-specific ESD model M. by
fine-tuning Mg on Dy;;

7 Apply M. on entities in V and adjust Lge;

8 Add top [ —Z_] entities in the adjusted rank

list into F;

9 Construct a synonym graph G based on final set £

10 Sy, < Louvain(G);

11 Return Sy,..

= N7 T I N}

outputs (i.e., P(e; € C) = + S°T_ | g'(e;). Finally,
we rank all entities in the vocabulary based on their
predicted probabilities.

3.3 Two Models’ Mutual Enhancements

Set Expansion Enhanced Synonym Discovery.
In each iteration, we generate a set of pseudo train-
ing data D, from the ESE model output L, to
fine-tune the general synonym discovery model
M. Specifically, we add an entity pair (e, e,)
into D,; with label 1, if they are among the top
100 entities in L. and Mo(ez,ey) > 0.9. For
each positive pair (e, e, ), we generate N negative
pairs by randomly selecting [ N/2] entities from
L. whose set expansion output probabilities are
less than 0.5 and pairing them with both e, and
ey. The intuition is that those randomly selected
entities likely come from different semantic classes
with entity e, and e,, and thus based on our hy-
pothesis, they are unlikely to be synonyms. After
obtaining D,,, we fine-tune model My by fitting
H additional trees on D,; and incorporate them
into the existing bag of trees in M. We discuss
the detailed choices of NV and H in the experiment.
Synonym Enhanced Set Expansion. Given a
fine-tuned class-specific synonym discovery model
M., the current set E/, we calculate a new score
for each entity e; € V as follows:

sy-score(e;) = max{M.(e;, e;j)|e; € E}. (1)

The above score measures the probability that e;
is the synonym of one entity in £. Based on Hy-
pothesis 1, we know an entity with a large sy-score
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is likely belonging to the target class. Therefore,
we use a multiplicative measure to combine this
sy-score with the set expansion model’s original
output P(e; € C) as follows:

final-score(e;) = \/P(e; € C) x sy-score(e;).  (2)

An entity will have a large sy-score as long as it is
the synonym of one single entity in E. Such a prop-
erty is particularly important for capturing long-tail
infrequent entities. For example, suppose we ex-
pand US_ St ates class from a seed set {“Illinois”,
“IL”, “Texas”, “TX”}. The original set expansion
model, biased toward popular entities, assigns a low
score 0.57 to “Lone Star State” and a large score
0.78 to “Chicago”. However, the synonym discov-
ery model predicts, with over 99% probability, that
“Lone Star State” is the synonym of “Texas” and
thus has a sy-score 0.99. Meanwhile, “Chicago”
has no synonym in the seed set and thus has a low
sy-score 0.01. As a result, the final score of “Lone
Star State” is larger than that of “Chicago”. More-
over, we emphasize that Eq. 2 uses synonym scores
to enhance, not replace, set expansion scores. A
correct entity e* that has no synonym in current
set I/ will indeed be ranked after other correct enti-
ties that have synonyms in /. However, this is not
problematic because (1) all compared entities are
correct, and (2) we will not remove e* from final
results because it still outscores other erroneous
entities that have the same low sy-score as e* but
much lower set expansion scores.

3.4 Synonym Set Construction

After the iterative process ends, we have a syn-
onym discovery model M, that predicts whether
two entities are synonymous and an entity list &
that includes entities from the same semantic class.
To further derive entity synsets, we first construct
a weighted synonym graph G where each node n;
represents one entity e; € I and each edge (n;, n;)
with weight w;; indicates M. (e;, ej) = w;j. Then,
we apply the Louvain algorithm (Blondel et al.,
2008) (a popular non-overlapping community de-
tection method) to find all clusters in G and treat
them as entity synsets. Note here we narrow the
original full vocabulary V to the set expansion
model’s final output E based on our hypothesis. We
summarize our whole framework in Algorithm 1
and discuss its computational complexity in sup-
plementary materials.

# Entities  # Classes
1.5M 60 1200

Corpus Size
1.9B Tokens

# Queries

Table 1: Our SE2 dataset statistics

4 The SE2 Dataset

To verify our hypothesis and evaluate the
SynSetExpan framework, we need a dataset that
contains a corpus, a vocabulary with labeled
synsets, a set of complete semantic classes, and
a list of seed queries. However, to the best of our
knowledge, there is no such a public benchmark
dataset*. Therefore, we build the first Synonym
Enhanced Set Expansion (SE2) benchmark dataset
in this study.

4.1 Dataset Construction

We construct the SE2 dataset in four steps.

1. Corpus and Vocabulary Selection. We use the
Wikipedia 20171201 dump as our evaluation cor-
pus as it contains a diverse set of semantic classes
and enough context information for methods to dis-
cover those sets. We extract all noun phrases with
frequency above 10 as our selected vocabulary.

2. Semantic Class Selection. We identify 60 ma-
jor semantic classes based on the DBpedia-Entity
v2 (Hasibi et al., 2017) and WikiTable (Bhagavatula
et al., 2015) entities found in our corpus. These 60
classes cover 6 different entity types (e.g., Person,
Location, Organization). As such generated classes
may miss some correct entities, we enlarge each
class via crowdsourcing in the following step.

3. Query Generation and Class Enrichment.
We first generate 20 queries for each semantic class.
Then, we aggregate the top 100 results from all
baseline methods (cf. Sect. 5) and obtain 17,400
(class, entity) pairs. Next, we employ crowdwork-
ers on Amazon Mechanical Turk to check all those
pairs. Workers are asked to view one semantic class
and six candidate entities, and to select all entities
that belong to the given class. On average, workers
spend 40 seconds on each task and are paid $0.1.
All (class, entity) pairs are labeled by three workers
independently and the inter-annotator agreement is
0.8204, measured by Fleiss’s Kappa (k). Finally,
we enrich each semantic class C'; by adding the en-
tity e; whose corresponding pair (C}, e;) is labeled
“True” by at least two workers.

“More discussions on existing set expansion datasets are
available in supplementary materials Section C.

>More details and analysis can be found in the Section D
and E of supplementary materials.
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Class Type ESE  ESD (Lexical) ESE (Semantic)
Location 0.3789 0.2132 0.6599
Person 0.2322 0.2874 0.5526
Product 0.0848 0.3922 0.4811
Facility 0.0744 0.2345 0.4466
Organization  0.1555 0.2566 0.4935
Misc 0.4282 0.2743 0.5715

Table 2: Difficulty of each semantic class for entity set
expansion (ESE) and entity synonym discovery (ESD).

4. Synonym Set Curation. To construct synsets
in each class, we first run all baseline methods to
generate a candidate pool of possible synonymous
term pairs. Then, we treat those pairs with both
terms mapped to the same entity in WikiData as
positive pairs and ask two human annotators to la-
bel the remaining 7,625 pairs. The inter-annotator
agreement is 0.8431, measured by Fleiss’s Kappa.
Then, we construct a synonym graph where each
node is a term and each edge connects two syn-
onymous terms. Finally, we extract all connected
components in this graph and treat them as synsets.

4.2 Dataset Analysis

We analyze some properties of the SE2 dataset
from the following three aspects.

1. Semantic class size. The 60 semantic classes
in our SE2 dataset consist on average 145 entities
(with a minimum of 16 and a maximum of 864)
for a total of 8697 entities. After we group these
entities into synonym sets, these 60 classes consist
of on average 118 synsets (with a minimum of 14
and a maximum of 800) for a total of 7090 synsets.
The average synset size is 1.258 and the maximum
size of one synset is 11.

2. Set expansion difficulty of each class. We
define the set expansion difficulty of each semantic
class as follows:

Set-Expansion-Difficulty (C) = |—é‘ Z M,

ecC ‘O|
3)

where Topk(e) represents the set of k& most similar
entities to entity e in the vocabulary. We set k
to be 10,000 in this study. Intuitively, this metric
calculates the average portion of entities in class C
that cannot be easily found by another entity in the
same class. As shown in Table 2, the most difficult
classes are those Location classes® and the easiest
ones are Facility classes.

3. Synonym discovery difficulty of each class.

SWe exclude MISC type because by its definition classes
of this type will be very random.

We continue to measure the difficulty of finding
synonym pairs in each class. Specifically, we cal-
culate two metrics: (1) Lexical difficulty defined
as the average Jaro-Winkler distance between the
surface names of two synonyms, and (2) Seman-
tic difficulty defined as the average cosine distance
between two synonymous entities’ embeddings. Ta-
ble 2 lists the results. We find Product classes have
the largest lexical difficulty and Location classes
have the largest semantic difficulty.

5 Experiments
5.1 Entity Set Expansion

Datasets. We evaluate SynSetExpan on three pub-
lic datasets. The first two are benchmark datasets
widely used in previous studies (Shen et al., 2017;
Yan et al., 2019; Zhang et al., 2020): (1) Wiki,
which contains 8 semantic classes, 40 seed queries,
and a subset of English Wikipedia articles, and (2)
APR, which includes 3 semantic classes, 15 seed
queries, and all news articles published by Associ-
ated Press and Reuters in 2015. Note that these two
datasets do not contain synonym information and
are used primarily to evaluate our set expansion
model performance. We decide not to augment
these two datasets with additional synonym infor-
mation (as we did in our SE2 dataset) in order to
keep the integrity of two existing benchmarks. The
third one is our proposed SE2 dataset which has 60
semantic classes, 1200 seed queries, and a corpus
of 1.9 billion tokens. Clearly, our SE2 is an order
of magnitude larger than previous benchmarks and
covers a wider range of semantic classes.

Compared Methods. We compare the follow-
ing corpus-based set expansion methods: (1)
EgoSet (Rong et al., 2016): A method initially
proposed for multifaceted set expansion using skip-
grams and word2vec embeddings. Here, we treat
all extracted entities forming in one set as our
queries have little ambiguity. (2) SetExpan (Shen
et al., 2017): A bootstrap method that first com-
putes entity similarities based on selected qual-
ity contexts and then expands the entity set using
rank ensemble. (3) SetExpander (Mamou et al.,
2018b): A one-time entity ranking method based
on multi-context term similarity defined on mul-
tiple embeddings. (4) MCTS (Yan et al., 2019):
A bootstrap method combining the Monte Carlo
Tree Search algorithm with a deep similarity net-
work to estimate delayed feedback for pattern eval-
uation and entity scoring. (5) CaSE (Yu et al.,
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Methods SE2 Wiki APR
MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50 MAP@10 MAP@20 MAP@50

Egoset (Rong et al., 2016) 0.583 0.533 0.433 0.904 0.877 0.745 0.758 0.710 0.570
SetExpan (Shen et al., 2017) 0.473 0.418 0.341 0.944 0.921 0.720 0.789 0.763 0.639
SetExpander (Mamou et al., 2018b) 0.520 0.475 0.397 0.499 0.439 0.321 0.287 0.208 0.120
MCTS (Yan et al., 2019) — — — 0.980 0.930 0.790 0.960 0.900 0.810
CaSE (Yu et al., 2019¢) 0.534 0.497 0.420 0.897 0.806 0.588 0.619 0.494 0.330
SetCoExpan (Huang et al., 2020) — — — 0.976 0.964 0.905 0.933 0.915 0.830
CGExpan (Zhang et al., 2020) 0.601 0.543 0.438 0.995 0.978 0.902 0.992 0.990 0.955
SynSetExpan-NoSYN 0.612 0.567 0.484 0.991 0.978 0.904 0.985 0.990 0.960
SynSetExpan 0.628* 0.584* 0.502* — — — — — —

Table 3: Set expansion results on three datasets. MCTS and SetCoExpan do not scale to the SE2 dataset. SynSetExpan-Full
is inapplicable for Wiki and APR datasets because they contain no synonym information. The superscript * indicates the
improvement is statistically significant compared to SynSetExpan-NoSYN.

2019b): Another one-time entity ranking method
using both term embeddings and lexico-syntactic
features. (6) SetCoExpan (Huang et al., 2020): A
set expansion framework which generates auxiliary
sets that are closely related to the target set and
leverages them to guide the expansion process. (7)
CGExpan (Zhang et al., 2020): Current state-of-
the-art method that generates the target set name by
querying a pre-trained language model and utilizes
generated names to expand the set. (8) SynSetEx-
pan: Our proposed framework which jointly con-
ducts two tasks and enables synonym information
to help set expansion. (9) SynSetExpan-NoSYN:
A variant of our proposed SynSetExpan framework
without the synonym discovery model. All imple-
mentation details and hyperparameter choices are
discussed in supplementary materials Section F.

Evaluation Metrics. We follow previous studies
and evaluate our results using Mean Average Pre-
cision at different top K positions: MAP@K =
ﬁ > qeq APK(Lg, Sq), where Q is the set of
all seed queries and for each query g, we use
APk (Lg, Sy) to denote the traditional average pre-
cision at position K given a ranked list of entities
L, and a ground-truth set S;. To compare the per-
formance of multiple models, we conduct statistical
significance test using the two-tailed paired t-test
with 99% confidence level.

Experimental Results. We analyze the set expan-
sion performance from the following aspects.

1. Overall Performance. Table 3 presents the
overall set expansion results. We can see that
SynSetExpan-NoSYN achieves comparable perfor-
mances with the current state-of-the-art methods
on Wiki and APR datasets’, and outperforms previ-
ous methods on SE2 dataset, which demonstrates

"We feel both CGExpan and our method have reached
the performance limit on Wiki and APR as both datasets are
relatively small and contain only a few coarse-grained classes.

Class Type MAP@10 MAP@20 MAP@50
Person 86.7% 80.0% 93.3%
Organization 83.3% 83.3% 100%
Location 69.2% 65.4% 80.8%
Facility 85.7% 71.4% 100%
Product 100% 66.7% 100%
Misc 66.7% 66.7% 100%
Overall 78.3% 71.7% 90.0%

Table 4: Ratio of semantic classes on which SynSetExpan
outperforms SynSetExpan-NoSYN.

SynSetExpan vs. Other  MAP@10 MAP@20 MAP@50
vs. CGExpan 78.9% 85.4% 93.8%
vs. SynSetExpan-NoSYN 72.7% 83.0% 91.4%

Table 5: Ratio of seed queries from the SE2 dataset on which
the first method outperforms the second one.

the effectiveness of our set expansion model alone.
Besides, by comparing SynSetExpan-NoSYN with
SynSetExpan on SE2 dataset, we show that adding
synonym information indeed helps set expansion.

2. Fine-grained Performance Analysis. To pro-
vide a detailed analysis on how SynSetExpan im-
proves over SynSetExpan-NoSYN, we group se-
mantic classes based on their types and calculate
the ratio of classes on which SynSetExpan out-
performs SynSetExpan-NoSYN. Table 4 shows
the results and we can see that on most classes
SynSetExpan is better than SynSetExpan-NoSYN,
especially for the MAP@50 metric. In Table 5,
we further analyze the ratio of seed set queries
(out of total 1200 queries) on which one method
achieves better or the same performance as the
other method. We can see that SynSetExpan can
win on the majority of queries, which further shows
that SynSetExpan can effectively leverage syn-
onym information to enhance set expansion.

3. Case Studies. Figure 3 shows some expanded
semantic classes by SynSetExpan. We can see
that the set expansion task benefits a lot from the
synonym information. Take the semantic class
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Query: {{'Cleveland Cavaliers’}, {‘Atlanta Hawks’}, {'Lakers’, i i } - " WWI )
‘Los Angeles Lakers'}} Query: {{'Shanghai’}, {'Guangdong’}, {‘Tibet'}} Query: {{'Apple Pay'}, {*Apple Watch'}} Query: {{'Neil Armstrong’}, {Gene Cernan’}j Query: {{'World War I", “WW1"}, {Cold War'}}
Rank - SynSetExpan- SynSetExpan- SynSetExpan-
Rank SvnhS‘:;E:xan SynSetExpan Rank SynSetExpan Rank NoSYN SynSetExpan Rank NoSYN SynSetExpan
1 New York Knicks New York Knicks
1 Guangzhou Fujan 1| Android Pay | Apple iPhone 1_| Frank Borman_| Neil A. Armstrong 1 World War I World War II
2 New Jersey Nets St. Louis Hawks "
2 Hainan Hainan 2 Apple TV iPhone 2 Jim Lovell Jim Lovell 2 wwit First World War
3 | Golden State Warriors New Jersey Nets
Y 3 Fujian Xizang Province 3 | AppleiPhone Apple TV 3 Buzz Aldrin Frank Borman 3 wwi Gulf War
4 Chicago Bulls L.A. Lakers . ) ; y ” 4 World War Wwi
A 4 Shenzhen | Guangdong Province 4 | Android Wear iPad 4 [Hanison Schmitt | Buzz Aldrin
5 Gulf War World War
5 LA Dodgers Golden State Warriors s Zhejang Zhejiang 5 iWatch 5 | PeteConrad | Eugene Cernan
— = - ~ Operation Desert
" Boston Geltics Mitwsukea Bucks 1 Yunnan Fujian Province 11_| iPod Touch iPhones 11_| Edgar Mitchell Pete Conrad " Vietname War Storm
12 Phoenix Suns Washington Bullets 12 Hangzhou Zhejiang Province 12 iPod Touch 12 | Charlie Duke Ken Mattingly 12 Korean War Wil
13 | Washington Bullets Houston Rockets 13 G;f:ﬁ:gg‘g Shandong 13 | Google Wallet | Apple App Store 13 | Wiliam Anders |  Edgar Mitchell 13 raq War \raq War
14 | New Orleans Pelicans |  New Orleans Pelicans 14 Nanjing Yunnan 14 iPad Pro 14 | Alexei Leonov |  Charlie Duke 14 First World War Vietnam War
15 NBA coach Boston Celtics 15 Qingdao Guangzhou 15 | Android 0 | Google Wallet 15_| Story Musgrave | William Anders 15 | Second World War | Bosnian War

SynSetExpan in top-20 results are colored in green.

SE2 PubMed
Method AP AUC  Fl AP AUC  FI
SVM 0.1870 08547 03300 02250 08206 04121

XGB-S (Chen and Guestrin, 2016)  0.7654 0.9696 0.6389 0.5012 0.8625 0.4968
XGB-E (Chen and Guestrin, 2016) 0.4762 0.8750 0.4810 0.4906 0.9190 0.5388
DPE (Qu et al., 2017) 0.7972 09792 0.6392 0.6338 0.8979 0.6038
SynSetMine (Shen et al., 2019) 0.7562  0.9782 0.6347 0.6757 0.9453 0.6287

- - {ww1, wwi, {London Heathrow, {Apple iPhone, {Lakers, L.A.

SynSetExpan-NoFT 0.8197 0.9844 0.7159 0.6615 0.9445 0.6204
SynSetExpan 0.8736  0.9953 0.7592 0.7152 0.9695 0.6388

Table 6: Synonym discovery results on both SE2
dataset and PubMed dataset.

NBA_Teams for example, we find “L.A. Lakers”
(i.e., the synonym of “Los Angeles Lakers”) as well
as “St. Louis Hawks” (i.e., the former name of “At-
lanta Hawks”) and further use them to improve the
set expansion result. Moreover, by introducing syn-
onyms, we can lower the rank of those erroneous
entities (e.g., “LA Dodgers” and “NBA coach”).

5.2 Synonym Discovery

Datasets. We evaluate SynSetExpan for synonym
discovery task on two datasets: (1) SE2, which con-
tains 60,186 synonym pairs (3,067 positive pairs
and 57,119 negative pairs), and (2) PubMed, a
public benchmark used in (Qu et al., 2017; Shen
et al., 2019), which contains 203,648 synonym
pairs (10,486 positive pairs and 193,162 negative
pairs). More details can be found in supplementary
materials Section G.1.

Compared Methods. We compare following syn-
onym discovery methods: (1) SVM: A classifica-
tion method trained on given term pair features.
We use the same feature set described in Sect. 3.1.
(2) XGBoost (Chen and Guestrin, 2016): Another
classification method trained on given term pair fea-
tures. Here, we test its two variants: XGB-S which
only leverages lexical features based on entity sur-
face names, and XGB-E which only utilizes entity
embedding features. (3) DPE (Qu et al., 2017): A
distantly supervised method integrating embedding
features and textual patterns for synonym discovery.
(4) SynSetMine (Shen et al., 2019): Another dis-

(Neil Armstrong, {Tibet, Xizang First World War} | | Heathrow Airport} iihng, i;l;anes, Lakers, Los
Neil A. Armstrong} Province} {World War I, (Gatwick Airport pplcs Phone) | | Angeles Lakers)
- m WWII, Second London-Gatwick, {Apple Watch, {St. Louis Hawks,
{Gene Cernan, {Fujian, Fujian World War} LGW, EGKK) iWatch} Atlanta Hawks}
Eugene Cerne} Province} T
{Pete Conrad, | | {inner Mongolia, | |  Operation {Exeter Airport, iPad Prof {New Jorsey Nets,
Charles Conrad} Nei Mongol) Desert Storm} EXT} ! ) Brooklyn Nets}

Figure 4: Case studies on synonym discovery. Entities
discovered only by SynSetExpan are colored in green.

tantly supervised framework that learns to represent
the entire entity synonym set. (5) SynSetExpan:
Our proposed framework that fine-tunes synonym
discovery model using set expansion results. (6)
SynSetExpan-NoFT: A variant of SynSetExpan
without using the model fine-tuning. More imple-
mentation details and hyper-parameter choices are
discussed in supplementary materials Section G.

Evaluation Metrics. As all compared methods
output the probability of two input terms being syn-
onyms, we first use two threshold-free metrics for
evaluation — Average Precision (AP) and Area Un-
der the ROC Curve (AUC). Second, we transform
the output probability to a binary decision using
threshold 0.5 and evaluate the model performance
using standard F1 score.

Experimental Results. Table 6 shows the over-
all synonym discovery results. First, we can see
that the SynSetExpan-NoFT model can outper-
form both XGB-S and XGB-E methods signifi-
cantly, which shows the importance of using both
types of features for predicting synonyms. Sec-
ond, we find that SynSetExpan can further improve
SynSetExpan-NoFT via model fine-tuning, which
demonstrates that set expansion can help synonym
discovery. Finally, we notice that our SynSetExpan
framework, with the fine-tuning mechanism en-
abled, can achieve the best performance across all
evaluation metrics. In Figure 4, we show some
synsets discovered by SynSetExpan. We can see
that SynSetExpan is able to detect different types
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of entity synsets across various semantic classes.
Furthermore, we highlight those entities discovered
only after model fine-tuning, and we can see clearly
that with fine-tuning, our SynSetExpan framework
can detect more accurate synsets.

6 Related Work

Entity Set Expansion. Entity set expansion can
benefit many downstream applications such as
question answering (Wang and Cohen, 2008), lit-
erature search (Shen et al., 2018b), and online ed-
ucation (Yu et al., 2019a). Traditional entity set
expansion systems such as GoogleSet (Tong and
Dean, 2008) and SEAL (Wang and Cohen, 2007)
require seed-oriented online data extraction, which
can be time-consuming and costly. Thus, more
recent studies (Shen et al., 2017; Mamou et al.,
2018b; Yu et al., 2019c; Huang et al., 2020; Zhang
et al., 2020) are proposed to expand the seed set
by offline processing a given corpus. These corpus-
based methods include two general approaches: (1)
one-time entity ranking (Pantel et al., 2009; He and
Xin, 2011; Mamou et al., 2018b; Kushilevitz et al.,
2020) which calculates all candidate entities’ distri-
butional similarities with seed entities and makes
a one-time ranking without back and forth refine-
ment, and (2) iterative bootstrapping (Rong et al.,
2016; Shen et al., 2017; Huang et al., 2020; Zhang
et al., 2020) which starts from seed entities to ex-
tract quality textual patterns; applies the extracted
patterns to obtain more quality entities, and iterates
this process until sufficient entities are discovered.
In this work, in addition to just adding entities into
the set, we go beyond one step and aim to organize
those expanded entities into synonym sets. Further-
more, we show those detected synonym sets can in
turn help to improve set expansion results.

Synonym Discovery. Early efforts on synonym
discovery focus on finding entity synonyms from
structured or semi-structured data such as query
logs (Ren and Cheng, 2015), web tables (He et al.,
2016), and synonymy dictionaries (Ustalov et al.,
2017b,a). In comparison, this work aims to de-
velop a method to extract synonym sets directly
from raw text corpus. Given a corpus and a term
list, one can leverage surface string (Wang et al.,
2019), co-occurrence statistics (Baroni and Bisi,
2004), textual pattern (Yahya et al., 2014), distri-
butional similarity (Wang et al., 2015), or their
combinations (Qu et al., 2017; Fei et al., 2019) to
extract synonyms. These methods mostly find syn-
onymous term pairs or a rank list of query entity’s

synonym, instead of entity synonym sets. Some
studies propose to further cut-off the rank list into a
set output (Ren and Cheng, 2015) or to build a syn-
onym graph and then apply graph clustering tech-
niques to derive synonym sets (Oliveira and Gomes,
2014; Ustalov et al., 2017b). However, they all op-
erate directly on the entire input vocabulary which
can be too extensive and noisy. Compared to them,
our approach can leverage the semantic class infor-
mation detected from set expansion to enhance the
synonym set discovery process.

7 Conclusions

This paper shows entity set expansion and syn-
onym discovery are two tightly coupled tasks and
can mutually enhance each other. We present
SynSetExpan, a novel framework jointly conduct-
ing two tasks, and SE2 dataset, the first large-scale
synonym-enhanced set expansion dataset. Exten-
sive experiments on SE2 and several other bench-
mark datasets demonstrate the effectiveness of
SynSetExpan on both tasks. In the future, we plan
to study how we can apply SynSetExpan at the en-
tity mention level for conducting contextualized
synonym discovery and set expansion.
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A  Entity Pair Features

Feature Description ‘ Example

IsPrefix (Florida, FL) — 1

IsInitial (North Carolina, NC) — 1

Edit distance (North Carolina, Texas) — 13

Jaro-Winkler similarity (Arizona, Texas) — 0.4476

Characters in common (Lone Star State, Texas) — 2

Tokens in common (North Carolina, South Carolina) — 1

Difference in #tokens (Land of Lincoln, Illinois) — 13-11=2

Initial edit distance (North Carolina, State of North Carolina) — 2

Longest token edit distance (North Dakota, North Carolina) — 5

Cosine similarity of embedding (Texas, Lone Star State) — 0.9

Transformed cosine similarities | (Texas, Lone Star State) — [U]—g v0.9,(0.9)?]

(Ilinois, Land of Lincoln) —
[0.006, 0.072, -0.008, 0.074, - - -, -0.004]

Multiplication of two entities’
PCA-reduced embedding

Table 7: All entity pair features used in our synonym
discovery model.

B SynSetExpan Framework Complexity

From the Algorithm 1 in the main text, we can
see our SynSetExpan framework costs O (7T x (1 +
K) x |S| + |V|) for each iteration, where T is
the ensemble times (usually 50), K is the negative
sampling size (usually 10-20), S is the currently
expanded set (usually of size < 100), and |V| is
the vocabulary size. Although such complexity
looks expensive, we can significantly reduce the
practical running time in two ways. First, we can
learn " separate classifiers in set expansion model
in parallel. Second, we can aggregate all words in
the vocabulary into one batch and apply synonym
discovery model for inference in one run. We report
the practical running time for each component in
the below experiments.

C Existing ESE Datasets

An ideal set expansion benchmark dataset should
contain four parts: a corpus, a vocabulary, a set
of complete semantic classes, and a collection of
seed queries for each semantic class. One of the
earliest corpus-based set expansion work (Pantel
et al., 2009) uses “List of” pages in Wikipedia to
construct 50 semantic classes and applies random
sampling to construct 30 queries for each class. Al-
though those classes and queries are still available
today, we have no access to its underlying corpus
and vocabulary and thus cannot easily reproduce
their results. Similarly, SEISA (He and Xin, 2011)
and EgoSet (Rong et al., 2016) also release their
constructed semantic classes and seed queries but
hold the corpus and vocabulary. On the other side,
SetExpander (Mamou et al., 2018b) and CaSE (Yu
et al., 2019b) clearly describe their corpus and vo-
cabulary but do not release their classes/queries. To

the best of our knowledge, SetExpan (Shen et al.,
2017) is the only public dataset consisting of all
four essential components. However, it only con-
tains 65 queries from 13 classes and has no syn-
onym information. Below Table 8 compares our
proposed SE2 with all existing datasets and we can
see that our new dataset contains all four key parts
for a set expansion benchmark dataset, as well as
additional synonym information.

Dataset

Pantel et al. (Pantel et al., 2009)
SEISA (He and Xin, 2011)
EgoSet (Rong et al., 2016)

SetExpander (Mamou et al., 2018b)
CaSE (Yu et al., 2019b)
SetExpan (Shen et al., 2017)

SE2 |

‘Corpus Vocab Classes Queries Synonyms

X

X X

Slaaaxx
NSNS X X
AN N N NN
LA x x AA s
S X X X X X

Table 8: Comparison of ESE datasets.

D SE2 Dataset Construction Details

We construct our dataset in four stages: (1) Corpus
and vocabulary selection, (2) Semantic class selec-
tion, (3) Query generation and class enrichment,
and (4) Synonym set curation.

Corpus and vocabulary selection. An ideal cor-
pus for set expansion task should contain a diverse
set of semantic classes and enough context informa-
tion for methods to discover those sets. Based on
these two criteria, we select Wikipedia 20171201
dump as our evaluation corpus. This corpus is also
used in previous studies (Mamou et al., 2018b,a)
and contains 1.9 billion tokens of raw size 14GB.
Next, we extract all noun phrases with frequency
above 10 and filter out those noun phrases that start
with either a stopword (e.g., “a/an” and “the”) or
a non-word character (e.g., “(”, and “-”"). The re-
maining 1.47 million noun phrases consist of our
vocabulary.

Semantic class selection. To select a diverse set of
semantic classes, we first use simple string match-
ing to align our corpus and vocabulary with two
benchmark datasets designed for tasks closely re-
lated to Set Expansion: (1) DBpedia-Entity v2 (Ha-
sibi et al., 2017) for Entity Search (particularly
entity list search), and (2) WikiTable (Bhagavatula
et al., 2015; Zhang and Balog, 2018) for Entity
Linking in Wikipedia Table. Then, we retain all
semantic classes with at least 10 entities and ob-
tain totally 60 classes covering 6 different types
(e.g., Person, Location, Organization, etc). Table 9
shows some examples. Such generated classes have
high precision but low recall in the sense that some
correct entities are not included. In the following
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stage, we enlarge each semantic class and increase
its coverage using crowdsourcing.

Query generation and class enrichment. For
each semantic class, we generate 5 queries for each
of four query sizes: 2, 3, 4, 5, which results in 20
queries per class and 1200 queries in total. Further-
more, we want those queries to cover both popular
and long-tail entities. To achieve this goal, we first
sort all entities based on their frequencies within
each class. Then, we generate each subgroup of
5 queries (of the same size M € {2,3,4,5}) as
follows: we select 1 query consisting of the M
most frequent entities, 2 queries of entities in fre-
quency quantile top-10%, and 2 queries of entities
in frequency quantile [top-10%, top-30%].

After generating queries, we run all baseline
methods to retrieval their top 100 results and ag-
gregate all results to a set of 17,400 (class, entity)
pairs. Next, we employ crowdworkers to check all
those pairs on Amazon Mechanical Turk. Crowd-
workers are required to have a 95% HIT acceptance
rate, a minimum of 1000 HITs, and be located in
the United States or Canada. Workers are asked to
view one semantic class and six candidate entities,
and to select all entities that belong to the given
class. On average, workers spend 40 seconds on
each task and are paid $0.1, which is equivalent
to a $9 hourly payment. All (class, entity) pairs
are labeled by three workers independently and
the inter-annotator agreement is 0.8204, measured
by Fleiss’s Kappa (k). Finally, we enrich each
semantic class C; by adding the entity e; whose
corresponding pair (C}, e;) is labeled “True” by at
least two workers.

Synonym set curation. To construct synonym sets
in each semantic class, we first run all baseline
methods to generate a candidate pool of possible
synonymous pairs. Then, we enlarge this pool to
include all term pairs that form an inflection®. After
that, we automatically treat those terms that can be
mapped to the same entity in WikiData® as positive
pairs and manually label the remaining 7,625 pairs.
The inter-annotator agreement is 0.8431. Note here
we do not use Amazon MTurk because labeling
synonym pairs are much simpler than labeling en-
tity class membership and also has less ambiguity.
Here, we avoid using YAGO KB in order to prevent

8We check word inflection using: https://github.
com/jazzband/inflect.

‘https://www.wikidata.org/wiki/
Wikidata:Main_Page

possible data leakage problem. Next, we construct
a synonym graph where each node is a term and
each edge connects two synonymous terms. Fi-
nally, we extract all connected components in this
synonym graph and treat them as synonym sets.

E SE2 Dataset Analysis

We analyze some properties of SE2 dataset from
the following aspects: (1) semantic class size, (2)
set expansion difficulty of each class, and (3) syn-
onym discovery difficulty of each class.

Semantic class size. The 60 semantic classes in
our SE2 dataset consist on average 145 entities
(with a minimum of 16 and a maximum of 864) for
a total of 8697 entities. After we grouping these
entities into synonym sets, these 60 classes consist
of on average 118 synsets (with a minimum of 14
and a maximum of 800) for totally 7090 synsets.
The average synset size is 1.258 and the maximum
size of one synset is 11.

Set expansion difficulty of each class. We define
the set expansion difficulty of each semantic class
as follows:

Set-Expansion-Difficulty (C) = ﬁ Z w,

ecC |C‘
)

where Topk(e) represents the set of & most similar
entities to entity e in the vocabulary. We set k
to be 10,000 in this study. Intuitively, this metric
calculates the average portion of entities in class
C that cannot be easily found by another entity
in the same class. As shown in Table 2, the most
difficult classes are those LOC classes'” and the
easiest ones are FAC classes.

Synonym discovery difficulty of each class. We
continue to measure the difficulty of finding syn-
onym pairs in each class. Specifically, we calculate
two metrics: (1) Lexical difficulty defined as the av-
erage Jaro-Winkler distance'! between the surface
names of two synonyms, and (2) Semantic difficulty
defined as the average cosine distance between two
synonymous entities’ embeddings. Table 2 lists
the results. We find PRODUCT classes have the
largest lexical difficulty and LOC classes have the
largest semantic difficulty.

%We exclude MISC type because by its definition classes
of this type will be very random.

"We use Jaro-Winkler distance instead of other edit dis-
tances because it is symmetric, normalized to range from 0 to
1, and is widely used in previous synonym literature.
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Class ID Class Name ‘ Class Type (Class Description) ‘ Entities with Synsets
S e JT— [{“Texas”, “TX”, “Lone Star State}, {“Arizona”, “AZ”},
WikiTable-21 U.S. states LOC (Locations) (“California”, “CA”, “Golden State”}, .....]
. Astronauts who landed [{“Eugene Andrew Cernan”, “Gene Cernan”}, {“Pete Conrad”},
SemSearch-L5-3 on the Moon PERSON (People) {“Neil A. Armstrong”, “Neil Armstrong”}, ......]
Enriched-1 Apple Products PRODUCT (Objects, vehicles, ...) | [{“MacBook Pro”, “MBP”}, { “iTouch”, “iPod Touch™}, ......]

. . . [{“Yellowstone”}, {“Mount Rainier”, “Tahoma”, “Tacoma”},
Enriched-3 Volcanoes in USA LOC (Non-GPE locations) {“Mount Hood”, “Mt. Hood”, “Wy’east’}, .....]

. . . . e [{“Ringway Airport”, “Manchester Airport” },
WikiTable-27 Airports in British Isles | FAC (Facilities) {“RAF Exeter”, “Exeter International Airport”}, .....]

. . [{“Washington Bullets”, “Washington Wizards” },
Enriched-4 NBA Teams ORG (Organizations) {“Los Angeles Lakers”, “L.A. Lakers”, “Lakers”}, ...... 1
INEX-XER-147 Chemical elements that MISC (Miscellaneous classes) [{ ?at{olmfufn }”, {“ Sealiorgmm , “Element 106},

are named after people {“Einsteinium”, “Es99”}, ...... 1

Table 9: Example Semantic Classes in SE2 Dataset.

Class Type ESE  ESD (Lexical) ESE (Semantic)
Location 0.3789 0.2132 0.6599
Person 0.2322 0.2874 0.5526
Product 0.0848 0.3922 0.4811
Facility 0.0744 0.2345 0.4466

Organization  0.1555 0.2566 0.4935

Misc 0.4282 0.2743 0.5715

Table 10: Difficulty of each semantic class for entity set
expansion (ESE) and entity synonym discovery (ESD).

F Entity Set Expansion Experiments

F.1 Implementation Details and
Hyper-parameter Choices

For Wiki and APR datasets, we directly report each
baseline method’s performance obtained in the CG-
Expan paper (Zhang et al., 2020). For our pro-
posed SE2 dataset, we tune each method’s hyper-
parameters on 6 semantic classes (one for each
class type) and use tuned parameters for all the
other classes. The implementation details and spe-
cific hyper-parameter choices are discussed below:

1. EgoSet: There is no open-source code for
EgoSet and thus we implement it on our own.
We use each entity’s 250 most relevant skip-
grams to calculate entity-entity similarity.

2. SetExpan'?: We run SetExpan for 10 iterations
and add 10 entities into the set in each itera-
tion. We set ensemble time to be 90 and use the
default values for all other hyper-parameters.

3. SetExpander'?: We directly download the pre-
trained vectors (as they are trained on the same
corpus as ours) and filter out those words that
do not exist in our vocabulary.

Phttps://github.com/mickeystroller/
SetExpan

Bhttp://nlp_architect.nervanasys.com/
term_set_expansion.html

4. MCTS': In each iteration, we perform 1000
MCTS simulations and select 10 patterns to add
10 entities.

5. CaSE!: We use its CaSE-BERT version where
a BERT-base-uncased model is used to calculate
entity representations.

6. CGExpan'®: We use BERT-base-uncased as
its underlying Language Model for generating
class names. We run CGExpan for 5 iterations
and each iteration finds 5 candidate classes and
adds 10 most confident entities into the currently
expanded set.

7. SynSetExpan: We set the ensemble times 7' =
50, the negative sampling ratio (in set expansion
model) K = 10, the maximum iteration num-
ber max_iter= 6, the number of fine-tuning trees
H = 10, and the negative sampling ratio (in syn-
onym discovery model) N = 10. For other (less
important) hyper-parameters, we directly dis-
cuss their values in the paper and SynSetExpan
is robust to those hyper-parameters.

F.2

Within our SynSetExpan framework, there are two
important hyper-parameters in the set expansion
model: the ensemble times 7" and negative sam-
pling ratio K. Figure 5 shows the hyper-parameter
sensitivity analysis. We see that the model perfor-
mance first increases when the ensemble times 1T’
increases from 1 to 10 and then becomes stable
when 7' further increases. A similar trend is also
witnessed on the negative sampling ratio K. Over-
all, we can say that SynSetMine is insensitive to

Hyper-parameter Sensitivity Analysis

“https://github.com/lingyongyan/
mcts—-bootstrapping

Bhttps://github.com/PxYu/
entity-expansion

Yhttps://github.com/yzhan238/CGExpan
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Figure 5: Sensitivity analysis of hyper-parameters 7'
and K in SynSetExpan for the set expansion task.

these two hyper-parameters as long as their values
are larger than 10.

F.3 Efficiency Analysis

We test the efficiency of our SynSetExpan frame-
work (with 7'= 50 and K = 10) on a single server
with 20 CPU threads. For each query, the first itera-
tion of SynSetExpan on average takes 7.5 seconds,
the first three iterations need 27 seconds, and the
first six iterations consume 56 seconds. Later it-
erations take longer time because there are more
entities in the already expanded set of that itera-
tion. In comparison, one iteration of EgoSet takes
86 seconds, six iterations of SetExpan need 188
seconds, and CGExpan takes 174 seconds for five
iterations on a 1080Ti GPU. This result shows the
efficiency of SynSetExpan.

G Synonym Discovery Experiments

G.1 PubMed Dataset Details

Besides using our SE2 dataset, we also evaluate
SynSetExpan for synonym discovery task on the
public PubMed dataset which consists of a corpus
of 1.5 million paper abstracts in biomedical domain,
a vocabulary of 357,991 terms, and a collection
of 203,648 synonym pairs (10,486 positive pairs
and 193,162 negative pairs). All terms involved in
synonym pairs are linked to one entity in UMLS
knowledge base!” and we group these terms into
10 semantic classes based on their linked entities’

types.

G.2 Implementation Details and
Hyper-parameter Choices

All compared synonym discovery methods are
tested using the same distant supervision data (c.f.
Section 3 in the main text) and hyper-parameter
values are obtained using 5-fold cross validation.

"https://uts.nlm.nih.gov/home.html

We discuss the implementation details and hyper-
parameter choices of each compared synonym dis-
covery methods below:

1. SVM'8: We use the RBF kernel and set regular-
ization parameter A to be 0.3.

2. XGBoost!”: We set the maximum tree depth
tobe 5, v = 0.1, n = 0.1, subsample ratio to
be 0.5, and use the default values for all other
hyper-parameters.

3. SynSetMine®’: We use two hidden layers (of
dimension 250, 500) for its internal set encoder.
We learn the model using the “mix sampling”
strategy.

4. DPE?': We set the embedding dimension as 300,
A = 0.3, and use the default values for all other
hyper-parameters.

5. SynSetExpan: We use the same hyper-
parameter values as XGBoost to obtain the class-
agonistic synonym discovery model. During the
fine-tuning stage, we fit 10 additional trees in
each iteration. For other (less important) hyper-
parameters, we directly discuss their values in
the paper and SynSetExpan is robust to those
hyper-parameters.

G.3 Hyper-parameter Sensitivity Analysis

We study how sensitive SynSetExpan is to the
choices of two fine-tuning hyper-parameters in its
synonym discovery module: (1) the number of addi-
tional fitted trees H, and (2) the negative sampling
ratio N in constructing pseudo-labeled dataset for
fine-tuning. Results are shown in Figure 6. First,
we find that our model is insensitive to the nega-
tive sampling ratio NV in terms of all three metrics.
Second, we notice that the model performance first
increases as H increases until it reaches about 15
and then starts to decrease when we further in-
crease H. Although SynSetExpan is somewhat
sensitive to the hyper-parameter H, we find that
a wide range of H choices are better than H = 0
which essentially disables the model fine-tuning.

Bhttps://scikit-learn.org/stable/
modules/generated/sklearn.svm.SVC.html#
sklearn.svm.SVC

Yhttps://github.com/dmlc/xgboost

Phttps://github.com/mickeystroller/
SynSetMine-pytorch

lpttps://github.com/mnqu/DPE
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Figure 6: Sensitivity analysis of hyper-parameters H
and N in SynSetExpan framework for the synonym

discovery task.
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G.4 Efficiency Analysis

By linking SE2 Dataset with YAGO KB, we can
obtain 260 thousand synonym pairs based on
which training a class-agnostic synonym discovery
model takes 15 minutes. Then, each iteration of
SynSetExpan generates on average 5000 pseudo-
labeled synonym pairs and fitting 10 additional
trees needs about 0.75 seconds. After training, our
synonym discovery model can predict 4000 term
pairs per second.



