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Edouard Fouché∗, Yu Meng†, Fang Guo†, Honglei Zhuang†, Klemens Böhm∗, Jiawei Han†
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Abstract—Nowadays, it is common to classify collections of
documents into (human-generated, domain-specific) directory
structures, such as email or document folders. But documents
may be classified wrongly, for a multitude of reasons. Then they
are outlying w.r.t. the folder they end up in. Orthogonally to this,
and more specifically, two kinds of errors can occur: (O) Out-of-
distribution: the document does not belong to any existing folder
in the directory; and (M) Misclassification: the document belongs
to another folder. It is this specific combination of issues that we
address in this article, i.e., we mine text outliers from massive
document directories, considering both error types.

We propose a new proximity-based algorithm, which we
dub kj-Nearest Neighbours (kj-NN). Our algorithm detects text
outliers by exploiting semantic similarities and introduces a
self-supervision mechanism that estimates the relevance of the
original labels. Our approach is efficient and robust to large
proportions of outliers. kj-NN also promotes the interpretability
of the results by proposing alternative label names and by finding
the most similar documents for each outlier. Our real-world
experiments demonstrate that our approach outperforms the
competitors by a large margin.

Index Terms—Text Mining, Anomaly Detection, Data Cleaning,
Document Filtering, Nearest-Neighbour Search.

I. INTRODUCTION

A. Motivation

Recent technological developments have led to an ever-
growing number of applications producing, sharing and man-
aging text data. Document repositories, such as email accounts,
digital libraries or medical archives, have grown so large that
it is now a necessity to classify elements into categories, e.g.,
folders. This is far from trivial, as text corpora tend to be highly
multi-modal, i.e., there are many classes/folders. Documents
also may have ambiguous semantics or more than one semantic
focus, so that they do not perfectly fit into just one class.

Humans can order content to some extent and routinely do so:
Users organise their emails into folders, authors classify their
contributions into existing taxonomies, and physicians issue
diagnoses as part of their duties. However, human classification
is inherently sloppy and unreliable. Humans may classify an
email into an inadequate folder, assign scientific papers to the
wrong field, or – even more critical – issue a wrong diagnosis.

Sometimes one may not even notice these errors because
the correct class is unknown. For instance, an email does not
fit into any existing folder, a paper belongs to an emerging
field, or a physician observes a new disease.

Detecting documents classified erroneously is difficult [1],
[2]. This is because folder structures typically are domain-
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Figure 1. Email Archiving: An Illustrative Example.

specific and are user-defined taxonomies. At the same time,
documents can be misplaced in numerous, unforeseeable ways,
which may or may not be folder-specific. So seeing this problem
as a supervised one – where a ground truth is available – would
be inadequate. Next, orthogonally to this ‘semantic’ level, two
types of errors/outliers can occur:
• (O) Out-of-distribution: A document does not belong to

any existing folder. (The user should create a new class.)
• (M) Misclassification: A document belongs to another folder

in the directory. (The user misclassified it.)
We illustrate this in Figure 1, with (fictitious) emails ordered
into folders by a user: Email 4 is a Type M outlier, as it belongs
to the folder ‘Research’. Email 8 in turn is a Type O outlier,
because it does not fit into any existing folder — we should
create a new one. Intuitively, a document is a Type O outlier
when it does not appear to be similar to documents of any
single class. In contrast, a document is a Type M outlier when
it appears to be most similar to documents from another class.

In this paper, we focus on mining text outliers in document
directories. It is difficult because documents are outlying w.r.t.
their semantics, which is not easy to capture (even for humans).
An additional issue, which makes this current article unique,
is that both outlier types must be detected jointly. Namely, the
existence of one type harms the detection of the other one. The
noise introduced by Type M outliers hinders the detection of
Type O outliers. Conversely, Type O outliers may be detected
as Type M by mistake, leading to a poor treatment of such
outliers. Existing methods only deal with one of these outlier



types, cf. Section II. Interestingly, we will see that the joint
detection of both outlier types leads to better performance for
each type than approaches only dealing with one of them.

B. Contributions

While tools exploiting the semantics of text data have
improved tremendously in recent years – in particular with the
success of embedding methods [3] – text outlier detection has
not been sufficiently addressed concerning the challenges just
mentioned. Thus, we make the following contributions:

We explore the problem of text outlier detection in
document directories. The task is challenging because text
can be outlying in numerous ways, and directories are domain-
specific. At the same time, text outliers fall into two categories:
Types O/M. To our knowledge, we are first to propose an
integrated outlier detection framework for text documents that
builds on this conceptual distinction.

We propose a new approach to detect text outliers,
which we name kj-Nearest Neighbours (kj-NN). Our approach
leverages similarities of documents and phrases, based on state-
of-the-art embedding methods [4], to detect both Type O/M
outliers. By extracting semantically relevant labels and the doc-
uments similar to each outlier, it also supports interpretability.

We introduce a ‘self-supervision’ mechanism to make
our approach more robust. Our idea is to weigh each decision
by the relevance of neighbouring documents. A document is
said to be relevant w.r.t. a given class when its semantics,
characterised by its closest phrases in the embedding space, is
representative of its class.

We conduct extensive experiments to compare our method
to competitors and provide example outputs. The experiments
show that our approach improves the current state of the art
by a large margin while delivering interpretable results.

We release our source code on GitHub1, together with
our benchmark data, to ensure reproducibility.

Paper Outline: We review the related work in Section II
and introduce our notation in Section III. Section IV outlines
our framework, and Section V describes our algorithm for
text outlier detection. We detail our experiments and results in
Sections VI and VII. We conclude in Section VIII.

II. RELATED WORK

To our knowledge, none of the existing methods handles
both outlier types. So we categorise related work into two
classes: (1) Type O and (2) Type M outlier detectors.

Type O outlier detectors. Type O is the standard definition
of outliers, and detecting such outliers has been studied
for decades. Conventional outlier detection approaches typ-
ically fall into the following classes: distance-based [5], [6],
neighbour-based [7], [8], probabilistic-based [9], [10] and
subspace-based methods [11]–[15]. Examples of conventional
methods are the well-known Local Outlier Factor (LOF) [7]
or, more recently, Randomised Subspace Hashing (RS-Hash)
[11]. However, textual data is typically extremely sparse, and

1https://github.com/edouardfouche/MiningTextOutliers

thus few of the above proposals can be directly extended to
detect outlier documents, as they do not model semantics.

There exist a few methods addressing text outliers: [16]
proposes a generative approach, which models the embedding
space as a mixture of von Mises-Fisher (vMF) distributions.
They identify ‘outlier regions’ that deviate from the majority
of the embedded data. [17] proposes TONMF, a Non-negative
Matrix Factorisation (NMF) approach based on block coor-
dinate descent optimisation. Recently, [18] proposes Context
Vector Data Description (CVDD), a one-class classification
model leveraging pre-trained language models and a multi-
head attention mechanism. However, all of these methods treat
outlier detection as a one-class classification problem, i.e., they
try to describe an ‘abnormal’ class and a ‘normal’ class; none
of them addresses Type M outliers.

Type M outlier detectors. Type M outliers represent
misclassified text. While this type of outlier is ubiquitous, it has
received little attention so far. Few publications try to address
the problem directly. Traditional supervised text classification
methods, assuming the ground truth to be error-free, have no
choice but to tolerate Type M outliers during training. While
one can extend the existing supervised document classification
models (e.g., [19]–[22]) to mitigate the effect of Type M
outliers, they are in turn not helpful to detect Type O outliers.

As we explained earlier, the existence of both outlier types
calls for methods that can detect them simultaneously. In that
respect, our method is the first of its kind. In our experiments,
we compare our approach against the methods above and show
that we outperform all of them. We refer the reader to [23] for
an extensive overview of existing outlier detection methods.

III. NOTATIONS

Let D = {d1, d2, . . . , d|D|} and P = {p1, p2, . . . , p|P |} be
a set of documents and phrases. We define O = D ∪ P as the
set of all text objects.

A common practice in the community is to project each text
object in an n-dimensional embedding space as a preprocessing
step. In this paper, we use a recent technique [4] capable of
projecting both words and documents into the same embedding
space, i.e., each object o has an embedding vector representation
V : O 7→ Rn with n dimensions, with typically n ≥ 100. The
vectors are all normalised, thus ‖V (o)‖ = 1, ∀o ∈ O.

We quantify the similarity between a pair of phrases, docu-
ments or phrases/documents with a function S : O2 7→ [0, 1]
where 1 is the highest possible similarity (identity) and 0 is
the lowest one. S is the normalised cosine similarity:

S(V (oi), V (oj)) =
V (oi) · V (oj) + 1

2
∀(oi, oj) ∈ O2. (1)

For simplicity, we equivalently refer to the vectorial represen-
tation of each object, i.e., o ≡ V (o), in what follows. We also
assume that there exists an initial classification of documents
into a finite set of classes C = {c1, . . . , c|C|}, expressed as a
function y : D 7→ C.

Our self-supervision mechanism relies on estimating the
representativeness of each phrase p ∈ P w.r.t. each class
c ∈ C. We denote it as a function r : P × C 7→ R+.

https://github.com/edouardfouche/MiningTextOutliers
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Figure 2. Our Framework: A High-Level Overview. In the illustrations, squares are documents and dots are phrases.

IV. OUR FRAMEWORK

Figure 2 provides a high-level overview of our framework.
We assume as input a collection of documents D, with an initial
but imperfect classification y : D 7→ C provided by the user.
Squares stand for documents, and the colours represent their
initial class. Documents are composed of phrases, represented
in turn as dots. We design our framework in three steps:

1. Learning Joint Embedding: Text outlier detection relies
on textual similarity/dissimilarity measures, which can be
effectively captured by embeddings. We segment the phrases
P from every document using AutoPhrase [24] and obtain
the phrase and document embeddings V : O 7→ Rn in a joint
spherical space via Joint Spherical Embedding (JoSE) [4].

The benefits of using JoSE are twofold: (1) JoSE trains
document and phrase embeddings jointly in the same space,
where text similarity between phrases and documents can be
directly derived. (2) JoSE captures directional similarity by
training in the spherical space, which characterises textual
similarity more effectively than Euclidean embeddings.

2. Mining Representativeness: We estimate the repre-
sentativeness of each phrase for each class, based on the
initial classification. The representative phrases for a class
are indicative of the semantics of documents. As in [25], we
define the representativeness as a function of three criteria:
• Integrity: A phrase with high integrity in a given corpus is

meaningful, understandable and of high quality.
• Popularity: A phrase is popular in a given class if it has

many occurrences.
• Distinctiveness: A phrase is distinctive if it distinguishes a

class from the other classes.
For each phrase p ∈ P and class c ∈ C, we estimate the
integrity int(p, c) ∈ [0, 1], popularity pop(p, c) ∈ R+ and the
distinctiveness disti(p, c) ∈ [0, 1] as described in [26]. The
representativeness is the product of those three criteria:

r(p, c) = int(p, c) · pop(p, c) · disti(p, c). (2)

The idea is that, even if each class may contain ambiguous
documents or erroneous labels, these are ‘rare’, so the impact
on the estimation of representativeness is low. Our experiments
show that our method is robust against erroneous labels.

3. Text Outlier Detection: We introduce kj-NN, an outlier
detector inspired by the well-known k-NN classifier [27].
The main novelty is that inferring the class of each element
(document) does not only base on the class of its k nearest
documents but also on their relevance. We estimate the
relevance of a document as the average representativeness of
its j nearest sub-elements (phrases) for its class. If a document
d is closer to documents which are (i) relevant and (ii) from
another single class, then d likely is a Type M outlier. On the
other hand, if d is similarly close to relevant documents of
various classes, then d likely is a Type O outlier. This final
step yields two ranked lists O and M of outliers for Type O
and Type M, respectively.

In our approach, self-supervision consists of estimating the
relevance of the original label, recognising that less relevant
labels must have a lower influence on our predictions. The
rationale is to perceive irrelevant documents as such because
they either were misclassified or have ambiguous semantics.

In the next section, we present the technical details of our
outlier detector. We first provide a Bayesian formalisation, then
describe the practical implementation of kj-NN.

V. TEXT OUTLIER DETECTION WITH KJ-NN

A. Formalisation

We define the k nearest documents and the j nearest phrases
of a document d ∈ D as follows:

K(d) = {x ∈ D\d : |{x′ ∈ D\d : S(x′, d) > S(x, d)}| < k},
J (d) = {x ∈ P : |{x′ ∈ P : S(x′, d) > S(x, d)}| < j}.

We call K(d) and J (d) the k- and j-neighbourhood of d. Then
one can build a classifier based on local densities. For each
document d ∈ D, the k-neighbourhood provides an estimate
of the density within each class, and the j-neighbourhood
provides a pseudo-posterior probability for each neighbour.

Bayesian inference formulates the posterior probability of
class membership of document d ∈ D as follows:

Pr(c|d) =
Pr(d|c) Pr(c)

Pr(d)
. (3)



Now think of a sphere of volume v centred at d that contains
k points. Then we can express the likelihood as

Pr(d|c) =
|Kc(d)|
|Dc|v

, (4)

where Kc(d) is the set of documents in K(d) of class c, and
Dc is the set of all documents of class c. The class prior is

Pr(c) =
|Dc|
|D| . (5)

Since v, |D| and Pr(d) are independent of c, we have

Pr(c|d) ∝ |Kc(d)|. (6)

To minimise the misclassification probability, one must assign
d to the class with the highest density in its neighbourhood.

This only works under the assumption that all labels are
correct, which is unrealistic in our setting. Our idea is to weight
each document d′ in Kc(d) by a pseudo-posterior probability
P̂r(c|d′), capturing our belief that they indeed are of class c:

Pr(c|d) ∝
Kc(d)∑
d′

P̂r(c|d′), (7)

where we define P̂r(c|d′) to be proportional to the representa-
tiveness r(p, c) of the phrases p ∈ J (d′) for class c:

P̂r(c|d′) ∝
J (d′)∑

p

r(p, c). (8)

With this specification of P̂r(c|d′), we exploit additional
information from the j-neighbourhood as ‘self-supervision
signals’. In contrast, the standard k-NN classification rule
assumes that Pr(c|d′) = 1, ∀d′ ∈ Kc(d), i.e., the labels are
accurate. Finally, predicting the class of d boils down to

ŷ(d) = arg max
c∈C

Pr(c|d) = arg max
c∈C

Kc(d)∑
d′

J (d′)∑
p

r(p, c). (9)

Whenever ŷ(d) 6= y(d), we may declare that a user
misclassified document d, i.e., it is a Type M outlier. However,
the reliability of such predictions may vary widely. For example,
if each class has a very similar posterior probability, deciding
for one or the other might not be meaningful. When a document
does not prominently belong to any existing class, we must
declare a Type O outlier. We quantify the reliability of a
prediction via the entropy of the posterior probabilities, which
measures the uncertainty of the prediction:

I(d) = −
∑
c∈C

Pr(c|d) · log Pr(c|d). (10)

We obtain the posterior probabilities via normalisation:

Pr(c|d) =

∑Kc(d)
d′

∑J (d′)
p r(p, c)∑C

c

∑Kc(d)
d′

∑J (d′)
p r(p, c)

. (11)

We decide whether a prediction is uncertain using a threshold
Γ > 0 that we set to a percentile p∗ of the empirical distribution
of the entropy for every document in the corpus:

Γ > 0 s.t.
|{d ∈ D : I(d) < Γ}|

|D| = p∗. (12)

In other words, our idea is to declare that p∗% of the documents
with the most uncertain predictions are Type O outliers. For
the remaining 1 − p∗% documents, we declare that they are
Type M outliers if ŷ(d) 6= y(d).

B. Implementation
A well-known caveat of neighbour-based classifiers is that

they tend to be sensitive to the choice of parameter k. [28]
first proposed to weigh each neighbour by the distance to
the queried point. There exist many weighting schemes [29],
[30]. While finding the best scheme is out of our scope, the
consensus is that weighting improves empirical performance
and leads to more flexible parameter choice (see [31]). So we
propose the following score:

scored,c =

Kc(d)∑
d′

S(d, d′)

J (d′)∑
p

S(d′, p) · r(p, c), (13)

which uses both the inter-document and the document-phrase
similarities for weighting. By definition, if Kc(d) = ∅, then
scored,c = 0. We compute the entropy as follows:

I(d) = −
C∑
c

scored,c · log scored,c (14)

where scored,c is the normalised score over the classes c ∈ C.
By convention, scored,c · log scored,c = 0 if scored,c = 0.
Finally, the outcome is a list of outliers for each type:

O =
〈
di, dj , . . . , d|O|

〉
s.t. I(di) > Γ ∧ I(di) ≥ I(dj),

M =
〈
di, dj , . . . , d|M|

〉
s.t. I(di) ≤ Γ ∧ ŷ(di) 6= y(di) . . .

· · · ∧ I(di) ≤ I(dj), ∀i < j, (i, j) ∈ D2

Here, Γ is set by parameter p∗ (see Eq. 12). The prediction is:

ŷ(d) = arg max
c∈C

scored,c (15)

Note that we sort O by decreasing uncertainty, while we
sort M by increasing uncertainty. The rationale is that the
more uncertain the decision for document d, the more likely
d is a Type O outlier. On the other hand, the less uncertain
a misclassification, the more likely d is a Type M outlier. So
we output a ranking of outliers for both. In particular, if users
only have a limited amount of time, they may only examine
the most ‘flagrant’ outliers.

Algorithm 1 is our approach as pseudo-code. Since vectors
are normalised, the normalised cosine similarity S (cf. Eq. 1)
is proportional to the euclidean distance. Thus we can use R∗

trees to speed up the neighbourhood queries, and we cache the
results of the individual queries for each document. From our
algorithm, it is easy to see that the complexity of the approach
is quasi-linear w.r.t. |D|, |P |, |C|, k and j, i.e., it can scale to
very large corpora.



Algorithm 1 KJ-NN(k, j, D, P , y, r, p∗)
Require: k, j, corpus D, phrases P , initial classification y : D 7→ C,

representativeness r : P × C 7→ R+, threshold p∗ ∈ [0, 1]
1: O = 〈〉 ; M = 〈〉 . Initialisation
2: K ← index D with an R∗-tree
3: J ← index P with an R∗-tree
4: for di ∈ D do . Cache neighbourhood queries
5: K(di)← the k nearest neighbours of di in K
6: J (di)← the j nearest neighbours of di in J

7: for di ∈ D and c ∈ C do . Get score and entropy
8: Kc(di)← {d′ ∈ K(di) : y(d′) = c}
9: scoredi,c =

∑Kc(di)

d′ S(di, d
′)
∑J (di)

p S(d′, p) · r(p, c)

10: I(di) =
∑C

c scoredi,c · log scoredi,c

11: Choose Γ s.t. |{di ∈ D | I(di) < Γ}|/|D| = p∗

12: Sort D by increasing I(di), di ∈ D
13: for di ∈ D do . Populate outlier lists
14: if I(di) > Γ then O← 〈di〉 ∪O
15: else if ŷ(di) 6= y(di) then M← M ∪ 〈di〉
16: return O, M

VI. EXPERIMENT SETUP

We evaluate the performance of our approach w.r.t. both
types of outliers. We compare with the current state of the art,
as well as with competitive baselines and ablations. We create
real-world benchmark data sets from publicly available data.

A. Evaluation Measures

Outlier detection typically is an imbalanced classification
problem. For Type O outliers, we report the area under the ROC
curve (AUC) and the average precision (AP). These are popular
measures for the evaluation of outlier detection algorithms.
Since Type M outliers are comparably more frequent, we report
precision (P), recall (R) and the F1 score. In most applications,
users are more concerned with the recall [16]. So we also
measure the recall at a certain percentage, i.e., the share of
detected outliers when the user checks the top X% items (RX)
from the ranked list of outliers.

B. Data Sets

We evaluate our approach against an assortment of bench-
mark data sets of various size, outlier ratio and number of
inlier/outlier classes. Since emails and medical records typically
contain highly confidential information, they are not adequate
for the reproducibility of our study. Instead, we create the
following sets of benchmarks from publicly available news
articles and paper abstracts:
• NYT: We crawl 10,000 articles from 5 topics (Business,

Sports, Arts, Politics, Science) with the New York Times
API and add 1% articles (i.e., 100 articles) from 4 other topics
(Real estate, Health, Education, Technology), i.e., they are
Type O outliers. We also increase the ratio of outliers to 2%
and 5% and downsample the data by 50%, 20% and 10%.
Thus, we create six benchmark data sets: NYT-1, NYT-2,
NYT-5, NYT-50, NYT-20, NYT-10.

• ARXIV: We crawl 21,467 abstracts of the articles published
on ArXiv from 10 computer science categories (cs.AI, cs.CC,
cs.CL, cs.CR, cs.CY, cs.DB, cs.DS, cs.LG, cs.PL, cs.SE).

Then we choose 1 to 5 inlier classes at random and inject
1% outliers from 5 other classes. We repeat the procedure,
but let the number of outlier classes vary. In the end, we
create nine benchmark data sets: ARXIV-15, ARXIV-25,
ARXIV-35, ARXIV-45, ARXIV-55, ARXIV-54, ARXIV-
53, ARXIV-52, ARXIV-51.

We detail in Appendix the characteristics of each benchmark.
As mentioned, we release the data sets with our source code.

C. Baselines and Competitors

Since none of the existing approaches detects both Type O
and Type M outliers, we must compare with two different
sets of competitors/baselines. To validate our design choices,
we also compare against a set of ablations derived from our
method (see in Appendix).

1) Type O: We compare kj-NN w.r.t. Type O outlier
detection against the following baselines and competitors:
• Local Outlier Factor (LOF) [7] is a well-known density-

based outlier detector. We report the best result with
parameter k ∈ [1, 100] in terms of AUC, as performance
may vary widely w.r.t. k [32]. We use the implementation
from ELKI [33].

• Randomised Subspace Hashing (RS-Hash) [11] is a sub-
space outlier detector. It estimates the outlierness of each data
point via randomised hashing. We implement it as described
by the authors, and we use the recommended parameters.

• Average Negative Cosine Similarity (ANCS) is a baseline
measuring the outlierness of a document as the average
negative cosine similarity to every other document. We
also propose k-ANCS, a variant which only uses the k
nearest neighbours for each document. We select k ∈ [1, 100]
maximising the AUC.

• VMF-Q [16] models word embeddings as a vMF mixture
and penalises lexically general words to identify semantically
deviating documents. We use the implementation provided
by the authors with the recommended parameters.

• TONMF [17] uses Non-negative Matrix Factorisation from a
bag-of-word representation to detect documents with unusual
word frequencies. We use the implementation released by
the authors and let the parameters k, α and β vary from 1
to 30. We report the best result in terms of AUC.

• CVDD [18] is a one-class classification model using a pre-
trained language model and multi-head attention. We use the
authors’ implementation with the recommended parameters.
2) Type M: To our knowledge, there is no approach explicitly

handling the detection of misclassifications (Type M outliers).
However, we can adapt virtually any supervised classifier to
this task. We compare against the following state-of-the-art
approaches for text classification:
• Word-level CNN (W-CNN) [19] applies convolution kernels

on stacked word embedding matrix of a document followed
by pooling operations.

• Very Deep CNN (VD-CNN) [20] uses up to 29 convolution
layers that perform feature learning starting from characters,
aiming to capture the hierarchical semantic structure encoded
in characters, n-grams, words and sentences.



• Attention-Based Hierarchical RNN (AT-RNN) [34] em-
ploys attention mechanisms both at the word and sentence
level. It learns to focus on the most relevant words and
sentences for text classification.

• RCNN [22] combines both bi-directional recurrent structures
and max-pooling layers to capture contextual information
and extract relevant features.

For each approach, we train the classifier and predict the class
of each instance. If the prediction differs from the actual class,
we conclude that it is of Type M. The rationale is that such
instances do not fit their class as well as other instances. Note
that this is a rather common approach for outlier detection.

Since one typically does not have any ground truth in outlier
detection tasks, performing a hyper-parameter search is not
realistic and falls out of the scope of our study. We run each
approach with default parameters.

D. Data Preparation

Since every Type O methods are unsupervised, they operate
without labels. To evaluate the approaches, we set the labels
of inliers to 0 and the labels of Type O outliers to 1.

LOF, RS-Hash, ANCS and k-ANCS use as input the
embedding representation that we mine in our preprocessing
step (cf. Section IV). For VMF-Q, TONMF and CVDD, we
implement the preprocessing steps recommended by their
respective inventors.

For Type M methods, we control the proportion of Type M
outliers by randomly assigning a proportion b ∈ [0, 0.5] of
labels to a wrong class, i.e., when b = 0.5, we misclassify half
of the documents. The algorithms train with those erroneous
labels, but we use the original labels for evaluation. We assign
Type O outliers to an inlier class at random.

For each method, we first tokenise and segment the raw text
data using AutoPhrase [24]. We learn the joint embeddings via
JoSE [4] with n = 100 dimensions. Overall, we process the
input data similarly between every method, taking into account
the recommendation of the respective authors. Our goal is to
make the comparison as fair as possible.

VII. RESULTS

We perform our experiments on a machine running Ubuntu
18.04 with 20GB RAM and a quad-core CPU at 2.40GHz. We
average each of our results from 10 independent runs.

A. Parameter Sensitivity

We first study the sensitivity of our approach to its parameters
k, j and p∗ against the benchmark NYT-1, w.r.t. varying
Type M outlier ratio b in particular. We first simulate an extreme
scenario by setting b = 0.5, i.e., we assign half of the articles
to the wrong topic. We can see from Figure 3 that the Type O
recall and precision tend to increase with k and j, but saturate
for j > 30 and k > 30. We also see that p∗ captures a trade-
off between precision and recall: higher values of p∗ leads to
higher Type O precision, but lower recall. On the other hand,
higher values of p∗ lead to higher Type M recall, but lower
precision. We see that the Type M precision and recall are
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Figure 3. Type O/M — k, j, p∗ sensitivity, NYT-1.

high for p∗ ≥ 0.9 for large enough k and j. Given that the
initial classification is very noisy (b = 0.5), the quality of the
detection of both outlier types is impressive.

Next, we set k = j = 30 and let b vary from 0 to 0.5. In
Figure 4, we see that the Type O recall and precision improve
significantly for lower b, but the Type M precision decreases.
While imperfect labels negatively impact the quality of Type O
outlier detection, the Type M recall appears stable.

Based on our observations, we recommend setting k = j =
30 and p∗ = 0.9. For the remaining of our experiments, we
set the parameters as such and assume b = 0.2.

B. Performance Comparison

1) Type O: Tables I and V (in Appendix) list the results of
our comparison against the NYT and ARXIV benchmark.

First, the results of every approach are generally better
against the NYT benchmark. The ARXIV benchmark is much
more challenging because the corpus is composed of abstracts
from computer science sub-fields, with much semantic overlap.
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Table I
COMPARISON W.R.T. OUR COMPETITORS (TYPE O, NYT).

AUC AP R1 R2 R5 AUC AP R1 R2 R5

LOF

N
Y

T-
1

66.45 1.62 3.00 3.00 9.00

N
Y

T-
50

60.91 1.77 2.00 6.00 12.00
RS-Hash 46.62 0.87 0.00 1.00 1.00 46.14 0.90 0.00 0.00 2.00
ANCS 66.63 2.57 6.00 10.00 21.00 63.94 4.35 14.00 16.00 20.00
k-ANCS 83.89 3.65 3.00 7.00 19.00 81.08 4.43 12.00 14.00 20.00
TONMF 58.66 7.30 0.00 2.00 9.00 61.42 31.01 0.90 0.90 4.90
VMF-Q 76.34 2.21 2.00 3.00 11.00 85.76 4.00 6.00 8.00 22.00
CVDD 78.47 7.75 11.7 18.09 22.34 76.29 15.89 21.62 27.03 29.73
kj-NN 92.51 17.57 25.00 39.20 61.40 93.33 27.76 37.20 46.80 62.80

LOF

N
Y

T-
2

60.66 2.45 2.00 2.50 6.00

N
Y

T-
20

74.76 4.12 5.00 5.00 15.00
RS-Hash 48.05 1.87 0.50 1.00 5.50 42.91 0.89 0.00 0.00 0.00
ANCS 67.59 5.19 8.00 12.00 18.00 78.52 5.60 10.00 15.00 40.00
k-ANCS 82.51 5.94 3.00 5.50 14.50 88.56 6.59 15.00 20.00 30.00
TONMF 54.61 1.78 2.50 3.00 9.00 64.94 6.35 0.00 0.00 15.00
VMF-Q 83.67 6.87 4.00 11.00 20.00 83.98 4.59 5.00 10.00 20.00
CVDD 73.10 10.00 11.58 14.74 22.11 88.83 24.00 25.00 25.00 25.00
kj-NN 94.51 42.64 30.40 44.50 64.50 91.42 6.57 3.00 11.00 38.00

LOF

N
Y

T-
5

52.28 5.44 1.80 3.40 7.00

N
Y

T-
10

77.93 2.77 0.00 0.00 20.00
RS-Hash 48.76 4.58 0.80 1.40 2.80 56.94 1.76 0.00 0.00 10.00
ANCS 67.67 11.13 6.60 9.80 19.20 83.89 13.65 30.00 40.00 40.00
k-ANCS 75.56 10.45 3.40 6.40 11.40 91.37 10.93 30.00 30.00 30.00
TONMF 52.95 1.50 1.40 2.40 6.40 71.13 29.92 0.00 0.00 0.00
VMF-Q 77.11 12.92 4.60 7.40 15.60 63.39 2.55 0.00 10.00 20.00
CVDD 72.81 18.69 9.04 13.05 21.49 85.13 44.99 42.86 42.86 42.86
kj-NN 97.04 71.69 19.12 36.96 68.28 91.52 8.45 10.00 16.00 38.00

Then, we see from both tables that kj-NN outperforms every
competitor w.r.t. Type O outlier detection. The performance
in terms of recall becomes lower for smaller data sets (e.g.,
NYT-20 and NYT-10). For small data sets, CVDD and our
ANCS/k-ANCS baselines appear competitive.

Finally, we see that our approach handles particularly well
multi-modal settings, i.e., with multiple inlier/outlier classes. By
design, our approach cannot handle only one inlier class (e.g.,
ARXIV-15) — this does not fit our scenario. When there only
is a single outlier class, LOF performs best (see ARXIV-51).

2) Type M: Our approach also outperforms its competitors
w.r.t. Type M outliers. See Tables II and VI. RCNN and
VD-CNN have high precision, but much lower recall. Neural
networks tend to fit the data very well, including Type M
outliers. The performance decreases dramatically with smaller
data sets. VD-CNN occasionally ranks high in terms of F1-
score. However, those approaches do not rank outliers, so the

Table II
COMPARISON W.R.T. OUR COMPETITORS (TYPE M, NYT).

P R F1 R10 R20 P R F1 R10 R20

W-CNN

N
Y

T-
1 54.38 86.04 66.64 27.28 53.51

N
Y

T-
50

47.38 87.61 61.50 22.28 47.62
VD-CNN 90.71 69.22 78.52 15.04 30.18 98.58 55.44 70.97 49.31 54.95
AT-RNN 67.12 51.88 58.52 32.92 51.34 89.75 69.22 78.16 14.83 29.92
RCNN 96.02 9.65 17.54 9.55 9.55 57.46 87.31 69.31 27.23 56.93
kj-NN 95.93 90.02 92.88 50.19 90.02 95.78 90.36 92.99 50.22 90.36

W-CNN

N
Y

T-
2 54.16 88.02 67.06 27.30 54.56

N
Y

T-
20

39.34 91.56 55.03 20.54 40.59
VD-CNN 88.99 69.69 78.17 14.71 29.61 93.50 81.80 87.26 15.20 30.81
AT-RNN 80.36 49.03 60.90 40.29 48.14 50.44 85.11 63.34 25.25 52.23
RCNN 89.60 5.59 10.52 5.49 5.49 39.63 91.56 55.32 20.54 40.59
kj-NN 94.63 91.15 92.86 50.74 91.15 93.80 90.64 92.19 50.52 90.64

W-CNN

N
Y

T-
5 51.12 89.07 64.96 25.14 50.38

N
Y

T-
10

36.12 88.94 51.38 16.83 35.15
VD-CNN 58.21 82.39 68.22 8.98 18.46 86.20 69.40 76.89 14.10 27.26
AT-RNN 61.71 70.49 65.81 31.38 61.62 36.12 88.94 51.38 16.83 35.15
RCNN 90.82 44.93 60.12 42.86 42.86 36.12 88.94 51.38 16.83 35.15
kj-NN 92.43 93.44 92.93 52.27 93.44 88.57 90.77 89.65 50.50 89.97
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Figure 5. Execution time of each approach.

recall at a certain percentage (e.g., R10, R20) is equivalent to
that from a list of detected outliers in random order.

3) Execution Time: Figure 5 graphs the execution time for
each approach. We neglect the common preprocessing time for
each of them and report the sum of training and testing time.
RS-Hash is extremely fast, but as we saw the performance is
not better than guessing. LOF and k-ANCS, which leverage
index support, are relatively fast. Our method, kj-NN, is only
slightly slower than LOF but seems to scale better (observe
the difference in execution time between NYT-1 and NYT-10).

C. Interpretation

The design of our method gives way to interpretable results.
To find similar documents, we can simply perform a nearest-
neighbour search in the embedding space. We find in turn
the most representative phrases for a given outlier dout via a
similar approach as in preprocessing, with this time only two
classes: An outlier class cout containing the k-neighbourhood
of document d, i.e., K(d) ∪ d and a class cin containing the
rest of the documents in the corpus.

Figure 6 shows the two top-ranked Type O and Type M
outliers we found in NYT-1, along with the most representative
phrases and excerpts from the most similar documents.

It is interesting to see that the three nearest neighbours of the
Type O outlier either relate to building construction projects or
political decisions in education (or both). Actually, the ground



Table III
CHARACTERISTICS OF THE BENCHMARK DATA SETS.

Benchmark # Inliers # O # Classes # O Classes O%

NYT-1 10,000 100 5 4 1.00
NYT-2 10,000 200 5 4 2.00
NYT-5 10,000 500 5 4 5.00
NYT-50 5000 50 5 4 1.00
NYT-20 2000 20 5 4 1.00
NYT-10 1000 10 5 4 1.00

ARXIV-51 11,115 111 5 1 1.00
ARXIV-52 11,115 111 5 2 1.00
ARXIV-53 11,115 111 5 3 1.00
ARXIV-54 11,115 111 5 4 1.00
ARXIV-55 11,115 111 5 5 1.00
ARXIV-45 10,136 101 4 5 1.00
ARXIV-35 6299 63 3 5 1.00
ARXIV-25 4619 46 2 5 1.00
ARXIV-15 3267 33 1 5 1.00

truth label ‘Education’ even appears at position five within the
most representative phrases — a useful information in practice.

With the Type M outlier, the nearest documents all relate to
science and business in some way, and the top phrases (energy,
fuel, plant, . . . ) strongly relate to their specific topic.

We then run our approach on the ARXIV benchmark with
all the ten classes. Figure 7 shows the top-ranked outliers.
The Type O outliers are indeed abnormal: they are not paper
abstracts, so one should remove them from the corpus. The
Type M outlier is from [35]. The authors chose to publish this
article in the category cs.AI (Artificial Intelligence), but our
approach suggests that it should be under cs.CL (Computation
and Language). Intuitively, this makes sense, given the general
topic of the abstract and the most representative phrases.

VIII. CONCLUSIONS

We have studied the detection of text outliers in document
directories. This task is challenging because text outliers are
manifold, domain-specific, and the task is unsupervised in
nature. We observe that such outliers fall into two types: out-
of-distribution (Type O) and misclassified (Type M) documents.
We are first to propose an approach that (i) detects text
outliers from multiple folders and (ii) effectively distinguishes
between both outlier types. Our algorithm, kj-NN, leverages
self-supervision signals mined from an initial but imperfect
classification. Interestingly, our experiments show that detecting
both outlier types simultaneously leads to better performance
than with existing approaches, which only deal with one type.
Our method also yields results that are interpretable, by finding
adequate alternative names for folders and by describing the
particular semantics of text outliers.

In the future, we plan to transfer our approach to other
domains, e.g., multivariate times series. It would also be
interesting to study the performance of our approach for
classifying new documents, when having only very few labels.

APPENDIX

Table III shows the features of each benchmark data set, in
particular: the number of inliers (# Inliers), Type O outliers
(# O), inlier classes (# Classes), Type O outlier classes (# O
Classes), and the ratio of Type O outliers (O%).

Additionally, we verify each of our design choices by
comparing against the following ablations:
• A1: No self-supervision; we set j = 0, i.e., our approach

boils down to a k-NN classifier as in Eq. 6.
• A2: No entropy; we do not consider the entropy of the

prediction, i.e., objects can be in both outlier lists O and M.
• A3: No neighbourhood; the predictions only base on the

relevance of document d, and not on the relevance of its
neighbours, i.e., we set K(d) = {d}.

• A4: Unweighted kj-NN; we do not weigh the score by
the inter-document and document-phrase similarities, as
explained in Section V-B. Each neighbouring document and
phrase have the same impact on the decision.

From Table IV, we can see that kj-NN consistently outperforms
every ablation on average. A2 leads to higher Type M recall,
and often high Type O AUC, but much lower Type M precision.
A1 and A3 yield worse results for both outlier types. A4 values
are consistently below, but only by a few hundredth.

The overall average ranks are as follows:
• kj-NN: 1.67, A2: 2.50, A4: 2.69, A1: 3.30, A3: 4.29

Thus, we can see that taking the neighbourhood into account im-
proves the performance of our approach the most, followed by
self-supervision. Measuring decision uncertainty and weighting
by similarity, as in Eq. 13, improves the performance further.

ACKNOWLEDGMENT

This work was supported by the DFG Research Training
Group 2153: ‘Energy Status Data – Informatics Methods
for its Collection, Analysis and Exploitation’, the German
Federal Ministry of Education and Research (BMBF) via
Software Campus (01IS17042) and sponsored in part by
US DARPA KAIROS Program No. FA8750-19-2-1004 and
SocialSim Program No. W911NF-17-C-0099, National Science
Foundation IIS 16-18481, IIS 17-04532, and IIS-17-41317, and
DTRA HDTRA11810026.

REFERENCES

[1] B. Frénay and M. Verleysen, “Classification in the Presence of Label
Noise: A Survey,” IEEE Trans. Neural Networks Learn. Syst., vol. 25,
no. 5, pp. 845–869, 2014.

[2] S. Garcı́a, J. Luengo, and F. Herrera, Data Preprocessing in Data Mining,
ser. Intelligent Systems Reference Library. Springer, 2015, vol. 72.

[3] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed Representations of Words and Phrases and their Composi-
tionality,” in NIPS, 2013, pp. 3111–3119.

[4] Y. Meng, J. Huang, G. Wang, C. Zhang, H. Zhuang, L. M. Kaplan, and
J. Han, “Spherical Text Embedding,” in NeurIPS, 2019, pp. 8206–8215.

[5] E. M. Knorr and R. T. Ng, “Algorithms for Mining Distance-Based
Outliers in Large Datasets,” in VLDB, 1998, pp. 392–403.

[6] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient Algorithms for
Mining Outliers from Large Data Sets,” in SIGMOD, 2000, pp. 427–438.

[7] M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
Density-Based Local Outliers,” in SIGMOD, 2000, pp. 93–104.

[8] H. Kriegel, M. Schubert, and A. Zimek, “Angle-Based Outlier Detection
in High-dimensional Data,” in KDD, 2008, pp. 444–452.

[9] J. Kim and C. D. Scott, “Robust Kernel Density Estimation,” J. Mach.
Learn. Res., vol. 13, pp. 2529–2565, 2012.

[10] M. E. Tipping and C. M. Bishop, “Probabilistic Principal Component
Analysis,” Journal of the Royal Statistical Society: Series B (Statistical
Methodology), vol. 61, no. 3, pp. 611–622, 1999.

[11] S. Sathe and C. C. Aggarwal, “Subspace histograms for outlier detection
in linear time,” Knowl. Inf. Syst., vol. 56, no. 3, pp. 691–715, 2018.



Top phrases: City, state, program, buildings, education, office, schools, year, project, company. . .

Type O (Education): NYC will build a new
home for one of its premier high schools,
[. . . ] under a schedule that seeks to show
that its public schools can be built fast and
well, Mayor Koch and Governor Cuomo
said yesterday. The new school, incorporat-
ing the latest in modern laboratory equip-
ment, fiber optic systems and an olympic
size swimming pool will be built [. . . ] in
lower manhattan, with work to begin at the
end of next year. . .

Type M (Sport → Business): Bellevue,
Washington. Set between an indoor ten-
nis club and a home appliance showroom,
dozens of engineers, physicists and nuclear
experts are chasing a radical dream of Bill
Gates. The quest is for a new kind of nu-
clear reactor that would be fueled by today’s
nuclear waste, supply all the electricity in
the United States for the next 800 years and,
possibly, cut the risk of nuclear weapons
proliferation around the world. . .

1st-NN (Business): [. . . ] on the first floor
of a hulking residential building, at the end
of a dimly lighted corridor, a narrow door
opens up into Hong Kong’s economic un-
derbelly [. . . ]. Hong Kong’s housing situ-
ation is now one of the reasons the govern-
ment of Leung Chun Ying, who took the
helm of the city ’s administration last year,
is deeply unpopular. . .

2nd-NN (Politics): Praising the work of
young scientists and inventors [. . . ], Pres-
ident Obama on monday announced a
broad plan to create [. . . ] initiatives de-
signed to encourage children to study sci-
ence, technology, engineering and mathe-
matics. [. . . ] Obama said he was commit-
ted to giving students the resources they
need to pursue education. . .

3rd-NN (Education): After [. . . ] intense
political pressure [. . . ], schools chancellor
Rudy Crew [. . . ] said he would accept the
candidate. Dr. Crew had provoked harsh
criticism last month when [. . . ] he used
his new veto power [. . . ] to reject Claire
McIntee, an elementary school principal
who was unanimously selected [. . . ] to be
the district’s top administrator. . .

1st-NN (Science): [. . . ] In California,
Lockheed Martin is working on a plan that
[. . . ] might transform the world’s energy
system: a practicable type of nuclear fu-
sion. Some 900 miles to the north, Bill
Gates and another Microsoft veteran [. . . ]
have poured millions into a company de-
veloping a fission reactor that could run on
today’s nuclear waste. . .

2nd-NN (Business): Waste manage-
ment companies and the energy industries
have long experimented with converting
methane [. . . ] into transportation fuel.
Those efforts have met with mixed suc-
cess, and a renewable natural gas fuel has
not been widely available in the United
States. But now, one leading supplier [. . . ]
is taking a big step toward changing that.

3rd-NN (Business): Hoping to give new
meaning to the term natural light, a small
group of biotechnology hobbyists and en-
trepreneurs has started a project to de-
velop plants that glow, potentially leading
the way for trees that can replace electric
streetlamps [. . . ]. Rather than being the
work of a corporation [. . . ], it will be done
by a small group of hobbyist scientists. . .

Top phrases: Natural gas, reactor, energy, fuel, plant, nuclear power, electricity, project, company, United States. . .

Figure 6. Interpretation of Type O/M outliers (examples from the NYT-1 benchmark). We can see that the Type O outlier relates in some way to its nearest
documents — They all relate to building construction projects or political decisions in education (or both). Similarly for the Type M outlier, which was wrongly
classified into the folder ‘Sport’, the nearest documents all relate to science (in particular, energy generation technologies) and business.

Top phrases: Representations, word, semantic, model, embeddings, information, knowledge, . . .Top phrases: Problem, work, error, conjecture, . . .

Top phrases: Data, paper, challenges, learning, . . .

Type M (cs.AI → cs.CL): Open-text (or open-domain) semantic parsers are designed to interpret any statement in natural
language by inferring a corresponding meaning representation (MR). Unfortunately, large scale systems cannot be easily
machine-learned, due to lack of directly supervised data. We propose here a method that learns to assign MRs to a wide
range of text (using a dictionary of more than 70,000 words, which are mapped to more than 40,000 entities) thanks to
a training scheme that combines learning from WordNet and ConceptNet with learning from raw text. The model learns
structured embeddings of words, entities and MRs via a multi-task training process operating on these diverse sources of
data [. . . ]. This work ends up combining methods for knowledge acquisition, semantic parsing, . . .Type O: The paper has been withdrawn due to an error in Lemma 1.

Type O: Review of: Brigitte Le Roux and Henry Rouanet, Geomet-
ric Data Analysis, From Correspondence Analysis to Structured Data
Analysis, Kluwer, Dordrecht, 2004, xi+475 pp.

Figure 7. Interpretation of Type O/M outliers (examples from the ARXIV benchmark). We see that the Type O outliers are not paper abstracts, so one should
remove them from the data set. The Type M outlier may arguably belong to the category ‘Computation and Language’, instead of ‘Artificial Intelligence’.

Table IV
ABLATION ANALYSIS (NYT & ARXIV) — NOTE THAT ARXIV-15 IS NOT APPLICABLE (NA) HERE.

Type O Type M Type O Type M Type O Type M

AUC AP P R F1 Rank AUC AP P R F1 Rank AUC AP P R F1 Rank

A1

N
Y

T-
1 89.57 16.65 94.56 90.04 92.25 3.6 A1

N
Y

T-
10

91.25 8.05 88.18 90.47 89.31 3.6 A1

A
R

X
IV

-5
5 75.84 3.07 70.33 88.24 78.27 3.2

A2 92.51 17.57 86.43 99.07 92.32 2.2 A2 91.52 8.45 80.98 98.50 88.88 2.6 A2 76.74 3.22 63.78 96.82 76.90 2.4
A3 90.56 8.45 91.85 89.28 90.54 4.6 A3 89.65 14.06 87.30 85.17 86.20 4.6 A3 72.31 2.24 66.06 87.02 75.10 4.8
A4 92.48 17.07 95.88 90.00 92.85 2.8 A4 91.23 8.49 88.19 90.57 89.36 2.4 A4 76.60 3.18 70.49 88.19 78.35 2.8
kj-NN 92.51 17.57 95.93 90.02 92.88 1.4 kj-NN 91.52 8.45 88.57 90.77 89.65 1.4 kj-NN 76.74 3.22 70.70 88.23 78.50 1.4

A1

N
Y

T-
2 93.29 43.23 93.61 91.23 92.40 2.6 A1

A
R

X
IV

-1
5 NA NA NA NA NA NA A1

A
R

X
IV

-5
4 75.54 3.63 70.19 87.95 78.07 3.6

A2 94.51 42.64 83.15 99.32 90.52 2.6 A2 NA NA NA NA NA NA A2 76.65 3.85 63.38 96.94 76.65 2.4
A3 91.23 18.62 90.22 89.89 90.05 4.8 A3 NA NA NA NA NA NA A3 76.33 3.40 66.09 86.68 75.00 4.6
A4 94.50 42.12 94.55 91.07 92.78 2.8 A4 NA NA NA NA NA NA A4 76.54 3.82 70.19 88.01 78.10 2.6
kj-NN 94.51 42.64 94.63 91.15 92.86 1.6 kj-NN NA NA NA NA NA NA kj-NN 76.65 3.85 70.38 88.05 78.23 1.2

A1

N
Y

T-
5 96.61 72.33 92.12 93.55 92.83 2.6 A1

A
R

X
IV

-2
5 67.75 3.70 95.01 88.93 91.87 4.4 A1

A
R

X
IV

-5
3 78.55 4.91 70.58 88.35 78.47 3.6

A2 97.04 71.69 75.92 99.18 86.01 2.8 A2 70.64 5.10 91.22 98.17 94.56 2.2 A2 79.16 5.10 63.54 96.75 76.71 2.4
A3 92.33 41.43 86.12 91.97 88.95 4.6 A3 81.23 5.93 97.30 88.16 92.50 2.0 A3 76.48 3.22 65.89 86.98 74.98 4.8
A4 97.04 71.63 92.23 93.45 92.84 2.4 A4 70.48 5.09 96.10 88.98 92.40 3.0 A4 79.04 5.08 70.65 88.51 78.58 2.4
kj-NN 97.04 71.69 92.43 93.44 92.93 1.8 kj-NN 70.64 5.10 96.09 88.85 92.33 3.0 kj-NN 79.16 5.10 70.77 88.46 78.63 1.4

A1

N
Y

T-
50

91.20 27.29 94.20 90.36 92.24 3.2 A1

A
R

X
IV

-3
5 71.98 3.02 80.03 87.14 83.43 2.8 A1

A
R

X
IV

-5
2 77.44 3.39 70.86 88.53 78.71 2.4

A2 93.33 27.76 85.40 99.34 91.84 2.4 A2 73.58 3.27 72.75 95.60 82.62 2.4 A2 78.10 3.07 63.76 96.73 76.85 2.6
A3 90.78 13.34 92.68 89.11 90.86 4.8 A3 74.14 2.72 71.60 84.32 77.44 4.2 A3 69.53 1.56 65.85 86.51 74.78 4.4
A4 93.30 27.44 95.64 90.34 92.91 2.8 A4 73.54 3.27 79.92 86.99 83.30 2.8 A4 77.93 3.03 70.90 88.45 78.71 3.0
kj-NN 93.33 27.76 95.78 90.36 92.99 1.2 kj-NN 73.58 3.27 80.04 86.98 83.36 2.0 kj-NN 78.10 3.07 71.08 88.43 78.81 2.0

A1

N
Y

T-
20

89.01 5.94 93.10 90.29 91.67 4.0 A1

A
R

X
IV

-4
5 69.42 2.96 70.02 86.64 77.45 4.0 A1

A
R

X
IV

-5
1 68.41 3.03 70.76 88.33 78.58 2.6

A2 91.42 6.57 83.56 98.90 90.58 2.6 A2 69.94 3.28 63.93 95.41 76.56 2.6 A2 65.24 2.19 63.81 96.89 76.94 2.8
A3 89.93 9.45 91.19 87.44 89.27 3.8 A3 71.56 3.17 65.43 84.83 73.87 3.8 A3 57.35 1.12 65.83 86.86 74.90 4.2
A4 91.42 6.51 93.60 90.49 92.02 2.2 A4 69.88 3.27 70.09 86.88 77.59 2.6 A4 64.76 2.11 70.80 88.68 78.74 3.0
kj-NN 91.42 6.57 93.80 90.64 92.19 1.4 kj-NN 69.94 3.28 70.29 86.87 77.70 1.6 kj-NN 65.24 2.19 70.91 88.63 78.79 2.0



Table V
COMPARISON W.R.T. OUR COMPETITORS (TYPE O, ARXIV).

AUC AP R1 R2 R5 AUC AP R1 R2 R5 AUC AP R1 R2 R5

LOF
A

R
X

IV
-1

5
63.44 1.78 0.00 5.13 7.69

A
R

X
IV

-4
5

62.99 2.43 2.02 2.02 5.05

A
R

X
IV

-5
3

57.37 1.33 2.42 3.23 9.68
RS-Hash 54.22 1.17 2.56 2.56 2.56 49.18 0.99 0.00 0.00 6.06 42.32 0.79 0.00 0.00 0.00
ANCS 47.46 0.96 0.00 0.00 5.13 51.50 1.32 1.01 1.01 2.02 47.55 0.93 0.81 1.61 3.23
k-ANCS 67.14 1.98 0.00 7.69 10.26 70.11 2.23 1.01 3.03 17.17 63.56 1.54 2.42 4.03 9.68
TONMF 57.65 7.32 0.00 7.69 15.38 57.49 17.23 0.00 0.00 2.02 56.12 4.26 0.00 1.61 8.06
VMF-Q 71.71 2.69 5.13 10.26 15.38 66.59 2.20 3.03 7.07 15.15 77.29 3.16 3.23 8.06 25.00
CVDD 69.85 2.27 0.00 5.13 17.95 71.32 2.10 2.02 4.04 11.11 69.28 1.98 2.42 4.03 12.90
kj-NN 54.21 1.17 0.00 0.00 0.00 69.94 3.28 6.46 9.09 18.99 79.16 5.10 7.74 15.65 32.42

LOF

A
R

X
IV

-2
5

68.41 2.17 4.35 6.52 13.04

A
R

X
IV

-5
5

59.47 1.47 3.23 3.23 11.29

A
R

X
IV

-5
2

55.58 1.09 0.81 0.81 4.84
RS-Hash 44.21 0.91 0.00 0.00 4.35 49.00 0.94 0.81 0.81 3.23 52.52 1.08 0.00 1.61 5.65
ANCS 47.88 1.09 2.17 4.35 6.52 51.69 1.80 1.61 3.23 6.45 45.02 0.84 0.00 0.00 0.81
k-ANCS 67.87 2.00 2.17 4.35 10.87 67.59 2.25 3.23 6.45 14.52 66.26 1.61 0.81 3.23 8.87
TONMF 60.03 6.37 0.00 4.35 13.04 56.86 0.92 1.61 3.23 9.68 54.04 2.70 1.61 3.23 8.06
VMF-Q 71.71 2.69 5.13 10.26 15.38 72.99 2.65 4.84 8.06 16.94 67.57 2.06 2.42 7.26 13.71
CVDD 74.55 2.19 2.17 4.35 8.70 60.92 1.63 1.61 4.84 11.29 55.64 1.39 1.61 4.84 11.29
kj-NN 70.64 5.10 10.44 16.52 27.82 76.74 3.22 5.49 9.84 20.48 78.10 3.07 3.87 7.90 19.35

LOF

A
R

X
IV

-3
5

71.00 2.16 0.00 3.23 11.29

A
R

X
IV

-5
4

61.92 1.33 0.00 2.42 6.45

A
R

X
IV

-5
1

82.57 4.50 7.26 14.52 25.81
RS-Hash 47.77 0.96 1.61 1.61 4.84 47.95 0.92 0.00 0.81 2.42 51.22 1.10 1.61 4.03 6.45
ANCS 52.94 1.07 0.00 0.00 3.23 50.46 1.01 0.81 0.81 3.23 65.91 2.36 5.65 10.48 15.32
k-ANCS 73.43 2.36 1.61 4.84 16.13 68.93 1.83 0.00 1.61 8.87 54.19 1.68 4.03 7.26 11.29
TONMF 56.90 1.16 1.61 3.22 6.45 59.46 5.94 0.00 0.00 6.45 55.23 1.01 1.61 1.61 7.26
VMF-Q 60.97 1.28 0.00 0.00 1.61 61.81 1.33 0.81 1.61 6.45 62.54 1.54 1.61 4.84 8.87
CVDD 53.89 1.06 0.00 0.00 1.61 60.30 1.62 1.61 5.65 10.48 66.93 2.54 4.84 8.87 23.39
kj-NN 73.58 3.27 6.45 10.97 20.97 76.65 3.85 5.81 10.00 21.61 65.24 2.19 4.68 7.90 14.36

Table VI
COMPARISON W.R.T. OUR COMPETITORS (TYPE M, ARXIV).

P R F1 R10 R20 P R F1 R10 R20 P R F1 R10 R20 P R F1 R10 R20

W-CNN
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A
R
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AT-RNN 65.90 72.24 68.92 32.97 65.94 74.20 49.97 59.72 37.70 49.60 69.81 56.33 62.35 34.79 55.77 78.94 61.65 69.23 39.41 60.87
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