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Abstract—Network embedding aims at transferring node prox-
imity in networks into distributed vectors, which can be leveraged
in various downstream applications. Recent research has shown
that nodes in a network can often be organized in latent hierar-
chical structures, but without a particular underlying taxonomy,
the learned node embedding is less useful nor interpretable. In
this work, we aim to improve network embedding by modeling
the conditional node proximity in networks indicated by node
labels residing in real taxonomies. In the meantime, we also aim
to model the hierarchical label proximity in the given taxonomies,
which is too coarse by solely looking at the hierarchical topolo-
gies. To this end, we propose TAXOGAN to co-embed network
nodes and hierarchical labels, through a hierarchical network
generation process. Particularly, TAXOGAN models the child
labels and network nodes of each parent label in an individual
embedding space while learning to transfer network proximity
among the spaces of hierarchical labels through stacked network
generators and embedding encoders. To enable robust and
efficient model inference, we further develop a hierarchical
adversarial training process. Comprehensive experiments and
case studies on four real-world datasets of networks with hierar-
chical labels demonstrate the utility of TAXOGAN in improving
network embedding on traditional tasks of node classification and
link prediction, as well as novel tasks like conditional proximity
search and fine-grained taxonomy layout.

Index Terms—conditional network embedding, hierarchical
network embedding, generative adversarial networks

I. INTRODUCTION

Representation learning has become the backbone of various

tasks in artificial intelligence [1]. Unsupervised learning is

often the default setting due to the desired generalizability.

However, many recent works in various fields have demon-

strated the profit of leveraging limited label data to learn rep-

resentations that are not only powerful for the corresponding

predictive objectives, but also transferrable to other related

tasks [2], [3], [4], [5], [6]. Among them, hierarchical labels

residing in given taxonomies have been widely used for natural

language processing and bioinformatics, which are especially

useful for the tasks of hypernym modeling and hierarchical

classification [7], [8], [9], [10], [11], [12], [13]. In their

essence, these methods jointly learn the representations of

objects and labels in a shared latent space. The objects they

model often have rich features, but they do not directly interact

with each other.

As for representation learning on networks of intercon-

nected objects (nodes), intensive research has been done on the

modeling of both plain networks without node features [14],

[15], [16], [17], [18], [19] and content-rich networks with node

attributes and/or labels [20], [21], [3], [22], [23]. Recently, the

notion of taxonomy has been explored by pioneering research

[24], [25], which assume and seek for the latent hierarchical

structure underlying the seemingly flatly connected nodes.

However, without proper reference to a particular underlying

taxonomy, the learned network embedding is still limited

to global network mining tasks and uninterpretable without

further analysis [26].

Thanks to the vast effort in taxonomy construction from

both the research community [27], [28] and industry123,

increasing amount of network data nowadays can be read-

ily associated with existing taxonomies (Sec. III.1), which

provides great opportunities for enhancing network embed-

ding (Sec. III.2) and enabling novel network mining tasks

(Sec. III.3). Meanwhile, the rich relational data in networks

may also help in better modeling and interpreting the existing

taxonomies (Sec. III.4).

Consider a toy example in Figure 1, which consists of an

author network (e.g., given by DBLP4) and a research topic

taxonomy (e.g., given by ACM5). Author-author links can be

generated w.r.t. co-authorships, while author-label links can

be generated by keyword matching between the topic names

in the taxonomy and the published papers of the authors. In

this work, we stress the importance of two novelly observed

properties, i.e., conditional node proximity and hierarchical
label proximity.

Conditional node proximity. While existing works on net-

work embedding mostly consider network proximity within

the same set of nodes, we argue that node proximity should

be conditionally measured within the proper context. For

example, on the left side of Figure 1, consider the proximity

between C. Faloutsos and J. Kleinberg (particularly, in

comparison to that between C. Faloutsos and J. Han). When

working on Graph Mining (Graph) problems, C. Faloutsos
and J. Kleinberg share more important coauthors like J.

1https://feedonomics.com/amazon-category-taxonomy/
2https://www.ncbi.nlm.nih.gov/books/NBK21100/
3https://wiki.dbpedia.org/services-resources/ontology
4https://dblp.uni-trier.de/
5https://dl.acm.org/ccs/ccs.cfm
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Fig. 1. Toy example of TAXOGAN: Authors in a publication network are naturally connected to a research topic taxonomy. Through
proper modeling of conditional node proximity (on the left side) and hierarchical label proximity (on the right side), we aim to leverage
author node proximity in the network to capture topic label proximity in the taxonomy, which in turn can benefit the learning of
both author and topic representations in a closed loop.

Leskovec, thus resulting in a smaller distance. However, when

working on broader problems in Data Mining (DM), they

find their own coauthors like S. Mullainathan and J. Han
from different fields, hence resulting in a larger distance. As

such, under different conditions, node proximity can be rather

different and even contradictory.

As we will show in more details in Sec. II, although

a given taxonomy naturally allows for the construction of

various conditional subnetworks, the modeling of conditional

node proximity is non-trivial. This is because modeling all

conditional subnetworks separately will prohibit the leverage

of node interactions across different subnetworks and suffer

from data sparsity, but modeling all conditional subnetworks

together in a flat way will lead to a cluttered embedding space

violating the hierarchical label relations.

Hierarchical label proximity. Although we assume the ex-

istence of given taxonomies for particular networks, where

node labels are organized in tree-structured hierarchies, the

actual distribution and relative distance of these labels in the

embedding space is unknown. For example, consider the four

labels CV, NLP, Rbt. and DM on the right side of Figure 1.

Although they are all child labels of the parent label AI, the

distances among these siblings as well as their distances to AI
might be rather different, which is impossible to understand by

solely looking at the taxonomy structure itself. In this work,

we propose to leverage the rich relational information from

the networks to model the fine-grained proximity among the

hierarchical labels. Continue with our example. Since authors

working on Rbt. may overlap or collaborate more with those

working on CV than DM, the distance between Rbt. and CV
should be smaller than that between Rbt. and DM. Moreover,

compared with authors working on DM, authors working on

CV might more often study the core problems of AI. As

a consequence, the distance between AI and CV should be

smaller than that between AI and DM.

As we will discuss more in Sec. II, proper modeling of the

hierarchical label proximity can further help in regularizing the

network embedding of all nodes. However, the task is again

non-trivial, as the embedding distances in different hierarchical

levels should not be modeled in the same space, but how

proximity information can be transferred across the different

spaces is unclear.

Present work. We propose TAXOGAN to co-embed network

nodes and hierarchical labels, which leverages stacked gener-

ative adversarial nets to model the conditional node proximity

and hierarchical label proximity in networks associated with

label taxonomies. Specifically, TAXOGAN models a hierar-

chical network generation process, where a network generator

is devised at each parent label in the taxonomy to model

the children network induced by the corresponding child

labels and labeled nodes in the original network. Moreover,

a learnable network encoder is devised at each child label to

enable the learning of proximity transfer from the embedding

spaces of children to parents in a fine-to-abstract manner along

the actual label paths in the taxonomy. Finally, we device

hierarchical adversarial learning to achieve efficient and robust

model inference.

The main contributions of this work are:

1) We propose and formulate the novel problem of co-

embedding network nodes and hierarchical labels, where

we particularly model the two novel important proper-

ties of conditional node proximity and hierarchical label

proximity (Sec. II.1).

2) We develop TAXOGAN to simultaneously improve net-

work node embedding and enable hierarchical label em-

bedding, by learning to transfer proximity information

among different label induced conditional subnetworks

according to the taxonomy structure (Sec. II.2-3).

3) We prepare four datasets by linking real-world networks

with publicly available taxonomies and conduct thorough

experiments regarding two traditional network mining

tasks. Significant improvements on hierarchical node

classification (11%–70%) and competitive performance

on general link prediction compared with the state-of-the-

art demonstrate the power of TAXOGAN on improving

the quality of network embedding (Sec. III.1-2).
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4) We design two novel tasks of conditional proximity
search and fine-grained taxonomy layout, and conduct

insightful case studies to demonstrate the unique utility

and interpretability of TAXOGAN (Sec. III.3-4).

II. CO-EMBEDDING NETWORK NODES AND

HIERARCHICAL LABELS

A. Problem Formulation

Input. We take the input of a network N = {V, E ,Y} and

a taxonomy T = {L,H}, where V = {vi}Ni=1 is the set

of nodes, E is the set of node-node links, Y is the set of

label-node assignments, L = {lj}Mj=1 is the set of labels, and

H is the set of label-label links. For simplicity, we consider

uniform undirected node-node links in E , while our model

easily generalizes to networks with weighted directed links. By

the definition of taxonomy, label-label links in H are uniform

and directed, pointing from parent labels to child labels. Our

model works for taxonomies both in tree and DAG structures.

Y serves as the bridge between N and T , where for each

node vi ∈ V , yi is the set of labels assigned to vi. In this

work, we require all labels in yi to also appear in L, but yi

can be empty or include any combination of multiple labels. In

other words, we only consider node labels organized in a given

taxonomy, while we allow the links between the network and

the taxonomy to be flexible (likely also weak and noisy). Due

to the rapid development of taxonomy construction methods

and the growing availability of real-world taxonomies, many

networks can be naturally connected with existing taxonomies,

which leads to an urge in developing proper models for the

joint modeling of both worlds.

Output. To effectively capture the interactions among nodes

in the network and labels in the taxonomy, we propose to co-

embed V and L. Therefore, the output of TAXOGAN consists

of an (N × K)-dim embedding matrix U for V and an

(M ×K)-dim embedding matrix Q for L. As we will show

later, although we embed V and L as the same dimension, their

proximity is preserved in different projected spaces, which

is necessary for capturing the conditional node proximity

under different contexts. Moreover, the projected spaces are

connected via learnable transformation functions, which ef-

fectively learns to transfer proximities along parent-child label

links and captures the hierarchical label proximity.

B. Preliminaries

Heterogeneous graph embedding. A naı̈ve way to jointly

model N and T is to use a heterogeneous graph, where labels

are flattened in the taxonomy. PTE [2] provides a vanilla

formula to embed such graphs. In our case, consider nodes V
in N as words with undirected co-occurrence links and labels

L in T as documents connected by directed citation links. A

heterogeneous graph of V and L can be embedded according

to the following objective

JPTE = Jvv + Jvl + Jll, (1)

where

Jvv = −
∑
eij∈E

wij log G(vi, vj),

with G(vi, vj) =
exp(u′T

i · uj)∑
vk∈V exp(u′T

k · uj)
; (2)

Jvl = −
∑

yij∈Y
wij log G(vi, lj),

with G(vi, lj) =
exp(u′T

i · qj)∑
vk∈V exp(u′T

k · qj)
; (3)

Jll = −
∑

hij∈H
wij log G(li, lj),

with G(li, lj) =
exp(q′T

i · qj)∑
lk∈L exp(q′T

k · qj)
. (4)

Each G(oi, oj) models the probability of generating a linked

from object (node/label) oi to object oj . Following the setting

of Skip-gram adapted to network embedding [14], [15], we

use U/Q as the target embedding and U′/Q′ as the context

embedding, which allows explicit modeling of the second-

order proximity as proposed in LINE [15].

To optimize Eq. 1, stochastic gradient descent with the

techniques of edge sampling and negative sampling [15] can

be leveraged. However, the random negative sampling process

does not leverage the graph structures at all, which leads to

inefficient and unstable training.

Adversarial graph embedding. To enable efficient and robust

graph embedding, GraphGAN [16] was proposed based on

the concept of adversarial learning [29]. Instead of randomly

sampling negative pairs of objects (objects without links),

GraphGAN constructs a link discriminator D and a fake link

generator G, and iteratively optimizes the following objective

function by allowing D and G to play a two-player minimax
game

min
θG

max
θD

JgGAN =
∑
vi∈V

(
Ev∼ptrue(·,vi)

[
logD(v, vi; θD)

]

+Ev∼G(·,vi;θG)

[
log

(
1−D(v, vi; θD)

)])
.

(5)

Empowered by the novel graph softmax function, G is

able to efficiently generate strong negative samples on-the-

fly during training in a graph-structure-aware way [16]. Note

that, by sharing the target and context embedding in both G
and D, GraphGAN does not explicitly consider second-order

proximity as in PTE and LINE [15]. However, since G and D
still maintain two sets of embedding, which takes charge of

generating and discriminating links respectively, GraphGAN

manages to outperform LINE on classic network embedding

tasks by significant margins.

In another line of research, complex generative adversarial

nets (GAN) have been rapidly developed in domains like

computer vision and natural language processing. Particularly,

we notice the SGAN model developed for hierarchical image
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Fig. 2. Illustration of the main challenges: Modeling network
nodes and hierarchical labels all together in a single space leads to
a cluttered embedding space violating the underlying hierarchy,
while simply partitioning them into separate spaces ignores label
correlations and results in parameter redundancy.

representation learning [30], which consists of a top-down

stack of GANs learned to generate high-level to low-level

image representations in a hierarchical fashion. While the

tasks of image representation and network representation are

naturally different, we find essential connections between

their task and ours, due to the consideration of underlying

hierarchical structures.

C. TAXOGAN

In this work, we aim at co-embedding network nodes and

hierarchical labels. To understand the main challenges of this

task, let us take a look at Figure 2, where an author node

J. Leskovec has three labels Graph, DM and AI in the

research topic taxonomy. In this simple case, on one hand,

if we do not consider the hierarchical structure of labels and

put them all in a single space, the author embedding will

eventually lie somewhere in the middle of the three label

embeddings (as marked by the blue ‘+’ sign), which violates

the label hierarchy and results in underfitting. On the other

hand, if we simply use separate spaces to embed the nodes

and labels under each parent label, the model will ignore the

rich correlations among labels in the hierarchy, bringing in

massive redundant parameters and leading to overfitting.

To address the above challenges, we propose TAXOGAN to

co-embed network nodes and hierarchical labels through a

hierarchical network generation process, where a network

generator is devised at each parent label in the taxonomy

to model the subnetwork of nodes and child labels, and a

network encoder is devised at each child label to learn the

transferrable proximity across levels in the taxonomy. The

generator and encoder are jointly trained through efficient

and robust hierarchical adversarial learning, where a network

discriminator is devised in each embedding space to enforce

correct node-node and node-label proximity. In the following,

we motivate and describe each component of TAXOGAN in

details.

Label-wise subnetwork generator: jointly model node and
label proximities in conditional subnetworks. To properly

model conditional node proximity and respect the label hier-

archy, we propose to generate a specific node-label network

under each parent (non-leaf) label in the taxonomy. Let lp
denote an arbitrary parent label in T , and Lp denote the set

of all immediate child labels of lp. Then Vp is the subset of

V consisting of all nodes with label lp or labels in Lp. A

conditional subnetwork Bp is constructed from Vp, Lp as well

as the node-node links Ep among nodes Vp and node-label

links Yp between nodes Vp and labels Lp.

Bp acts as a bridge between node proximity and label

proximity under the condition of lp. In the corresponding

embedding space Sp, Vp and Lp can then be arranged in a flat

way. To learn the node embedding Up and label embedding

Qp in the space of Sp, we devise a subnetwork generator G to

enforce Ep and Yp based on the softmax function as follows

G(vj , vi|lp) =
exp(upT

j · up
i )∑

vk∈Vp
exp(upT

k · up
i )
, (6)

G(ls, vi|lp) =
exp(qpT

s · up
i )∑

lk∈Lp
exp(qpT

k · up
i )
. (7)

Following LINE [15], we can use negative sampling to

compute the softmax in Eq. 6, since the number of nodes

|Vp| can be quite large even in the subnetworks. However,

since the number of child labels |Lp| is often quite small,

we can directly compute the softmax in Eq. 7 for better label

accuracy. Note that, in each conditional subnetwork, there exist

no direct links among labels. Thus, the fine-grained relative

distances among child labels under each parent label are

learned based on the corresponding network structure, which

cannot be inferred from the taxonomy structure itself.

Cross-level learnable encoder: proximity transfer and
parameter sharing in the taxonomy. The generator G, with-

out the consideration of label correlations and transferrable

information in the taxonomy, can either model all condi-

tional subnetworks essentially in a single embedding space

or separately in independent spaces. The key difference lies

in the computation of Up and Qp. Since in each conditional

subnetwork Bp, we co-embed nodes Vp and labels Lp in the

space Sp, Up and Qp can be computed from U and Q in

the same way. Without loss of generality, we will focus our

discussion on the computation of Up.

Particularly, if Up = U, which is shared across all condi-

tional subnetworks, all nodes and labels are essentially flatly

arranged in a single embedding space of U, which violates

the label hierarchy, resulting in clutter embedding space and

underfitting. Otherwise, if we compute a completely different

Up for each conditional subnetwork, the subnetworks are mod-

eled in independent spaces, which ignores label correlations,

leading to large parameter redundancy and overfitting.

As a remedy to this trap, we propose to compute each

Up as an encoded version of U, i.e., Up = A(U, lp), so

as to essentially transfer proximities captured by different

subnetwork generators in the taxonomy. However, since the

semantic information in taxonomies is coarse, it is hard to

decide how to exactly transfer the proximities. For example,

consider the sibling labels of NLP and CV under parent AI.
Since NLP communities might be tighter than CV as including
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less diverse subtopics, it should transfer stronger proximity

signals. That is, in the subspace of AI, authors close in the

subspace of NLP should be closer than those close in the

subspace of CV. To capture such subtle semantics in the

taxonomy, we require the encoder A to be learnable and label-
dependent. To this end, we leverage the simple but powerful

nonlinear fully connected feedforward neural network (FNN)

to model Up as

Up = A(U, lp) = ReLU(ApU) + bp, (8)

where Ap and bp are the learnable parameters in the encoder

at lp.

Learning a separate encoder function at each child label

does not really leverage the hierarchical structure of T and

still leads to large parameter spaces. To this end, we get

motivated by the idea of hierarchical image representation

learning [30], which leverages stacked encoders to guide the

generation of image representations from high (abstract) to low

(detailed) levels. In our scenario, since nodes in the network

are connected with labels in the taxonomy, they can also

be described by representations at multiple granularities [25].

Therefore, we propose to parameterize A as nested embed-
ding transformations following the hierarchy paths along the

taxonomy. For any label lp, let lp → . . . → lj → li denote the

path from lp to a certain leaf label li. We have

Up = A(U, lp) = Ap(· · · Aj(U, lj) · · · , lp). (9)

Note that, the number of parameters in A grows linearly

with the number of labels |L| in the taxonomy. However, since

the main purpose for using A is to compute multi-granularity

node embeddings and separate labels on different levels, it is

reasonable to share the parameters of A among all labels on

the same levels of the taxonomy, which reduces the model

complexity of A to log |L|, and further alleviates possible

overfitting due to sparse data in certain subspaces.

Adversarial network discriminator: enable efficient and
robust learning. Through subnetwork generation and learn-

able encoding, we essentially manage to partition the whole

network and taxonomy into a set of conditional subnetworks

with proper proximity transfer functions. Following the classic

heterogeneous network embedding framework of Eq. 1, we

formulate the overall objective of TAXOGAN into

JTAXOGAN = Jvl + λ1Jvv + λ2Jll, (10)

where each of Jvv , Jvl and Jll is only slightly different

from those in Eq. 1 by replacing the global generator G
with conditional generators and embedding encoders defined

in Eq. 6-9.

In practice, we find the joint training of generator networks

G and encoder networks A to be often inefficient and unstable.

Inspired by recent advances in adversarial learning [16], [17],

[18], [19], we propose to improve the efficiency and robustness

of model inference, by designing a novel hierarchical adver-

sarial network discriminator D. Specifically, each of Jvv , Jvl
and Jll can be optimized through a two-player minimax game

defined in Eq. 5, with the corresponding designs of G and A
defined in Eq. 6-9 and D defined as follows, which measure

the log-probability of node-node and node-label links.

D(vj , vi|lp) =
1

1 + exp(−upT
j up

i )
, (11)

D(ls, vi|lp) =
1

1 + exp(−qpT
s up

i )
. (12)

As illustrated in Figure 3, for each node vi in N , we

consider a bottom-up node encoding process together with

a top-down network generation process. u0 = u is the

lowest level node embedding, capturing raw node proximity

in N . At each parent label lp in T , the encoder network A
computes a transformed embedding up, which ideally can best

characterize the embedding of Vp and Lp in the conditional

embedding space Sp. To achieve this goal, the generator

network G takes up as input and generates the most misleading

linked node v̂j from Vp and the most relevant label l̂s from

Lp based on Eq. 6 and 7. The discriminator network D then

tries to differentiate v̂j and l̂s from the true linked nodes and

labels by maximizing Eq. 10 w.r.t. the above equations.
Note that, for stable model training, we find it important

for G and D to maintain two different sets of node and label

embeddings, i.e., U′, Q′ for G and U, Q for D, which

correspond to the context embedding and target embedding
in [14], [15], respectively. Also note that, since we partition

the whole network into series of subnetworks, some node-node

links across different subnetworks cannot be directly modeled,

but they nonetheless carry important proximity information. To

deal with this, we add a global node-node proximity module

on the base embedding of nodes U , which is implemented by

exactly following [16].

Algorithm 1 TAXOGAN Training

1: procedure TAXOGAN-TRAIN

2: Input: network N , taxonomy T , embedding dimension K,
#batches bvl, bvv , bll, batch size s, negative sampling rate n

3: while not converge do
4: Sample a parent label lp and construct the subnetwork Bp

5: for t ← 1 to bvv do
6: Update U′p and Up by training Gvv , Dvv , A
7: end for
8: for t ← 1 to bll do
9: Update Q′p and Qp by training Gll, Dll, A

10: end for
11: for t ← 1 to bvl do
12: Update U′p, Up, Q′p, Qp by training Gvl, Dvl, A
13: end for
14: end while
15: return U, Q and A
16: end procedure

Training algorithm. Finally, with the neural architectures

of generator G, discriminator D and encoder A defined, we

describe the detailed joint training process of TAXOGAN in

Algorithm 1.
In algorithm 1, in Line 6, the design and training of Gvv and

Dvv in each subnetwork is the same as in the plain networks
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Fig. 3. TAXOGAN overview: A framework for the adversarial learning of hierarchical network embedding.

of [16]; in Line 9, the training of Gll and Dll are very similar

to those of Gvv and Dvv , only by substituting U with Q, and

A is shared for U/U′ and Q/Q′. Since the sampling of v
and l is discrete, all generator networks are trained by policy

gradient [31]. For example, the gradient of Jvl conditioned on

lp w.r.t. G is computed as

∇U′,Q′Jvl|lp
=∇U′,Q′

∑
lj∈Lp

Elj∼G(·,vi|lp)[log(1−D(lj , vi|lp)]

=
∑
lj∈Lp

Elj∼G(·,vi|lp)

[∇U′,Q′ log G(lj , vi|lp) log(1−D(lj , vi|lp))].
Training the generator networks G results in the update of

U′ and Q′, while training the discriminator networks D results

in the update of U and Q. For stability concern, we fix A
during the training of G, and only update it while training D.

In each iteration, the complexity of Line 5-7 is

O(bvvsndNK), Line 8-10 is O(bllsndTK), Line 11-13 is

O(bvlsndTK), where dN is the average node degree in N
and dT is the average number of child labels of each non-

leaf label in T . bvv , bll and bvl are set to balance the trade-off

among the three objectives and reflect the weighing parameters

λ1 and λ2 in Eq. 10. Considering convergence to be reached

after a constant number of iterations over all nodes, the

overall complexity of TAXOGAN is bounded by the N logN
complexity of global network embedding same as [16].

We implement TAXOGAN with Pytorch. As we can observe

from the experimental results, the variance across different

trains of TAXOGAN on the same data is not large. We further

inspect the loss curves and conclude that the training process

of TAXOGAN is stable. The code is published on GitHub6.

III. EXPERIMENTS

A. Experimental Settings

Datasets. We construct four datasets of real-world networks

with explicit taxonomies.

• DBLP: We collect the author network7 with the research

topic taxonomy8. Undirected uniform links in the network

6https://github.com/JieyuZ2/TaxoGAN
7https://dblp.uni-trier.de/xml/
8https://dl.acm.org/ccs/ccs flat.cfm

are generated based on coauthorships. A label in the taxon-

omy is assigned to an author if her/his papers mentions the

keyword.

• Yelp: We collect the business network9 with the category

taxonomy10. Undirected uniform links in the network are

generated based on common customers who posted reviews

for both businesses. Label assignments are given in the

original dataset.

• FreeBase: We collect the entity network11 with the type

taxonomy12. Undirected uniform links in the network are

generated if two entities appear together in any triplet of

facts. Labels are assigned by retrieving the nested entity

types.

• PubMed: We collect the protein network13 with the disease

taxonomy14. Undirected uniform links in the network are

generated if mentions of two proteins appear in any same

sentence. Labels are assigned by surface name matching.

Datasets
Network Taxonomy

#nodes #links #labels #levels
DBLP 81,389 208,711 268 4
Yelp 14,573 55,243 438 4

FreeBase 30,180 53,632 18 3
PubMed 9,619 25,655 87 2

TABLE I
STATISTICS OF THE FOUR REAL-WORLD DATASETS WE USE.

Compared algorithms. We compare with three groups of

network embedding algorithms from the state-of-the-art to

comprehensively evaluate the performance of TAXOGAN.

• Plain network embedding: We compare with DeepWalk [14]

and GraphGAN [16]. DeepWalk is the most pioneering and

popular Skip-gram based network embedding algorithm,

while GraphGAN represents the state-of-the-art plain net-

work embedding models leveraging adversarial learning. We

run both algorithms on the original networks by ignoring the

taxonomies.

• Attributed and labeled network embedding: We compare

with PTE [2] and GraphSage [32]. PTE is an extension of

9https://www.yelp.com/dataset
10https://www.yelp.com/developers/documentation/v3/all category list
11http://freebase-easy.cs.uni-freiburg.de/dump/
12http://dbpedia.org/page/Taxonomy
13ftp://ftp.ncbi.nih.gov/pub/taxonomy
14ftp://ftp.ncbi.nlm.nih.gov/
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the popular LINE [15] algorithm to networks with attributes

and labels. We treat taxonomies as flat label networks,

and run PTE on the bipartite networks of nodes and la-

bels. GraphSage represents the state-of-the-art attributed and

labeled network embedding models. We regard all labels

as flat node attributes and train GraphSage in the link

prediction fashion.

• Taxonomy aware network embedding: We compare with

Poincare [24] and Nethiex [25], which are the most recent

network embedding algorithms assuming latent node tax-

onomies. Since they do not work with explicit taxonomies,

we run both of them on the original networks as in their

original settings.

We also conduct comprehensive ablation study by compar-

ing four different TAXOGAN variants: (1) TAXOGAN-sin is

the model with a single embedding space; (2) TAXOGAN-

sep is the model with separate embedding spaces; (3) TAX-

OGAN-noadv is the model without adversarial training; (4)

TAXOGAN is our full model.

Evaluation protocols. We evaluate all algorithms on two

fundamental tasks: node classification and link prediction.

For node classification, since we consider hierarchical labels

in taxonomies in this work, we focus on the setting of level-by-

level classification. Given the learned embedding of training

nodes and the label taxonomy, we further train a linear SVM

at each parent label to classify the testing node w.r.t. the

current child labels. During testing, each node thus can be

assigned to a path in the label taxonomy, a testing node-

label pair (v, l) is correct if the predicted label path of v
includes l. All TAXOGAN models except for TAXOGAN-

sin use the corresponding embeddings in each level, while

the other models all use a single embedding across all levels.

We randomly split the set of labeled nodes into training and

testing sets with the ratio of 4:1 for five times and compute the

testing F1 of each node-label pair. We aggregate the pair-wise

F1 scores by each node to compute the micro F1 and by each

label to compute the macro F1.

We consider standard link prediction in the same way as in

[14], [15]. Predicted links are ranked by the cosine distance

among the node embedding vectors. All TAXOGAN models

use the shared base embedding U for link prediction. We

randomly split the set of all links in the network into training

and testing sets with the ratio of 4:1 for five times and compute

the standard AUC and MRR scores.

Parameter settings. The implementations of all compared

algorithms are provided by their original authors, and all model

hyper-parameters are tuned to the best via standard five-fold

cross validation. For TAXOGAN, we use the same parameters

for all datasets. After a rough grid search, we empirically set

the loss weighing parameters λ1 and λ2 to 0.1, embedding

dimension τ to 50, batch size s to 64 and learning rate to 10−4.

All batch numbers b’s are set to 128 and negative sampling

rate n is set to 5.

B. Quantitative Evaluations

Table II presents the performance of compared algorithms

on hierarchical node classification. The improvements of TAX-

OGAN over the second runners all passed the significance t-

test with p-value 0.01. Since the classification at each level in

the label taxonomy is multi-class, and deeper labels are harder

to be correctly predicted (if any precedent label is predicted

wrong, the label path can never reach the correct label), the

absolute F1 values are all pretty low. Dataset like Yelp has

a lot of deep but narrow labels, which are hard to correctly

predict, and the mistakes largely impact the macro F1, whereas

dataset like PubMed has a lot of shallow but wide labels,

and the mistakes largely impact the micro F1. Thus the suite

of datasets and metrics provides a comprehensive evaluation

towards the compared algorithms.

The baselines have varying performance across different

datasets, while PTE and GraphSage often perform better due

to the leverage of labeled data during training. By considering

latent hierarchies, Poincare and Nethiex perform better than

DeepWalk and GraphGAN in many cases, but their learned

latent hierarchies do not always perfectly match the reality

and even lead to worse performance in some cases like on

DBLP.

Overall, TAXOGAN constantly outperforms all compared

algorithms in all cases, with significant margins over the best

baseline ranging from 11% to 70%, and the scores all passed t-
test with p-value 0.05, demonstrating its superior effectiveness

and generalizability. In particular, the improvements of TAX-

OGAN are more significant when the numbers of labels are

larger and the hierarchies of labels are deeper, like with DBLP

and Yelp, which supports the appropriate design of our model

to leverage the explicit hierarchical structure of associative

labels. Note that, while the unsupervised baselines (DeepWalk,

GraphGAN, Poincare and Nethiex) do not have access to the

node labels in the taxonomy, PTE and GraphSage use the

exact same labels as TAXOGAN. This shows TAXOGAN to

be effective in modeling hierarchical label spaces, as we will

further demonstrate in the ablation study.

For ablation study, our TAXOGAN-sin model has close

performance towards the best baselines like PTE, because they

are indeed similar only by the difference in adversarial train-

ing; our TAXOGAN-sep model does not always outperform

TAXOGAN-sin, indicating that even if the evaluation protocol

of level-by-level classification may favor multiple embeddings,

simply using separate embeddings is not good enough and

can harm the performance due to problems like subnetwork

sparsity and overfitting, and TAXOGAN-sep is extremely

hard to train due to redundant parameters and large memory

cost; our TAXOGAN-noadv model is the nested space model

without adversarial training, which outperforms TAXOGAN-

sep with significant margins, corroborating the effectiveness of

our model design with connected subspaces through base and

transformed embeddings; our TAXOGAN model further out-

performs TAXOGAN-noadv, directly showing the advantage

of our novel hierarchical adversarial training technique.

727

Authorized licensed use limited to: University of Illinois. Downloaded on July 19,2021 at 17:01:05 UTC from IEEE Xplore.  Restrictions apply. 



Model
Micro F1 Macro F1

DBLP Yelp FreeBase PubMed DBLP Yelp FreeBase PubMed
DeepWalk 11.07 ± 0.61 26.24 ± 0.84 26.41 ± 1.12 10.94 ± 1.06 13.11 ± 0.81 4.54 ± 0.97 28.11 ± 1.06 39.37 ± 0.36
GraphGAN 16.10 ± 0.55 26.40 ± 1.21 25.97 ± 0.85 13.68 ± 1.28 16.19 ± 0.71 4.90 ± 1.04 26.65 ± 0.43 40.35 ± 0.44
PTE 16.42 ± 0.47 33.73 ± 0.93 50.27 ± 1.40 12.71 ± 1.64 18.61 ± 0.67 5.47 ± 0.39 28.19 ± 0.31 40.74 ± 0.87
GraphSage 18.72 ± 1.18 29.06 ± 0.29 45.77 ± 0.60 12.05 ± 1.17 16.65 ± 0.72 9.43 ± 1.03 24.06 ± 0.90 36.39 ± 1.09
Poincare 13.87 ± 0.51 29.02 ± 1.12 30.43 ± 1.29 12.73 ± 1.90 18.49 ± 0.51 4.25 ± 1.08 28.57 ± 0.37 40.09 ± 0.33
Nethiex 10.06 ± 0.56 19.44 ± 1.53 35.39 ± 1.37 12.22 ± 1.31 13.86 ± 0.54 4.06 ± 1.03 24.75 ± 0.52 40.83 ± 0.78
TAXOGAN-sin 20.56 ± 0.25 34.88 ± 0.42 65.36 ± 0.59 11.81 ± 1.13 30.44 ± 0.63 13.33 ± 0.39 32.21 ± 0.32 39.86 ± 0.63
TAXOGAN-sep 25.80 ± 1.01 28.47 ± 1.04 63.46 ± 0.46 11.98 ± 0.42 33.37 ± 0.45 11.63 ± 0.95 29.41 ± 0.98 39.86 ± 0.74
TAXOGAN-noadv 29.52 ± 0.79 39.83 ± 1.09 65.79 ± 1.07 16.31 ± 0.22 30.13 ± 0.62 12.74 ± 0.93 31.55 ± 0.62 40.05 ± 0.98
TAXOGAN 31.97 ± 1.44 41.37 ± 0.58 65.98 ± 0.98 20.11 ± 1.41 36.42 ± 0.57 15.19 ± 0.72 36.62 ± 0.95 40.89 ± 0.63

TABLE II
PERFORMANCE OF ALL COMPARED ALGORITHMS ON HIERARCHICAL NODE CLASSIFICATION.

Model
AUC MRR

DBLP Yelp FreeBase PubMed DBLP Yelp FreeBase PubMed
DeepWalk 83.40 ± 0.26 87.93 ± 0.43 64.93 ± 0.35 69.15 ± 1.18 81.41 ± 0.66 68.46 ± 0.57 63.07 ± 0.98 40.37 ± 0.38
GraphGAN 83.76 ± 0.09 88.51 ± 0.28 65.00 ± 0.67 68.19 ± 1.31 81.03 ± 0.59 67.81 ± 0.41 63.03 ± 0.63 41.35 ± 0.44
PTE 75.47 ± 0.15 89.10 ± 0.26 63.16 ± 0.52 71.46 ± 0.86 77.77 ± 0.56 68.85 ± 0.25 62.75 ± 0.41 42.74 ± 0.87
GraphSage 82.63 ± 0.22 85.33 ± 0.56 66.53 ± 0.51 68.20 ± 1.21 76.47 ± 0.34 62.91 ± 0.15 62.65 ± 0.11 36.39 ± 1.09
Poincare 84.06 ± 0.15 91.60 ± 0.16 68.86 ± 0.35 71.68 ± 0.80 81.79 ± 0.48 68.51 ± 0.62 63.11 ± 0.12 41.09 ± 0.33
Nethiex 84.41 ± 0.07 92.70 ± 0.26 69.75 ± 0.68 71.78 ± 0.28 81.13 ± 0.46 69.16 ± 0.54 63.05 ± 0.35 40.83 ± 0.78
TAXOGAN-sin 84.14 ± 0.06 92.31 ± 0.31 67.14 ± 0.41 68.00 ± 0.74 79.99 ± 0.46 69.59 ± 0.71 63.64 ± 0.97 41.89 ± 1.11
TAXOGAN-sep 84.17 ± 0.14 87.47 ± 0.34 63.29 ± 0.65 68.60 ± 0.64 80.84 ± 0.38 68.36 ± 0.95 62.65 ± 0.68 40.96 ± 0.74
TAXOGAN-noadv 84.56 ± 0.15 92.22 ± 0.39 66.73 ± 0.66 68.95 ± 0.33 80.27 ± 0.26 69.31 ± 0.41 63.34 ± 0.59 40.05 ± 0.98
TAXOGAN 85.02 ± 0.25 92.92 ± 0.44 70.48 ± 0.32 70.02 ± 1.03 82.32 ± 0.28 69.70 ± 0.57 64.33 ± 0.49 42.05 ± 0.98

TABLE III
PERFORMANCE OF ALL COMPARED ALGORITHMS ON STANDARD LINK PREDICTION.

Table III presents the performance of compared algorithms

on standard link prediction. Note that, the main goal of TAX-

OGAN is hierarchical node classification by design, where we

leverage network structures to compute the node embeddings

as inputs of the hierarchical classifiers. As a result, the base

embeddings that we use for the link prediction experiments are

mostly decided by the plain network structures and only get

slightly influenced during the training of the hierarchical GAN

model. Nonetheless, such fine tuning w.r.t. hierarchically struc-

tured labels is shown to be useful for global (unconditional)

link prediction, which leads to very competitive performance

compared to the strongest baselines, further corroborating

the general utility of TAXOGAN. It is reasonable to expect

TAXOGAN to further excel on datasets where links are also

generated under different conditions.

We measure the runtimes of all compared algorithms on

a server with one GeForce GTX TITAN X GPU and two

Intel Xeon E5-2650V3 10-core 2.3GHz CPUs. We observe

the runtimes of TAXOGAN to be similar to GraphGAN and

GraphSage, while slightly larger than other baselines like PTE

and DeepWalk.

C. Conditional Proximity Search

To illustrate how TAXOGAN is able to capture both global

and conditional proximity on networks with hierarchical la-

bels, we select four of the many well-known researchers

from different fields related to data mining and extract their

hierarchical embeddings computed by TAXOGAN on DBLP.

In Table IV, for each author pair, we present their predicted

proximity based on the cosine similarity between their global

base embeddings as well as the topic-wise conditional em-

beddings of the top five research topics where the pair is

embedded most closely. As we can observe, (1) the global

proximity computed by TAXOGAN reflect the reality, where

authors working on more similar topics in general are embed-

ded closer. Meanwhile, (2) the conditional proximities are even

more accurate and telling, since they provide essential insights

into which particular research topics a given pair of authors

are likely to collaborate on. Such knowledge, while directly

facilitating the unique application of conditional proximity

search as we advocate in this work, is hard to gather without

proper joint modeling of the network and associated taxonomy.

D. Fine-Grained Taxonomy Visualization

Another novel application of TAXOGAN is fine-grained tax-

onomy visualization, which is enabled by our unique leverage

of node proximity in networks associated with the taxonomies.

As an example, we visualize the embedding spaces (Figure

4, reduced to 2-dim by standard PCA) of four label-induced

subnetworks from DBLP, corresponding to the labels root,
AI, IR, and ML. Grey dots are nodes in the conditional

subnetworks, while red and blue dots are the parent and

child labels, respectively. Since many labels have quite similar

textual names, such fine-grained label representations are hard

to generate by existing methods like word embedding.

As we can observe, the results are highly interpretable

and insightful, which provide knowledge about the relative

distances among labels. For example, in the AI subnetwork,

labels closest to AI include CV, NLP and foundations of AI,
while the closest pairs of labels include knowledge rep.–
NLP, CV–planning, planning–control, etc. While existing

taxonomies mostly only include a label skeleton, such label
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Jiawei Han & Christos Faloutsos Jiawei Han & Jure Leskovec Jiawei Han & Yoshua Bengio
global (0.8772) global (0.7401) global (0.6558)
knowledge rep. and reasoning (0.8983) information system applications (0.8238) retrieval tasks and goals (0.6174)
collaborative and social computing (0.8884) machine learning approaches (0.7671) machine learning approaches (0.5717)
data mining (0.8579) collaborative and social computing (0.7019) foundations of AI (0.5634)
information system applications (0.7960) users and interactive retrieval (0.6784) document representation (0.5328)
spatial-temporal systems (0.7280) knowledge rep. and reasoning (0.5381) scheduling and planning (0.5079)
Christos Faloutsos & Jure Leskovec Christos Faloutsos & Yoshua Bengio Jure Leskovec & Yoshua Bengio
global (0.8883) global (0.7939) global (0.7710)
collaborative and social computing (0.9229) foundations of AI (0.7468) enterprise information systems (0.7632)
specialized information retrieval (0.8864) enterprise information systems (0.7020) foundations of AI (0.7124)
information system applications (0.8664) collaborative and social computing (0.6569) machine learning approaches (0.6846)
search methodologies (0.8624) retrieval models and ranking (0.5428) planning and scheduling (0.6437)
machine learning (0.7989) computer vision (0.4958) search methodologies (0.6128)

TABLE IV
PAIR-WISE GLOBAL AND CONDITIONAL SIMILARITY AMONG FOUR RESEARCHERS JOINTLY LEARNED BY TAXOGAN.

(a) Base Embedding Space (b) Artificial Intelligence (c) Information Retrieval (d) Machine Learning

Fig. 4. Visualization of the hierarchical label spaces learned by TAXOGAN given the network and label taxonomy (zoom in for clear view).

embeddings are valuable towards the understanding of subtle

label relations, and likely useful for more downstream tasks

like taxonomy refinement and others involving machine learn-

ing on taxonomies.

IV. RELATED WORK

Network Embedding. Network embedding, particularly node

embedding, aims to transform node proximity into embedding

distance in low-dimensional vector space. Along with the

recent success of neural networks, many powerful models have

been developed for network embedding, such as the graph

context preserving models based on Skip-gram [14], [15], [16],

[17], [18], [19]. They are mostly developed for plain networks,

where the learned representations capture network proximity

among nodes up to certain orders.
On top of them, more recent works aim to stress auxiliary

information associated with networks such as attributes, labels,

and communities. Most of them can be arranged into two

groups. The first models the embedding process as semi-

supervised or multi-modal learning, by jointly utilizing the

network proximity while optimizing particularly designed aux-

iliary task objectives, such as attribute prediction [20], [22],

[21], classification [33], [23], [3], [34], clustering [35], [36],

[37], etc. The second group reorganizes the networks based

on auxiliary data into particular structures such as multi-view

networks [38] and heterogeneous networks [39]. They model

and weigh multiple measures of proximity among the same

set of nodes. Different from them, we leverage the auxiliary

data of hierarchical labels and combine the ideas behind both

groups to formulate multiple optimization objectives.
Until very recently, the notion of taxonomy has been

brought to network embedding. With the assumption that net-

work nodes can be organized in an underlying taxonomy, [24]

proposed to preserve node proximity on the tree-structured

taxonomy in a hyperbolic space for parsimonious representa-

tions, while [25] proposed to partition the embedding vectors

into segments to model multi-granularity node proximity. Both

methods are shown to be advantageous for improving the

quality of general unsupervised network embedding. Differ-

ent from them, we leverage the knowledge from existing

taxonomies, which provide additional opportunities to fur-

ther improve the embedding quality, while naturally enabling

more novel applications with valuable interpretability. During

the writing of this paper, we notice a recent work sharing

similar spirits with us by jointly embedding KB instances

and ontology concepts [40]. However, they only compute two

embedding spaces by ignoring subtler conditional proximities

and their KB embedding models do not work in the network

embedding setting as we consider.

Taxonomy Modeling. Taxonomy has attracted tremendous

attention from both research community and industry, due to

its fundamental utility in various real-world applications [28],

[27]. In industry, enterprises have been manually constructing

large taxonomies of products, services and so on for decades.

In academia, while most existing research focuses hypernym-

hyponym pair extraction through lexical patterns [41], [42] or

supervised classification [10], [11], recent works also construct

topic taxonomies based on hierarchical clustering [27], [43].

As closest to us, [44] jointly performs clustering and ranking

on text-rich networks to extract hierarchical topic structures.

However, existing works on taxonomy construction seldom

consider the relative proximity from children to parents and

the varying proximity among siblings.
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Another line of research related to taxonomy is hierarchical

classification [13], [12], [7]. To correctly classify objects to

paths of hierarchical labels on a taxonomy, the models usually

need to implicitly capture the distributions of child classes un-

der parent class. Some recent works based on word embedding

techniques also aim to capture the fine-grained hierarchical

relations among parent and child classes through complex

neural networks [8], [9]. However, since their ultimate goal

is classification, the implicitly captured label distributions are

not readily useful and interpretable.

V. CONCLUSION

To the best of our knowledge, we are the first to jointly

model networks and taxonomies. By stressing the important

properties of conditional node proximity and hierarchical label

proximity, we develop TAXOGAN, which computes high-

quality network embedding under the guidance of hierarchical

labels, while in turn produce fine-grained label embedding.

Extensive experimental results and interpretable case studies

demonstrate the advantages of TAXOGAN in both traditional

network mining tasks and unique novel applications.
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