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Abstract

Particle size is an essential factor when considering the fate and transport of virus-containing
droplets expelled by human, because it determines the deposition pattern in the human
respiratory system and the evolution of droplets by evaporation and gravitational settling.
However, the evolution of virus-containing droplets and the size-dependent viral load have not
been studied in detail. The lack of this information leads to uncertainties in understanding the
airborne transmission of respiratory diseases, such as the COVID-19. In this study, through a set
of differential equations describing the evolution of respiratory droplets and by using the SARS-
CoV-2 virus as an example, we investigated the distribution of airborne virus in human expelled
particles from coughing and speaking. More specifically, by calculating the vertical distances
traveled by the respiratory droplets, we examined the number of viruses that can remain airborne
and the size of particles carrying these airborne viruses after different elapsed times. From a
single cough, a person with a high viral load in respiratory fluid (2.35 x 10° copies per ml) may
generate as many as 1.23 x 10° copies of viruses that can remain airborne after 10 seconds,
compared to 386 copies of a normal patient (7.00 x 10° copies per ml). Masking, however, can
effectively block around 94% of the viruses that may otherwise remain airborne after 10 seconds.
Our study found that no clear size boundary exists between particles that can settle and can
remain airborne. The results from this study challenge the conventional understanding of disease
transmission routes through airborne and droplet mechanisms. We suggest that a complete
understanding of the respiratory droplet evolution is essential and needed to identify the

transmission mechanisms of respiratory diseases.
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Introduction

The ongoing pandemic of COVID-19 highlights the urgent need to understand the transport and
evolution of pathogen-containing aerosols and droplets, because there are contradictory evidence
and conclusions on the potential transmission route of SARS-CoV-2 [1-7]. At the very beginning
of the disease outbreak, the World Health Organization (WHO) [8] and Centers for Disease
Control and Prevention (CDC) [9] stated that the transmission of SARS-CoV-2 through the
airborne route, which is by inhaling virus-containing aerosols, is unlikely. Instead, droplet
transmission, which is through exposure to respiratory droplets, and contact transmission, which
is the infection through direct or indirect contact with an infected person, are believed to be the
major transmission routes. The traditional distinction between a “droplet” and an “aerosol (or
droplet nuclei)” is based on size, where droplets are suspended particles above 5 um in diameter,
and aerosols are those below 5 um [10]. To avoid confusion, in this study, we will use
“particles” to refer to a summation of “aerosols” and “droplets.” It is thought that droplets can
settle to ground in a few seconds, but aerosols can remain airborne for an extended period of
time. Although there is no such definition in atmospheric studies, this traditional distinction
between droplets and aerosols has been useful for setting clinical guidelines on the use of
personal protective equipment for healthcare workers [11]. However, the conventional
distinction between aerosols and droplets has led to a “false dichotomy” [12] in understanding
airborne pathogens, because whether a respiratory particle can remain airborne depends on many

factors.

Existing studies show that human activities such as coughing, sneezing, and speaking generate

particles, with more than 90% of the total particle numbers less than 5 um after evaporation [ 13-
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17]. Evaporation can significantly extend the dispersion lifetime of particles before they settle,
enhancing the infection risk of airborne viruses. For example, the sizes of the largest droplets
that would totally evaporate before settling 2 m are between 60 and 100 pm, and these expelled
large droplets are carried more than 6 m away by exhaled air at a velocity of 50 m s (sneezing),
more than 2 m away at a velocity of 10 m s™' (coughing) and less than 1 m away at a velocity of
1 m s! (breathing) [14]. Many of these existing studies, including a recent one [18] investigated
the droplet lifetime influenced by the ambient temperature and humidity using the evaporating
drop mathematical model, but the virus contained in the particles, and the associated viral load as
a function of particle size were not included in the model. This particle size-dependent viral load
is crucial to our understanding of the relative importance of airborne and droplet transmission
because if a significant number of viruses remain in airborne, appropriate precautions should be
taken, such as universal masking, stronger indoor ventilation rate, and air disinfection. Until
now, more evidence is also showing that similar to other pathogens such as influenza viruses and

Mycobacterium tuberculosis [19], SARS-CoV-2 can be carried by aerosols [20-25].

Theoretically, coughing, sneezing, and speaking generate particles by aerosolizing the
respiratory fluid, and the number of viruses in a particle is determined by the viral concentration
in the respiratory fluid and the volume of the particle. Therefore, the number of viruses in a
single particle should scale with the cube of the particle diameter. Based on the typical
concentration of the SARS-CoV-2 viruses in respiratory fluid [26], one can calculate that a
considerable number of human expelled particles do not contain viruses due to their small
volume. During the evolution of the respiratory droplets, evaporation complicates the size-

dependent viral load in aerosols and droplets, as the size of the particles changes with time.
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Gravitational settling will remove larger droplets that contain more viruses. Collectively, they

ensure the necessity to examine the load of viruses in human expelled particles of different sizes.

Using the most recent SARS-CoV-2 data, this study used the Monte-Carlo method to simulate
the particles generated from coughing and speaking and used a Poisson distribution function to
determine the virus load in the particles. The particle size-dependent viral load and its variation
as a function of time during evaporation and gravitational settling are modeled using mass and
heat transfer equations and the momentum equation. The detailed modeling methods are
elaborated in the Methods section. In the Results and Discussion section, we show that most of
the virus-containing particles can remain airborne for an extended period of time longer than 10
seconds. We analyzed how the elapsed time and viral load in the respiratory fluid affect the
transport of the virus-containing particles, and examined the particle emission from coughing

and speaking. Finally, we discusses the uncertainties associated with this analysis.

Methods

Size distributions of human expelled particles

Accurate size distributions of human expelled droplets are required to estimate the particle size-
dependent viral load. Existing studies commonly used an Aerodynamic Particle Sizer (APS, TSI
Inc.) to measure the size distributions of human-emitted droplets [16, 27-29]. However, droplets
will evaporate during their transport in the measurement setup, leading to uncertainties in
measuring the original droplet sizes. The size distributions of directly emitted droplets can be
more accurately measured by in-situ light scattering experiments conducted near the human

mouth [30, 31]. In this study, we adopted such droplet size distributions measured by Chao et al.
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[30], where speaking generates particles with a geometric mean diameter (Dg g) of 16.0 um and a
geometric standard deviation (ggg) of 0.55, and coughing generates particles with a Dgq g of 13.5
um and a gq g of 0.50. We further assume that speaking and coughing generate a total number

(Ng) of 50 per second and 3000 per cough, respectively [16, 30]. The droplet size (Dg) follows a
lognormal size distribution, where

N4 (In@@)-In(Dgg))
VZzin (0ag) = z(ln(od,g))zg I ()

nq(Dq) =

We adopted a Monte-Carlo method to randomly generate Ny number of droplets following the
lognormal size distribution. The number of viruses in a droplet with a size of Dy can be
calculated by

VL(Dg) = = D3Cy, 2)
where Cy is the viral load of SARS-CoV-2 in the respiratory fluid. Existing studies show that Cy
has an average value of 7.00 x 10° copies per ml, with a maximum of 2.35 x 10° copies per ml,
which is largely dependent on the number of days after onset of symptoms [32]. We further
assume that the liquid content of the respiratory fluid is composed of 0.9% NaCl-water solution.
Therefore, after evaporation, the expelled particles can leave a solid core containing salt and

viruses, which is a more realistic model of respiratory particles.

We should note that the number of viruses calculated by Eq. (2) is hardly an integer. VL(Dgy)
reflects the expected number of viruses in a droplet, but the actual number will take integer
values above or below VL(Dy). To reflect the randomness of this process, we assume that the

actual number of viruses enclosed in a droplet follows the Poisson distribution [33]. We have

f0) = YL exp [~VL(DW)]. 3)
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In this equation, f(x) is the probability the droplet with a size Dy containing exactly x (x =

0,1, 2, ...) number of viruses.

Evaporation and gravitational settling

After being emitted, a droplet undergoes evaporation and gravitational settling. The size of the

droplet is determined by the following mass and heat transfer equations:

i = pa(3D3) = —Aahm(Pus = Py )> and )

My Cpq =8 = Aqh(To, — Ty) + Liing. (5)
The droplet evaporation rate my is driven by the difference between the vapor pressure in the
surrounding air py o, and the vapor pressure at the droplet surface py 5. py s 1s assumed as
saturated vapor pressure at droplet temperature T4, considering the Kelvin and Raoult effects. Ay
is the droplet surface area, L is the latent heat of vaporization, and Cpq is the heat capacity of the
droplet. The mass transfer coefficient h,, and the heat transfer coefficient h can be solved using
the Ranz-Marshall correlations for the Sherwood and Nusselt numbers [34]. The ultimate droplet
size is determined by the solid components in the droplet. Previous studies on respiratory droplet
evaporation commonly ignored the influence of microorganisms enclosed in the droplet, leading
to an underestimate of the final particle size and overestimate of the particle lifetime. In this
model simulation, we further considered the influence of SARS-CoV-2 on the physical size of
the evaporated droplet, by assuming that the enclosed SARS-CoV-2 virus has a spherical shape

and diameter of 100 nm (65 to 125 nm according to Astuti et al. [35]) and a density of 1.35 g cm”

3, similar to common protein [36].
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The gravitational settling of the human expelled particles can be solved by the momentum

balance equation, where

d?z 1

mdﬁ = EngZZAdCD' (6)
In Eq. (6), z is the droplet settling distance, pg is ambient air density, V, is droplet velocity in the
vertical direction, A4 is the cross section area of the droplet (44 = %Dé), and Cp is the drag

coefficient, which is dependent on the Reynolds number of the particle motion [37]. In this
study, we focus on the vertical movement of the particles in order to estimate whether the
particles can remain airborne after different elapsed time. The horizontal movement of the
particles will largely depend on the activity that generates the particles, and they will be

examined briefly at the end of the analyses.

The differential equations in Eqs. (4-6) can be solved simultaneously, where the droplet
diameter, droplet surface temperature, and droplet settling distance can be derived as a function
of time. Assuming that these human expelled droplets are generated at the height of 1.7 m with
no initial vertical velocity, we can further calculate the lifetime of a droplet, which is the time
corresponding to z =1.7 m. For all the calculations, we assume an indoor environmental
condition, where the temperature is 23 °C and the relative humidity is 50%. Conceivably,
temperature and relative humidity can affect the droplet evolution through evaporation, as shown
in Chen 2020a [18]. Moreover, they will likely influence the viability of viruses and, thereby the
infection risk [38], which is discussed at the end of the following section. However, this study
focuses on modeling the number of viruses that can remain airborne after being emitted by the
patient. We should note that there are other modeling methods available to understand the

dynamics associated with biological and physical systems [39-41]. In this work, we used the
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relatively simplified differential equations to understand the transport of the virus-containing

aerosols and estimate the load of viruses in human expelled particles.

Results and Discussion

In the following analysis, we demonstrate how the airborne viral load depends on the size of the
human expelled particles and its variation as a function of time. We first analyze the load of the
airborne virus on particles generated from a single cough, and then examine its dependence on
elapsed time and the viral load in the respiratory fluid. We also compare the airborne viral load

associated with speaking against that of coughing.

Droplet properties at the point of emission

Fig 1 shows an example solution demonstrating the evolution of droplets generated during a
single cough. Fig 1a displays the size distribution of 3000 coughing droplets randomly generated
following the lognormal distribution in Eq. (1). At a viral load of 7.00 x 10° copies per ml in the
respiratory fluid, viruses are mostly contained in droplets larger than 10 um, because the product
of the droplet volume and the viral concentration in smaller droplets is far below 1. Among the
3000 droplets generated by a single cough, approximately 390 + 16 droplets contain viruses, and
the total number of viruses in these virus-containing droplets is 9.8 x 103+ 6.4 x 10° copies
(Table 1). This large standard deviation is a result of a few giant droplets, which contain a
substantial number of viruses. However, these giant droplets are also subject to rapid removal by

gravitational settling as time progresses.
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Fig 1. Evolution of droplets emitted by a cough over an elapsed time of ten seconds at
respiratory viral loads of (a — ¢) 7.00 x 10° and (d — f) 2.35 x 10° copies per ml. (a) and (d)
Size distribution of droplets and virus-containing droplets at point of emission. (b) and (e) Size
distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
at an elapsed time of ten seconds. (¢) and (f) Distribution of vertical distances traveled by the
virus-containing particles at an elapsed time of ten seconds. The inset figure in panel (c) shows a

schematic of the modeled system.

Table 1. Number of virus-containing particles and number of viral copies remain suspended in

the air after different elapsed times in a cough.

Viral load in respiratory fluid (copies per ml)

7.00 x 10° 2.35 % 10°
Virus-containing droplets after Os 390+ 16 2021.6 +22.4
Viral copies after 0 s 9.8 x10°£6.4x10° 2.6 x10°+1.7 x 10°
Virus-containing particles after I s 380+ 6 2017 £25
Viral copies after 1 s 44x103£0.7x10° 1.33x10+0.11 x 10°
Virus-containing particles after 3s 349+ 16 1990 + 23
Viral copies after 3 s 1.2x10°+£0.1x10° 4.15x10°+0.11 x 10°
Virus-containing particles after 10 s 250 +7 1855+ 13
Viral copies after 10 s 386+ 7 1.23 x 10°+0.05 x 10°
Virus-containing particles after 30 s 232 + 14 18717
Viral copies after 30 s 333 +£12 1.13 x 10°+£0.01 x 10°

10
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Effect of elapsed time

After ten seconds of evaporation and gravitational settling, the peak size of the expelled particles
shifted to around 2.2 um (Fig 1b). Due to the salt and viruses in the droplet, the virus-containing
particles now have a size above 2 um. Approximately 5.1% of virus-containing particles are
below 5 um, which traditionally would be categorized as "aerosols.” The number of viruses
contained in these sub-5 pum particles is 20 = 2 copies. However, 59.5% of virus-containing
particles remain airborne (settle less than 1.7 m), and the number of viruses contained in the
evaporated droplets is 386 + 7 copies. This result shows that one cannot simply use a specific
size to determine whether a respiratory particle settle or remain airborne. Droplet evaporation
and heat transfer over time need to be incorporated to be more accurately depict the respiratory
particle behavior. Fig 1c also shows the vertical distance traveled by the virus-containing
particles and the number of viruses contained in the particles after ten seconds of droplet
emission. It demonstrates that around 80% of the virus-containing particles settle with a vertical
distance within 0.5 m, meaning that these suspended particles can linger in the inhalation zone of

people surrounding the patient.

The number of viral copies contained in the particles decreases rapidly with the elapsed time,
from 9.8 x 10° at the point of emission to 333 + 12 at an elapsed time of 30 s. It is because larger
particles that enclose more viral copies settle faster (Fig 1b). On the other hand, the number of
virus-containing particles that remain airborne is relatively insensitive to elapsed time, from 390

+ 16 at the point of emission to 232 + 14 at 30 s. This insensitivity is caused by the fact that most

11
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of the virus-containing droplets shrink to sizes that cannot be effectively settled by gravity.

Therefore, these particles will have a longer lifetime and pose a higher infection risk.

Effect of viral load in respiratory fluid

The viral load in the respiratory fluid drastically affects the evolution of human expelled virus-
containing particles (Figs. 1d-1f). At a viral load of 2.35 x 10° copies per ml, droplets as small as
4 um start to contain viruses (Fig 1d), and around 67.4% of droplets contain viruses. The fraction
of virus-containing particles remaining airborne after an elapsed time of ten seconds is also high
(Fig le), reaching 61.8%. Again, it is not realistic to use a cut-off size of 5 um to differentiate
“aerosols” from “droplets.” Due to the high viral load in the respiratory fluid (2.35 x 10° copies
per ml), the number of viral copies in the evaporated particles (1.23 x 10°) is orders of magnitude
higher compared to the average condition (386 under 7.00 x 10° copies per ml). The vertical
distribution of the virus-containing particles and the copies of viruses in Fig 2f show
considerably higher values in shorter vertical distances (0 to 0.5 m), meaning that a patient with a
higher viral load in the respiratory fluid would pose a significantly higher infection risk to the

surrounding people.

Airborne viral load during speaking

Compared to coughing, speaking is a process that continuously generated respiratory droplets.
Therefore, when examining the evolution of droplets as a function of time, we need to consider
the droplets emitted at different times of speaking cumulatively. Fig 2a shows the properties of
droplets during one second of speaking at the point of emission for a patient with a viral load of

2.35 x 10? copies per ml in the respiratory fluid. Due to the few numbers of droplets generated,

12
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the droplet size distribution is subject to high uncertainty. Fig 2b shows the size distribution of
speaking-generated particles ten seconds after a one-minute speech. The size distribution is not
significantly different from that of coughing, as shown in Fig l1e. However, due to the longer
elapsed time of particles emitted at the beginning of the speaking period (up to 70 seconds),
particles of 20 um can settle down to the ground, compared to 40 um for coughing. However, the
vertical distribution of the numbers of virus-containing droplets and viral copies still show higher
numbers in shorter vertical distances (0 to 0.5 m), meaning that a considerable fraction of

speaking-generated droplets can remain airborne due to evaporation.

Fig 2. Evolution of droplets emitted by one-minute of speaking after an elapsed time of ten
seconds at a respiratory viral load of 2.35 x 10° copies per ml. (a) Size distribution of droplets
and virus-containing droplets at point of emission during one-second of speaking. (b) Size
distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
at an elapsed time of ten seconds. (c) Distribution of vertical distances traveled by the virus-
containing particles at an elapsed time of ten seconds. (d) Size-dependent filtration efficiency
curves for a surgical mask (earloop) extracted from Chen et al. (1992) and Hao et al. (2020). (e)
Size distribution of non-virus-containing (airborne), virus-containing (airborne), and settled
particles at an elapsed time of ten seconds with mask-wearing. (f) Distribution of vertical
distances traveled by the virus-containing particles at an elapsed time of ten seconds with mask-

wearing.
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Effect of mask-wearing

Using the proposed model, we could also evaluate the effectiveness of face masks in preventing
the spread of viruses. Fig 2d shows the size-dependent filtration efficiency of aerosols from 0.03
to 10 um for common surgical mask materials [42, 43]. Due to the combined mechanisms of
inertial impaction, interception, Brownian diffusion, and electrostatic interaction, the filtration
efficiency curves generally show an “escape window” where particles with hundreds of
nanometers can penetrate through the filter, resulting in lower efficiencies. Existing literature
also uses the term “most penetrating particle size (MPPS)” to describe the reduced filtration
efficiency in this size range [44]. Unlike medical respirators, face masks have the issue of flow
leakage between the mask and the wearer [45]. Here, we assume a flow leakage of 5%, and
calculated the evolution of droplets generated from speaking using the average filtration
efficiency in Fig 2d. The numbers of both the non-virus-containing and virus-containing droplets
reduced significantly (Fig 2e) compared to the unmasked speaking (Fig 2b), with the total
number of airborne virus-containing droplets decreased by 94.9% (from 2122 =17 to 108 £ 5),
and with the total number of viral copies decreased by 95.6% (from 1.4 x 10°+ 0.1 x 10° to 6.2 x
10° £ 0.2 x 10%). Although the number of virus-containing particles is still the highest near the
point of emission (within the vertical distance of 0.5 m, Fig 2f), the number of viral copies
decreased significantly within this distance. Due to the effective removal of virus-containing
particles, the vertical distribution of the number of viral copies becomes more random, and the
two peaks in the distance between 1 and 1.7 m in Fig 2f are caused by a few large droplets that
escaped from the mask. Compared to the unmasked condition (Fig 2b), the number fraction of
evaporated particles below 1 pm becomes higher under the masked condition (Fig 2e), mainly

due to the lower filtration efficiencies of the masks for particles between 0.1 and 1 pm.
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Uncertainties associated with the analysis

The above analysis shows that a significant fraction of respiratory droplets can remain airborne
after they are emitted. Note that the horizontal movement of the droplets is not shown in this
study, because the horizontal velocity of respiratory droplets depends strongly on human activity,
age, and ambient environment [46-48]. The trajectory of the exhaled respiratory droplets is
affected by both the expired air flows profile and surrounding air flow patterns. Existing studies
treated the exhaled air as a turbulent round jet [49, 50], and the turbulent flow will enhance the
heat and mass transfer between the droplet and the surrounding air. Therefore, respiratory
droplets will likely evaporate faster than the simulated results in this study, and a larger fraction
of respiratory droplets and viruses may remain airborne for a longer period of time. Here, we
adopt a simplified flow field derived from a previous experimental study [51], where the
horizontal velocity of air expelled from coughing follows the equation

V. = 0.875/(l, + 0.333)2, (7)
In Eq. (7), V is the velocity of the respiratory droplet in the horizontal direction in m s™! when
there is no ambient air flow and [y is the horizontal distance from the point of emission in m.
According to this relationship, the distance traveled by the respiratory droplets as a function of

time can be derived as:

I, = 1/(2.625¢t + 0.0369) — 0.333. (8)
According to this simplified solution, airborne droplets can travel a horizontal distance of 2.64 m
after 10 s, and 3.95 m after 30 s. Considering that virus-containing particles can remain airborne
after 30 seconds (Table 1), the “six-feet (or 2 m) rule” is not sufficient in preventing disease

transmission. Nonetheless, universal masking may be a better option for disease transmission, as
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it can capture the respiratory droplets effectively through impaction and interception at the

source of generation [43, 52].

In this study, we did not consider the viability of viruses in particles with different sizes. Since
pathogen viability is dependent on the surface properties of materials [53], the viability of
viruses in droplets may also change as a function of time, because evaporation continuously
increases the droplet surface tension and expose the components of the droplet to the surface of
the droplet. For example, virus deactivation may occur after exposure to the air-water interface,
where irreversible rearrangement and folding of the viruses’ protein take place [54, 55].
Moreover, the distribution of viruses in droplets of different sizes may not be uniform. For
example, studies on airborne virus sampling show that viable viruses tend to be sampled in
particles below 5 um [56, 57]. One possible explanation is that droplets of different sizes may
originate from different regions of the respiratory system, where smaller droplets are formed
from regions of a higher viral load. The measurement of virus-laden aerosols in outbreaks in
farms also indicated that certain viruses tend to be associated with particles below 0.4 pm [58],
which may be due to the mechanism of aerosol generation. Therefore, future work can futher
study how the expired air flows and size-dependent viability of the viruses affect the

concentration of the airborne viruses generated from coughing and speaking.

Conclusion

In this work, we investigated the dependence of airborne viral load on the size distributions of
the human expelled particles. We found that differentiating “aerosols” and “droplets” using a

specific size, e.g., 5 um, does not reflect the actual evolution of virus-containing particles over
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time and space, because a large number of particles above 5 um can remain airborne after an
extended period of time. Our simulation result showed that after ten seconds of a cough,

although most evaporated particles are larger than 5 pm, 59.5% of the original virus-containing
particles are still able to remain airborne. Although the numbers of airborne viral copies and
virus-containing particles decrease with elapsed time, this dependence becomes weaker at long
elapsed times due to the significantly longer residence time of the smaller particles. We further
show that a high viral load in the respiratory fluid will lead to a significantly higher infection risk
due to the large number of virus-containing aerosols that remain airborne after an extended
elapsed time. Our simulation also shows that wearing a mask can effectively reduce the spread of
the viruses. The simulation results challenge the false dichotomy of using aerosols and droplets

to separate the modes of disease transmission.
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Fig. 1. Evolution of droplets emitted by a cough over an elapsed time of ten seconds at
respiratory viral loads of (a — ¢) 7.00 x 10® and (d — f) 2.35 x 10° copies per ml. (a) and (d) Size
distribution of droplets and virus-containing droplets at point of emission. (b) and (e) Size
distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
at an elapsed time of ten seconds. (c¢) and (f) Distribution of vertical distances traveled by the
virus-containing particles at an elapsed time of ten seconds. The inset figure in panel (c) shows a

schematic of the modeled system.
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Fig. 2. Evolution of droplets emitted by one-minute of speaking after an elapsed time of ten
seconds at a respiratory viral load of 2.35 x 10° copies per ml. (a) Size distribution of droplets
and virus-containing droplets at point of emission during one-second of speaking. (b) Size
distribution of non-virus-containing (airborne), virus-containing (airborne), and settled particles
at an elapsed time of ten seconds. (¢) Distribution of vertical distances traveled by the virus-
containing particles at an elapsed time of ten seconds. (d) Size-dependent filtration efficiency
curves for a surgical mask (earloop) extracted from Chen et al. (1992) and Hao et al. (2020). (e)
Size distribution of non-virus-containing (airborne), virus-containing (airborne), and settled
particles at an elapsed time of ten seconds with mask-wearing. (f) Distribution of vertical
distances traveled by the virus-containing particles at an elapsed time of ten seconds with mask-

wearing.
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