

1
2
3 **Modeling the Load of SARS-CoV-2 Virus in Human Expelled Particles**
4 **during Coughing and Speaking**
5

6 Yang Wang,^{1*} Guang Xu,² Yue-Wern Huang³
7

8 ¹Department of Civil, Architectural and Environmental Engineering
9 Missouri University of Science and Technology, Rolla, MO, 65401
10

11 ²Department of Mining and Nuclear Engineering,
12 Missouri University of Science and Technology, Rolla, MO, 65401
13

14 ³Department of Biological Sciences
15 Missouri University of Science and Technology, Rolla, MO, 65401
16

17 Revised Short Communication Submitted to:

18 PLOS One

19 October 2020
20

21 * To whom correspondence should be addressed:

22 Tel: +1-573-341-4597

23 E-mail address: yangwang@mst.edu

24 **Abstract**

25 Particle size is an essential factor when considering the fate and transport of virus-containing
26 droplets expelled by human, because it determines the deposition pattern in the human
27 respiratory system and the evolution of droplets by evaporation and gravitational settling.
28 However, the evolution of virus-containing droplets and the size-dependent viral load have not
29 been studied in detail. The lack of this information leads to uncertainties in understanding the
30 airborne transmission of respiratory diseases, such as the COVID-19. In this study, through a set
31 of differential equations describing the evolution of respiratory droplets and by using the SARS-
32 CoV-2 virus as an example, we investigated the distribution of airborne virus in human expelled
33 particles from coughing and speaking. More specifically, by calculating the vertical distances
34 traveled by the respiratory droplets, we examined the number of viruses that can remain airborne
35 and the size of particles carrying these airborne viruses after different elapsed times. From a
36 single cough, a person with a high viral load in respiratory fluid (2.35×10^9 copies per ml) may
37 generate as many as 1.23×10^5 copies of viruses that can remain airborne after 10 seconds,
38 compared to 386 copies of a normal patient (7.00×10^6 copies per ml). Masking, however, can
39 effectively block around 94% of the viruses that may otherwise remain airborne after 10 seconds.
40 Our study found that no clear size boundary exists between particles that can settle and can
41 remain airborne. The results from this study challenge the conventional understanding of disease
42 transmission routes through airborne and droplet mechanisms. We suggest that a complete
43 understanding of the respiratory droplet evolution is essential and needed to identify the
44 transmission mechanisms of respiratory diseases.
45
46 Keywords: COVID-19, aerosol, model, airborne transmission, coughing, speaking

47 **Introduction**

48 The ongoing pandemic of COVID-19 highlights the urgent need to understand the transport and
49 evolution of pathogen-containing aerosols and droplets, because there are contradictory evidence
50 and conclusions on the potential transmission route of SARS-CoV-2 [1-7]. At the very beginning
51 of the disease outbreak, the World Health Organization (WHO) [8] and Centers for Disease
52 Control and Prevention (CDC) [9] stated that the transmission of SARS-CoV-2 through the
53 airborne route, which is by inhaling virus-containing aerosols, is unlikely. Instead, droplet
54 transmission, which is through exposure to respiratory droplets, and contact transmission, which
55 is the infection through direct or indirect contact with an infected person, are believed to be the
56 major transmission routes. The traditional distinction between a “droplet” and an “aerosol (or
57 droplet nuclei)” is based on size, where droplets are suspended particles above 5 μm in diameter,
58 and aerosols are those below 5 μm [10]. To avoid confusion, in this study, we will use
59 “particles” to refer to a summation of “aerosols” and “droplets.” It is thought that droplets can
60 settle to ground in a few seconds, but aerosols can remain airborne for an extended period of
61 time. Although there is no such definition in atmospheric studies, this traditional distinction
62 between droplets and aerosols has been useful for setting clinical guidelines on the use of
63 personal protective equipment for healthcare workers [11]. However, the conventional
64 distinction between aerosols and droplets has led to a “false dichotomy” [12] in understanding
65 airborne pathogens, because whether a respiratory particle can remain airborne depends on many
66 factors.

67

68 Existing studies show that human activities such as coughing, sneezing, and speaking generate
69 particles, with more than 90% of the total particle numbers less than 5 μm after evaporation [13-
14].

70 17]. Evaporation can significantly extend the dispersion lifetime of particles before they settle,
71 enhancing the infection risk of airborne viruses. For example, the sizes of the largest droplets
72 that would totally evaporate before settling 2 m are between 60 and 100 μm , and these expelled
73 large droplets are carried more than 6 m away by exhaled air at a velocity of 50 m s^{-1} (sneezing),
74 more than 2 m away at a velocity of 10 m s^{-1} (coughing) and less than 1 m away at a velocity of
75 1 m s^{-1} (breathing) [14]. Many of these existing studies, including a recent one [18] investigated
76 the droplet lifetime influenced by the ambient temperature and humidity using the evaporating
77 drop mathematical model, but the virus contained in the particles, and the associated viral load as
78 a function of particle size were not included in the model. This particle size-dependent viral load
79 is crucial to our understanding of the relative importance of airborne and droplet transmission
80 because if a significant number of viruses remain in airborne, appropriate precautions should be
81 taken, such as universal masking, stronger indoor ventilation rate, and air disinfection. Until
82 now, more evidence is also showing that similar to other pathogens such as influenza viruses and
83 *Mycobacterium tuberculosis* [19], SARS-CoV-2 can be carried by aerosols [20-25].

84

85 Theoretically, coughing, sneezing, and speaking generate particles by aerosolizing the
86 respiratory fluid, and the number of viruses in a particle is determined by the viral concentration
87 in the respiratory fluid and the volume of the particle. Therefore, the number of viruses in a
88 single particle should scale with the cube of the particle diameter. Based on the typical
89 concentration of the SARS-CoV-2 viruses in respiratory fluid [26], one can calculate that a
90 considerable number of human expelled particles do not contain viruses due to their small
91 volume. During the evolution of the respiratory droplets, evaporation complicates the size-
92 dependent viral load in aerosols and droplets, as the size of the particles changes with time.

93 Gravitational settling will remove larger droplets that contain more viruses. Collectively, they
94 ensure the necessity to examine the load of viruses in human expelled particles of different sizes.

95

96 Using the most recent SARS-CoV-2 data, this study used the Monte-Carlo method to simulate
97 the particles generated from coughing and speaking and used a Poisson distribution function to
98 determine the virus load in the particles. The particle size-dependent viral load and its variation
99 as a function of time during evaporation and gravitational settling are modeled using mass and
100 heat transfer equations and the momentum equation. The detailed modeling methods are
101 elaborated in the Methods section. In the Results and Discussion section, we show that most of
102 the virus-containing particles can remain airborne for an extended period of time longer than 10
103 seconds. We analyzed how the elapsed time and viral load in the respiratory fluid affect the
104 transport of the virus-containing particles, and examined the particle emission from coughing
105 and speaking. Finally, we discuss the uncertainties associated with this analysis.

106

107 **Methods**

108 **Size distributions of human expelled particles**

109 Accurate size distributions of human expelled droplets are required to estimate the particle size-
110 dependent viral load. Existing studies commonly used an Aerodynamic Particle Sizer (APS, TSI
111 Inc.) to measure the size distributions of human-emitted droplets [16, 27-29]. However, droplets
112 will evaporate during their transport in the measurement setup, leading to uncertainties in
113 measuring the original droplet sizes. The size distributions of directly emitted droplets can be
114 more accurately measured by in-situ light scattering experiments conducted near the human
115 mouth [30, 31]. In this study, we adopted such droplet size distributions measured by Chao et al.

116 [30], where speaking generates particles with a geometric mean diameter ($D_{d,g}$) of 16.0 μm and a
 117 geometric standard deviation ($\sigma_{d,g}$) of 0.55, and coughing generates particles with a $D_{d,g}$ of 13.5
 118 μm and a $\sigma_{d,g}$ of 0.50. We further assume that speaking and coughing generate a total number
 119 (N_d) of 50 per second and 3000 per cough, respectively [16, 30]. The droplet size (D_d) follows a
 120 lognormal size distribution, where

$$n_d(D_d) = \frac{N_d}{\sqrt{2\pi}\ln(\sigma_{d,g})} \exp\left[-\frac{(\ln(D_d)-\ln(D_{d,g}))^2}{2(\ln(\sigma_{d,g}))^2}\right]. \quad (1)$$

121 We adopted a Monte-Carlo method to randomly generate N_d number of droplets following the
 122 lognormal size distribution. The number of viruses in a droplet with a size of D_d can be
 123 calculated by

$$VL(D_d) = \frac{\pi}{6} D_d^3 C_V, \quad (2)$$

124 where C_V is the viral load of SARS-CoV-2 in the respiratory fluid. Existing studies show that C_V
 125 has an average value of 7.00×10^6 copies per ml, with a maximum of 2.35×10^9 copies per ml,
 126 which is largely dependent on the number of days after onset of symptoms [32]. We further
 127 assume that the liquid content of the respiratory fluid is composed of 0.9% NaCl-water solution.
 128 Therefore, after evaporation, the expelled particles can leave a solid core containing salt and
 129 viruses, which is a more realistic model of respiratory particles.

130

131 We should note that the number of viruses calculated by Eq. (2) is hardly an integer. $VL(D_d)$
 132 reflects the expected number of viruses in a droplet, but the actual number will take integer
 133 values above or below $VL(D_d)$. To reflect the randomness of this process, we assume that the
 134 actual number of viruses enclosed in a droplet follows the Poisson distribution [33]. We have

$$f(x) = \frac{(VL(D_d))^x}{x!} \exp[-VL(D_d)]. \quad (3)$$

135 In this equation, $f(x)$ is the probability the droplet with a size D_d containing exactly x ($x =$
136 0, 1, 2, ...) number of viruses.

137

138 **Evaporation and gravitational settling**

139 After being emitted, a droplet undergoes evaporation and gravitational settling. The size of the
140 droplet is determined by the following mass and heat transfer equations:

$$\dot{m}_d = \rho_d \frac{d}{dt} \left(\frac{\pi}{6} D_d^3 \right) = -A_d h_m (p_{v,s} - p_{v,\infty}), \text{ and} \quad (4)$$

$$m_d C_{pd} \frac{dT_d}{dt} = A_d h (T_\infty - T_d) + L \dot{m}_d. \quad (5)$$

141 The droplet evaporation rate \dot{m}_d is driven by the difference between the vapor pressure in the
142 surrounding air $p_{v,\infty}$ and the vapor pressure at the droplet surface $p_{v,s}$. $p_{v,s}$ is assumed as
143 saturated vapor pressure at droplet temperature T_d , considering the Kelvin and Raoult effects. A_d
144 is the droplet surface area, L is the latent heat of vaporization, and C_{pd} is the heat capacity of the
145 droplet. The mass transfer coefficient h_m and the heat transfer coefficient h can be solved using
146 the Ranz-Marshall correlations for the Sherwood and Nusselt numbers [34]. The ultimate droplet
147 size is determined by the solid components in the droplet. Previous studies on respiratory droplet
148 evaporation commonly ignored the influence of microorganisms enclosed in the droplet, leading
149 to an underestimate of the final particle size and overestimate of the particle lifetime. In this
150 model simulation, we further considered the influence of SARS-CoV-2 on the physical size of
151 the evaporated droplet, by assuming that the enclosed SARS-CoV-2 virus has a spherical shape
152 and diameter of 100 nm (65 to 125 nm according to Astuti et al. [35]) and a density of 1.35 g cm⁻
153 ³, similar to common protein [36].

154

155 The gravitational settling of the human expelled particles can be solved by the momentum
156 balance equation, where

$$m_d \frac{d^2z}{dt^2} = \frac{1}{2} \rho_g V_z^2 A_d C_D. \quad (6)$$

157 In Eq. (6), z is the droplet settling distance, ρ_g is ambient air density, V_z is droplet velocity in the
158 vertical direction, A_d is the cross section area of the droplet ($A_d = \frac{\pi}{4} D_d^2$), and C_D is the drag
159 coefficient, which is dependent on the Reynolds number of the particle motion [37]. In this
160 study, we focus on the vertical movement of the particles in order to estimate whether the
161 particles can remain airborne after different elapsed time. The horizontal movement of the
162 particles will largely depend on the activity that generates the particles, and they will be
163 examined briefly at the end of the analyses.

164

165 The differential equations in Eqs. (4-6) can be solved simultaneously, where the droplet
166 diameter, droplet surface temperature, and droplet settling distance can be derived as a function
167 of time. Assuming that these human expelled droplets are generated at the height of 1.7 m with
168 no initial vertical velocity, we can further calculate the lifetime of a droplet, which is the time
169 corresponding to $z = 1.7$ m. For all the calculations, we assume an indoor environmental
170 condition, where the temperature is 23 °C and the relative humidity is 50%. Conceivably,
171 temperature and relative humidity can affect the droplet evolution through evaporation, as shown
172 in Chen 2020a [18]. Moreover, they will likely influence the viability of viruses and, thereby the
173 infection risk [38], which is discussed at the end of the following section. However, this study
174 focuses on modeling the number of viruses that can remain airborne after being emitted by the
175 patient. We should note that there are other modeling methods available to understand the
176 dynamics associated with biological and physical systems [39-41]. In this work, we used the

177 relatively simplified differential equations to understand the transport of the virus-containing
178 aerosols and estimate the load of viruses in human expelled particles.

179

180 **Results and Discussion**

181 In the following analysis, we demonstrate how the airborne viral load depends on the size of the
182 human expelled particles and its variation as a function of time. We first analyze the load of the
183 airborne virus on particles generated from a single cough, and then examine its dependence on
184 elapsed time and the viral load in the respiratory fluid. We also compare the airborne viral load
185 associated with speaking against that of coughing.

186

187 **Droplet properties at the point of emission**

188 Fig 1 shows an example solution demonstrating the evolution of droplets generated during a
189 single cough. Fig 1a displays the size distribution of 3000 coughing droplets randomly generated
190 following the lognormal distribution in Eq. (1). At a viral load of 7.00×10^6 copies per ml in the
191 respiratory fluid, viruses are mostly contained in droplets larger than 10 μm , because the product
192 of the droplet volume and the viral concentration in smaller droplets is far below 1. Among the
193 3000 droplets generated by a single cough, approximately 390 ± 16 droplets contain viruses, and
194 the total number of viruses in these virus-containing droplets is $9.8 \times 10^3 \pm 6.4 \times 10^3$ copies
195 (Table 1). This large standard deviation is a result of a few giant droplets, which contain a
196 substantial number of viruses. However, these giant droplets are also subject to rapid removal by
197 gravitational settling as time progresses.

198

199 **Fig 1. Evolution of droplets emitted by a cough over an elapsed time of ten seconds at**
200 **respiratory viral loads of (a – c) 7.00×10^6 and (d – f) 2.35×10^9 copies per ml.** (a) and (d)
201 Size distribution of droplets and virus-containing droplets at point of emission. (b) and (e) Size
202 distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
203 at an elapsed time of ten seconds. (c) and (f) Distribution of vertical distances traveled by the
204 virus-containing particles at an elapsed time of ten seconds. The inset figure in panel (c) shows a
205 schematic of the modeled system.

206

207 **Table 1.** Number of virus-containing particles and number of viral copies remain suspended in
208 the air after different elapsed times in a cough.

	Viral load in respiratory fluid (copies per ml)	
	7.00×10^6	2.35×10^9
Virus-containing droplets after 0 s	390 ± 16	2021.6 ± 22.4
Viral copies after 0 s	$9.8 \times 10^3 \pm 6.4 \times 10^3$	$2.6 \times 10^6 \pm 1.7 \times 10^6$
Virus-containing particles after 1 s	380 ± 6	2017 ± 25
Viral copies after 1 s	$4.4 \times 10^3 \pm 0.7 \times 10^3$	$1.33 \times 10^6 \pm 0.11 \times 10^6$
Virus-containing particles after 3 s	349 ± 16	1990 ± 23
Viral copies after 3 s	$1.2 \times 10^3 \pm 0.1 \times 10^3$	$4.15 \times 10^5 \pm 0.11 \times 10^5$
Virus-containing particles after 10 s	250 ± 7	1855 ± 13
Viral copies after 10 s	386 ± 7	$1.23 \times 10^5 \pm 0.05 \times 10^5$
Virus-containing particles after 30 s	232 ± 14	1871 ± 7
Viral copies after 30 s	333 ± 12	$1.13 \times 10^5 \pm 0.01 \times 10^5$

209

210

211 **Effect of elapsed time**

212 After ten seconds of evaporation and gravitational settling, the peak size of the expelled particles
213 shifted to around 2.2 μm (Fig 1b). Due to the salt and viruses in the droplet, the virus-containing
214 particles now have a size above 2 μm . Approximately 5.1% of virus-containing particles are
215 below 5 μm , which traditionally would be categorized as "aerosols." The number of viruses
216 contained in these sub-5 μm particles is 20 ± 2 copies. However, 59.5% of virus-containing
217 particles remain airborne (settle less than 1.7 m), and the number of viruses contained in the
218 evaporated droplets is 386 ± 7 copies. This result shows that one cannot simply use a specific
219 size to determine whether a respiratory particle settle or remain airborne. Droplet evaporation
220 and heat transfer over time need to be incorporated to be more accurately depict the respiratory
221 particle behavior. Fig 1c also shows the vertical distance traveled by the virus-containing
222 particles and the number of viruses contained in the particles after ten seconds of droplet
223 emission. It demonstrates that around 80% of the virus-containing particles settle with a vertical
224 distance within 0.5 m, meaning that these suspended particles can linger in the inhalation zone of
225 people surrounding the patient.

226

227 The number of viral copies contained in the particles decreases rapidly with the elapsed time,
228 from 9.8×10^3 at the point of emission to 333 ± 12 at an elapsed time of 30 s. It is because larger
229 particles that enclose more viral copies settle faster (Fig 1b). On the other hand, the number of
230 virus-containing particles that remain airborne is relatively insensitive to elapsed time, from 390
231 ± 16 at the point of emission to 232 ± 14 at 30 s. This insensitivity is caused by the fact that most

232 of the virus-containing droplets shrink to sizes that cannot be effectively settled by gravity.

233 Therefore, these particles will have a longer lifetime and pose a higher infection risk.

234

235 **Effect of viral load in respiratory fluid**

236 The viral load in the respiratory fluid drastically affects the evolution of human expelled virus-
237 containing particles (Figs. 1d-1f). At a viral load of 2.35×10^9 copies per ml, droplets as small as
238 4 μm start to contain viruses (Fig 1d), and around 67.4% of droplets contain viruses. The fraction
239 of virus-containing particles remaining airborne after an elapsed time of ten seconds is also high
240 (Fig 1e), reaching 61.8%. Again, it is not realistic to use a cut-off size of 5 μm to differentiate
241 “aerosols” from “droplets.” Due to the high viral load in the respiratory fluid (2.35×10^9 copies
242 per ml), the number of viral copies in the evaporated particles (1.23×10^5) is orders of magnitude
243 higher compared to the average condition (386 under 7.00×10^6 copies per ml). The vertical
244 distribution of the virus-containing particles and the copies of viruses in Fig 2f show
245 considerably higher values in shorter vertical distances (0 to 0.5 m), meaning that a patient with a
246 higher viral load in the respiratory fluid would pose a significantly higher infection risk to the
247 surrounding people.

248

249 **Airborne viral load during speaking**

250 Compared to coughing, speaking is a process that continuously generated respiratory droplets.

251 Therefore, when examining the evolution of droplets as a function of time, we need to consider

252 the droplets emitted at different times of speaking cumulatively. Fig 2a shows the properties of

253 droplets during one second of speaking at the point of emission for a patient with a viral load of

254 2.35×10^9 copies per ml in the respiratory fluid. Due to the few numbers of droplets generated,

255 the droplet size distribution is subject to high uncertainty. Fig 2b shows the size distribution of
256 speaking-generated particles ten seconds after a one-minute speech. The size distribution is not
257 significantly different from that of coughing, as shown in Fig 1e. However, due to the longer
258 elapsed time of particles emitted at the beginning of the speaking period (up to 70 seconds),
259 particles of 20 μm can settle down to the ground, compared to 40 μm for coughing. However, the
260 vertical distribution of the numbers of virus-containing droplets and viral copies still show higher
261 numbers in shorter vertical distances (0 to 0.5 m), meaning that a considerable fraction of
262 speaking-generated droplets can remain airborne due to evaporation.

263

264 **Fig 2. Evolution of droplets emitted by one-minute of speaking after an elapsed time of ten**
265 **seconds at a respiratory viral load of 2.35×10^9 copies per ml.** (a) Size distribution of droplets
266 and virus-containing droplets at point of emission during one-second of speaking. (b) Size
267 distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
268 at an elapsed time of ten seconds. (c) Distribution of vertical distances traveled by the virus-
269 containing particles at an elapsed time of ten seconds. (d) Size-dependent filtration efficiency
270 curves for a surgical mask (earloop) extracted from Chen et al. (1992) and Hao et al. (2020). (e)
271 Size distribution of non-virus-containing (airborne), virus-containing (airborne), and settled
272 particles at an elapsed time of ten seconds with mask-wearing. (f) Distribution of vertical
273 distances traveled by the virus-containing particles at an elapsed time of ten seconds with mask-
274 wearing.

275

276 **Effect of mask-wearing**

277 Using the proposed model, we could also evaluate the effectiveness of face masks in preventing
278 the spread of viruses. Fig 2d shows the size-dependent filtration efficiency of aerosols from 0.03
279 to 10 μm for common surgical mask materials [42, 43]. Due to the combined mechanisms of
280 inertial impaction, interception, Brownian diffusion, and electrostatic interaction, the filtration
281 efficiency curves generally show an “escape window” where particles with hundreds of
282 nanometers can penetrate through the filter, resulting in lower efficiencies. Existing literature
283 also uses the term “most penetrating particle size (MPPS)” to describe the reduced filtration
284 efficiency in this size range [44]. Unlike medical respirators, face masks have the issue of flow
285 leakage between the mask and the wearer [45]. Here, we assume a flow leakage of 5%, and
286 calculated the evolution of droplets generated from speaking using the average filtration
287 efficiency in Fig 2d. The numbers of both the non-virus-containing and virus-containing droplets
288 reduced significantly (Fig 2e) compared to the unmasked speaking (Fig 2b), with the total
289 number of airborne virus-containing droplets decreased by 94.9% (from 2122 ± 17 to 108 ± 5),
290 and with the total number of viral copies decreased by 95.6% (from $1.4 \times 10^5 \pm 0.1 \times 10^5$ to $6.2 \times$
291 $10^3 \pm 0.2 \times 10^3$). Although the number of virus-containing particles is still the highest near the
292 point of emission (within the vertical distance of 0.5 m, Fig 2f), the number of viral copies
293 decreased significantly within this distance. Due to the effective removal of virus-containing
294 particles, the vertical distribution of the number of viral copies becomes more random, and the
295 two peaks in the distance between 1 and 1.7 m in Fig 2f are caused by a few large droplets that
296 escaped from the mask. Compared to the unmasked condition (Fig 2b), the number fraction of
297 evaporated particles below 1 μm becomes higher under the masked condition (Fig 2e), mainly
298 due to the lower filtration efficiencies of the masks for particles between 0.1 and 1 μm .

299

300 **Uncertainties associated with the analysis**

301 The above analysis shows that a significant fraction of respiratory droplets can remain airborne
302 after they are emitted. Note that the horizontal movement of the droplets is not shown in this
303 study, because the horizontal velocity of respiratory droplets depends strongly on human activity,
304 age, and ambient environment [46-48]. The trajectory of the exhaled respiratory droplets is
305 affected by both the expired air flows profile and surrounding air flow patterns. Existing studies
306 treated the exhaled air as a turbulent round jet [49, 50], and the turbulent flow will enhance the
307 heat and mass transfer between the droplet and the surrounding air. Therefore, respiratory
308 droplets will likely evaporate faster than the simulated results in this study, and a larger fraction
309 of respiratory droplets and viruses may remain airborne for a longer period of time. Here, we
310 adopt a simplified flow field derived from a previous experimental study [51], where the
311 horizontal velocity of air expelled from coughing follows the equation

$$V_x = 0.875/(l_x + 0.333)^2. \quad (7)$$

312 In Eq. (7), V_x is the velocity of the respiratory droplet in the horizontal direction in m s^{-1} when
313 there is no ambient air flow and l_x is the horizontal distance from the point of emission in m.
314 According to this relationship, the distance traveled by the respiratory droplets as a function of
315 time can be derived as:

$$l_x = \sqrt[3]{(2.625t + 0.0369)} - 0.333. \quad (8)$$

316 According to this simplified solution, airborne droplets can travel a horizontal distance of 2.64 m
317 after 10 s, and 3.95 m after 30 s. Considering that virus-containing particles can remain airborne
318 after 30 seconds (Table 1), the “six-feet (or 2 m) rule” is not sufficient in preventing disease
319 transmission. Nonetheless, universal masking may be a better option for disease transmission, as

320 it can capture the respiratory droplets effectively through impaction and interception at the
321 source of generation [43, 52].

322

323 In this study, we did not consider the viability of viruses in particles with different sizes. Since
324 pathogen viability is dependent on the surface properties of materials [53], the viability of
325 viruses in droplets may also change as a function of time, because evaporation continuously
326 increases the droplet surface tension and expose the components of the droplet to the surface of
327 the droplet. For example, virus deactivation may occur after exposure to the air-water interface,
328 where irreversible rearrangement and folding of the viruses' protein take place [54, 55].
329 Moreover, the distribution of viruses in droplets of different sizes may not be uniform. For
330 example, studies on airborne virus sampling show that viable viruses tend to be sampled in
331 particles below 5 μm [56, 57]. One possible explanation is that droplets of different sizes may
332 originate from different regions of the respiratory system, where smaller droplets are formed
333 from regions of a higher viral load. The measurement of virus-laden aerosols in outbreaks in
334 farms also indicated that certain viruses tend to be associated with particles below 0.4 μm [58],
335 which may be due to the mechanism of aerosol generation. Therefore, future work can further
336 study how the expired air flows and size-dependent viability of the viruses affect the
337 concentration of the airborne viruses generated from coughing and speaking.

338

339 Conclusion

340 In this work, we investigated the dependence of airborne viral load on the size distributions of
341 the human expelled particles. We found that differentiating "aerosols" and "droplets" using a
342 specific size, e.g., 5 μm , does not reflect the actual evolution of virus-containing particles over

343 time and space, because a large number of particles above 5 μm can remain airborne after an
344 extended period of time. Our simulation result showed that after ten seconds of a cough,
345 although most evaporated particles are larger than 5 μm , 59.5% of the original virus-containing
346 particles are still able to remain airborne. Although the numbers of airborne viral copies and
347 virus-containing particles decrease with elapsed time, this dependence becomes weaker at long
348 elapsed times due to the significantly longer residence time of the smaller particles. We further
349 show that a high viral load in the respiratory fluid will lead to a significantly higher infection risk
350 due to the large number of virus-containing aerosols that remain airborne after an extended
351 elapsed time. Our simulation also shows that wearing a mask can effectively reduce the spread of
352 the viruses. The simulation results challenge the false dichotomy of using aerosols and droplets
353 to separate the modes of disease transmission.

354

355 **Acknowledgment**

356 This work is supported by the U.S. National Science Foundation grant 2034198.

357 **References**

358 1. Faridi S, Niazi S, Sadeghi K, Naddafi K, Yavarian J, Shamsipour M, et al. A field indoor
359 air measurement of SARS-CoV-2 in the patient rooms of the largest hospital in Iran. *Science of*
360 *The Total Environment*. 2020;138401.

361 2. Arslan M, Xu B, El-Din MG. Transmission of SARS-CoV-2 via fecal-oral and aerosols–
362 borne routes: Environmental dynamics and implications for wastewater management in
363 underprivileged societies. *Science of the Total Environment*. 2020;743:140709.

364 3. Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols:
365 Does COVID-19 transmit via exhalation particles? : Taylor & Francis; 2020.

366 4. Bao L, Gao H, Deng W, Lv Q, Yu H, Liu M, et al. Transmission of SARS-CoV-2 via
367 close contact and respiratory droplets among hACE2 mice. *The Journal of Infectious Diseases*.
368 2020.

369 5. Cheng VC-C, Wong S-C, Chan VW-M, So SY-C, Chen JH-K, Yip CC-Y, et al. Air and
370 environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease
371 2019 (COVID-19). *Infection Control & Hospital Epidemiology*. 2020;1-32.

372 6. Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ, et al. Physical
373 distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-
374 CoV-2 and COVID-19: a systematic review and meta-analysis. *The Lancet*. 2020.

375 7. Jiang J, Vincent Fu Y, Liu L, Kulmala M. Transmission via aerosols: Plausible
376 differences among emerging coronaviruses. Taylor & Francis; 2020.

377 8. WHO. Modes of transmission of virus causing COVID-19: implications for IPC
378 precaution recommendations: scientific brief, 27 March 2020. World Health Organization, 2020.

379 9. CDC. Interim infection prevention and control recommendations for patients with
380 suspected or confirmed coronavirus disease 2019 (COVID-19) in healthcare settings. 2020.

381 10. Milton DK. A Rosetta Stone for Understanding Infectious Droplets and Aerosols. Oxford
382 University Press US; 2020.

383 11. Li J, Leavey A, Yang W, O’Neil C, Wallace M, Boon A, et al., editors. Defining aerosol
384 generating procedures and pathogen transmission risks in healthcare settings. *Open Forum*
385 *Infectious Diseases*; 2017: Oxford University Press US.

386 12. Allen JG, Marr LC. Recognizing and controlling airborne transmission of SARS-CoV-2
387 in indoor environments. *Indoor air*. 2020;30(4):557.

388 13. Morawska L, Thai PK, Liu X, Asumadu-Sakyi A, Ayoko G, Bartonova A, et al.
389 Applications of low-cost sensing technologies for air quality monitoring and exposure
390 assessment: How far have they gone? *Environment international*. 2018;116:286-99.

391 14. Xie X, Li Y, Chwang A, Ho P, Seto W. How far droplets can move in indoor
392 environments–revisiting the Wells evaporation–falling curve. *Indoor air*. 2007;17(3):211-25.

393 15. Zayas G, Chiang MC, Wong E, MacDonald F, Lange CF, Senthilselvan A, et al. Cough
394 aerosol in healthy participants: fundamental knowledge to optimize droplet-spread infectious
395 respiratory disease management. *BMC pulmonary medicine*. 2012;12(1):1-12.

396 16. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Aerosol
397 emission and superemission during human speech increase with voice loudness. *Scientific*
398 *reports*. 2019;9(1):1-10.

399 17. Asadi S, Wexler AS, Cappa CD, Barreda S, Bouvier NM, Ristenpart WD. Effect of
400 voicing and articulation manner on aerosol particle emission during human speech. *PLoS one.*
401 2020;15(1):e0227699.

402 18. Chen L-D. Effects of Ambient Temperature and Humidity on Droplet Lifetime—A
403 Perspective of Exhalation Sneeze Droplets with COVID-19 Virus Transmission. *International
404 Journal of Hygiene and Environmental Health.* 2020;113568.

405 19. Fennelly KP. Particle sizes of infectious aerosols: implications for infection control. *The
406 Lancet Respiratory Medicine.* 2020.

407 20. Razzini K, Castrica M, Menchetti L, Maggi L, Negroni L, Orfeo NV, et al. SARS-CoV-2
408 RNA detection in the air and on surfaces in the COVID-19 ward of a hospital in Milan, Italy.
409 *Science of The Total Environment.* 2020;742:140540.

410 21. Chia PY, Coleman KK, Tan YK, Ong SWX, Gum M, Lau SK, et al. Detection of air and
411 surface contamination by SARS-CoV-2 in hospital rooms of infected patients. *Nature
412 communications.* 2020;11(1):1-7.

413 22. Fears AC, Klimstra WB, Duprex P, Hartman A, Weaver SC, Plante KS, et al. Persistence
414 of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions. *Emerging infectious
415 diseases.* 2020;26(9):2168.

416 23. Hadei M, Hopke PK, Jonidi A, Shahsavani A. A letter about the airborne transmission of
417 SARS-CoV-2 based on the current evidence. *Aerosol and Air Quality Research.* 2020;20(5):911-
418 4.

419 24. Lednicky JA, Shankar SN, Elbadry MA, Gibson JC, Alam MM, Stephenson CJ, et al.
420 Collection of SARS-CoV-2 Virus from the Air of a Clinic Within a University Student Health
421 Care Center and Analyses of the Viral Genomic Sequence. *Aerosol and Air Quality Research.*
422 2020;20.

423 25. Prather KA, Wang CC, Schooley RT. Reducing transmission of SARS-CoV-2. *Science.*
424 2020.

425 26. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 viral load in
426 upper respiratory specimens of infected patients. *New England Journal of Medicine.*
427 2020;382(12):1177-9.

428 27. Yang S, Lee GW, Chen C-M, Wu C-C, Yu K-P. The size and concentration of droplets
429 generated by coughing in human subjects. *Journal of Aerosol Medicine.* 2007;20(4):484-94.

430 28. Johnson G, Morawska L, Ristovski Z, Hargreaves M, Mengersen K, Chao CYH, et al.
431 Modality of human expired aerosol size distributions. *Journal of Aerosol Science.*
432 2011;42(12):839-51.

433 29. Morawska L, Johnson G, Ristovski Z, Hargreaves M, Mengersen K, Corbett S, et al. Size
434 distribution and sites of origin of droplets expelled from the human respiratory tract during
435 expiratory activities. *Journal of Aerosol Science.* 2009;40(3):256-69.

436 30. Chao CYH, Wan MP, Morawska L, Johnson GR, Ristovski Z, Hargreaves M, et al.
437 Characterization of expiration air jets and droplet size distributions immediately at the mouth
438 opening. *Journal of Aerosol Science.* 2009;40(2):122-33.

439 31. Stadnytskyi V, Bax CE, Bax A, Anfinrud P. The airborne lifetime of small speech
440 droplets and their potential importance in SARS-CoV-2 transmission. *Proceedings of the
441 National Academy of Sciences.* 2020;117(22):11875-7.

442 32. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al.
443 Virological assessment of hospitalized patients with COVID-2019. *Nature.* 2020;581(7809):465-
444 9.

445 33. Welham SJ, Gezan SA, Clark SJ, Mead A. Statistical methods in biology: design and
446 analysis of experiments and regression: CRC Press; 2014.

447 34. Ranz W, Marshall WR. Evaporation from drops. *Chem eng prog.* 1952;48(3):141-6.

448 35. Astuti I. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): An
449 overview of viral structure and host response. *Diabetes & Metabolic Syndrome: Clinical*
450 *Research & Reviews.* 2020.

451 36. Fischer H, Polikarpov I, Craievich AF. Average protein density is a molecular-weight-
452 dependent function. *Protein Science.* 2004;13(10):2825-8.

453 37. Hinds WC. *Aerosol technology: properties, behavior, and measurement of airborne*
454 *particles:* John Wiley & Sons; 1999.

455 38. Yao M, Zhang L, Ma J, Zhou L. On airborne transmission and control of SARS-CoV-2. *Science of The Total Environment.* 2020;139178.

456 39. Ali KK, Cattani C, Gómez-Aguilar J, Baleanu D, Osman M. Analytical and numerical
457 study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. *Chaos, Solitons*
458 & *Fractals.* 2020;139:110089.

459 40. Lu D, Osman M, Khater M, Attia R, Baleanu D. Analytical and numerical simulations for
460 the kinetics of phase separation in iron (Fe-Cr-X (X= Mo, Cu)) based on ternary alloys. *Physica*
461 *A: Statistical Mechanics and its Applications.* 2020;537:122634.

462 41. Inan B, Osman MS, Ak T, Baleanu D. Analytical and numerical solutions of
463 mathematical biology models: The Newell-Whitehead-Segel and Allen-Cahn equations.
464 *Mathematical Methods in the Applied Sciences.* 2020;43(5):2588-600.

465 42. Chen C-C, Willeke K. Aerosol penetration through surgical masks. *American journal of*
466 *infection control.* 1992;20(4):177-84.

467 43. Hao W, Parasch A, Williams S, Li J, Ma H, Burken J, et al. Filtration performances of
468 non-medical materials as candidates for manufacturing facemasks and respirators. *International*
469 *journal of hygiene and environmental health.* 2020;229:113582.

470 44. Podgorski A, Bałazy A, Gradoń L. Application of nanofibers to improve the filtration
471 efficiency of the most penetrating aerosol particles in fibrous filters. *Chemical Engineering*
472 *Science.* 2006;61(20):6804-15.

473 45. Rengasamy S, Eimer BC. Total inward leakage of nanoparticles through filtering
474 facepiece respirators. *Annals of occupational hygiene.* 2011;55(3):253-63.

475 46. Gupta J, Lin CH, Chen Q. Flow dynamics and characterization of a cough. *Indoor air.*
476 2009;19(6):517-25.

477 47. Kwon S-B, Park J, Jang J, Cho Y, Park D-S, Kim C, et al. Study on the initial velocity
478 distribution of exhaled air from coughing and speaking. *Chemosphere.* 2012;87(11):1260-4.

479 48. Nishimura H, Sakata S, Kaga A. A new methodology for studying dynamics of aerosol
480 particles in sneeze and cough using a digital high-vision, high-speed video system and vector
481 analyses. *PLoS one.* 2013;8(11):e80244.

482 49. Chen W, Zhang N, Wei J, Yen H-L, Li Y. Short-range airborne route dominates exposure
483 of respiratory infection during close contact. *Building and Environment.* 2020;106859.

484 50. Liu L, Wei J, Li Y, Ooi A. Evaporation and dispersion of respiratory droplets from
485 coughing. *Indoor Air.* 2017;27(1):179-90.

486 51. Savory E, Lin WE, Blackman K, Roberto MC, Cuthbertson LR, Scott JA, et al. Western
487 Cold and Flu (WeCoF) aerosol study—preliminary results. *BMC research notes.* 2014;7(1):563.

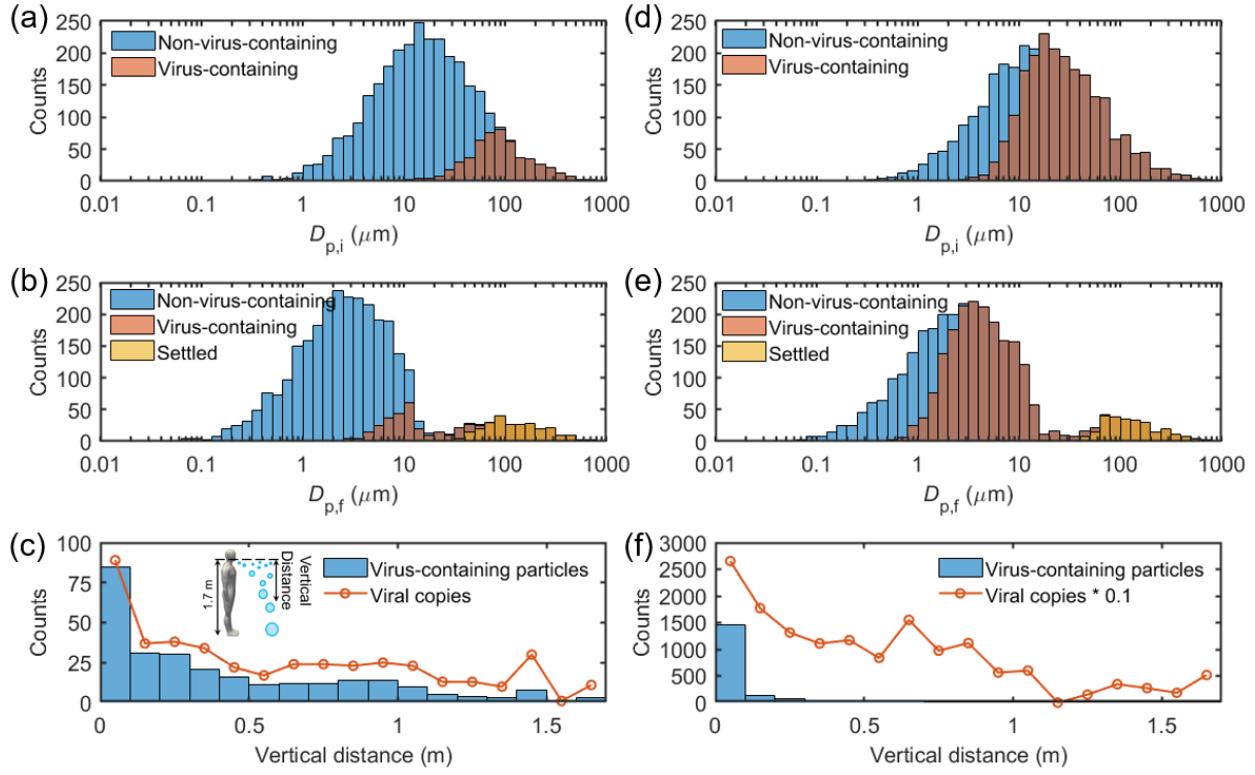
488 52. Howard J, Huang A, Li Z, Tufekci Z, Zdimal V, van der Westhuizen H-M, et al. Face
489 masks against COVID-19: an evidence review. 2020.

490

491 53. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson
492 BN, et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. *New*
493 *England Journal of Medicine*. 2020;382(16):1564-7.

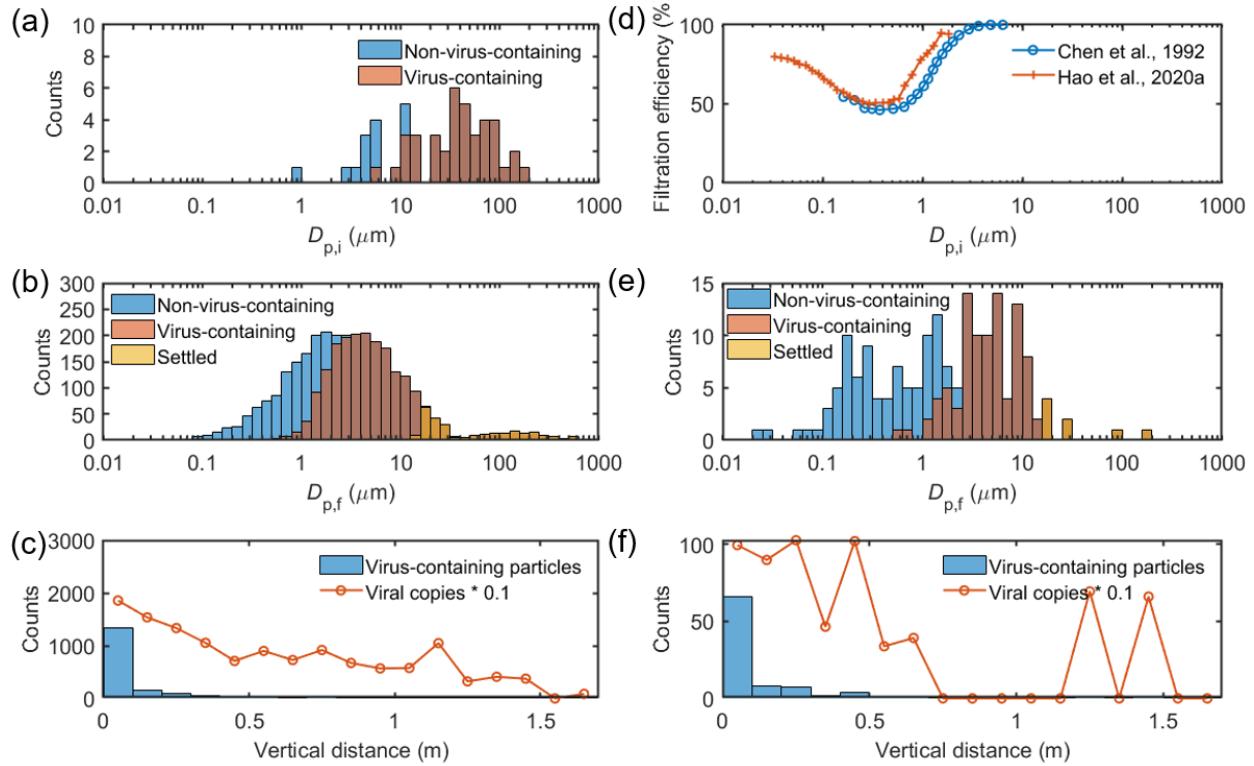
494 54. Zuo Z, Kuehn TH, Bekele AZ, Mor SK, Verma H, Goyal SM, et al. Survival of airborne
495 MS2 bacteriophage generated from human saliva, artificial saliva, and cell culture medium.
496 *Applied and environmental microbiology*. 2014;80(9):2796-803.

497 55. Pan M, Carol L, Lednicky JA, Eiguren-Fernandez A, Hering S, Fan ZH, et al.
498 Determination of the distribution of infectious viruses in aerosol particles using water-based
499 condensational growth technology and a bacteriophage MS2 model. *Aerosol Science and*
500 *Technology*. 2019;53(5):583-93.


501 56. Lindsley WG, Blachere FM, Thewlis RE, Vishnu A, Davis KA, Cao G, et al.
502 Measurements of airborne influenza virus in aerosol particles from human coughs. *PloS one*.
503 2010;5(11):e15100.

504 57. Yan J, Grantham M, Pantelic J, De Mesquita PJB, Albert B, Liu F, et al. Infectious virus
505 in exhaled breath of symptomatic seasonal influenza cases from a college community.
506 *Proceedings of the National Academy of Sciences*. 2018;115(5):1081-6.

507 58. Alonso C, Raynor PC, Goyal S, Olson BA, Alba A, Davies PR, et al. Assessment of air
508 sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry
509 farms. *Journal of veterinary diagnostic investigation*. 2017;29(3):298-304.


510

511

512

513 **Fig. 1.** Evolution of droplets emitted by a cough over an elapsed time of ten seconds at
 514 respiratory viral loads of (a – c) 7.00×10^6 and (d – f) 2.35×10^9 copies per ml. (a) and (d) Size
 515 distribution of droplets and virus-containing droplets at point of emission. (b) and (e) Size
 516 distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
 517 at an elapsed time of ten seconds. (c) and (f) Distribution of vertical distances traveled by the
 518 virus-containing particles at an elapsed time of ten seconds. The inset figure in panel (c) shows a
 519 schematic of the modeled system.

520

521 **Fig. 2.** Evolution of droplets emitted by one-minute of speaking after an elapsed time of ten
 522 seconds at a respiratory viral load of 2.35×10^9 copies per ml. (a) Size distribution of droplets
 523 and virus-containing droplets at point of emission during one-second of speaking. (b) Size
 524 distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
 525 at an elapsed time of ten seconds. (c) Distribution of vertical distances traveled by the virus-
 526 containing particles at an elapsed time of ten seconds. (d) Size-dependent filtration efficiency
 527 curves for a surgical mask (earloop) extracted from Chen et al. (1992) and Hao et al. (2020). (e)
 528 Size distribution of non-virus-containing (airborne), virus-containing (airborne), and settled
 529 particles at an elapsed time of ten seconds with mask-wearing. (f) Distribution of vertical
 530 distances traveled by the virus-containing particles at an elapsed time of ten seconds with mask-
 531 wearing.

532