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Light-triggered explosion of lipid vesiclesT

Vinit Kumar Malik, Sangwoo Shin (2° and Jie Feng () *?

Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell
membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of
vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A
common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a
characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an
osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we
present a generalized biophysical model incorporating a stochastic account of membrane rupture to
describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with
experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an
extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e.
explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics
under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance

rsc.li/soft-matter-journal release in therapeutic carriers.

1 Introduction

Giant unilamellar vesicles (GUVs) are commonly employed as a
simple representative system to study biological cell behaviors.
In addition, with the development of biological techniques and
use of bottom-up approaches, GUVs also serve as fundamental
building blocks to construct a cell-mimicking system." Therefore,
GUVs are considered as an excellent tool for enhancing a funda-
mental understanding of lipid membranes and artificial cells
ranging from phase separation and lipid domain emergence’ to
physiological response of cells to their extracellular environ-
ment.>* In these contexts, the mechanical response of vesicles
plays a key role in predicting shape transformation of cells,’
illuminating the origins of life,° and determining the content
release dynamics in targeted nanotherapeutics;’ leaving vesicle
stability in nonequilibrium environments an indispensable aspect
of the dynamics. In particular, osmoregulatory has a significant
effect on vesicle stability, sometimes leading to drastic outcomes
such as fusion and fission of cells and liposomes.®® Hence,
vesicles response under osmotic stress has been a topic of interest
in the soft matter community for decades.’®™> For instance, as
illustrated in Fig. 1a, a vesicle swollen due to hypotonicity will relax
following initial bursting, subsequently resealing owing to the
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excess pore edge energy. This cycle of swell-burst-reseal continues
until the osmotic gradient drops below a value that the vesicle
membrane can withstand.

Recently, light-induced osmotic shock has been used to
trigger catastrophic lysis of micro-scale vesicles, resulting in
rapid release of inner contents'®'” in contrast to continuous
pulsatile behavior.”® During rupture under such conditions,
formation of only a single pore in the vesicle membrane has
been observed.'”” We refer this scenario as “exploding”, in
which the vesicle becomes unstable, with the membrane frag-
menting into daughter structures as shown in Fig. 1b. It has been
suggested that photo-chemical reactions of encapsulated photo-
active materials lead to a sudden increase of osmotic imbalance,
as an “active osmotic gradient”, causing vesicle explosion.'®
Nonetheless, a general framework that allows the bifurcation of
vesicle dynamics into either swell-burst-reseal cycling (Fig. 1a) or
exploding (Fig. 1b) has not been explicated so far (see Table S1,
ESIt for a summary of previous literatures). Such questions arise
not only in vesicle osmoregulation, but also in other important
scenarios, such as osmosensing and osmosignaling in living
cells. In addition, the selective and rapid release of entrapped
species from various compartments in artificial cells is another
example where such a framework can provide guidelines in a soft
matter system.®

Here we develop a general biophysical model for the osmotic
response of vesicles under the light-triggered osmotic shock,
integrating stochastic poration of the membrane, continuum
transport and light-induced reactions. We first present a stochastic
account of membrane poration in order to accommodate
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Fig. 1 Schematic for the dynamic response of a lipid vesicle under an active osmotic gradient. A vesicle may follows two experimentally observed paths
under an active osmotic gradient: (a) pulsatile swell-burst-reseal cycling, in which the pore forms and reseals cyclically until the membrane can withstand
the residual osmotic pressure; (b) exploding, in which the vesicle explodes along with the formation of smaller daughter structures.

strain-rate-dependent responses of the lipid membrane. Next,
we develop a vesicle model based on Helfrich’s curvature
elasticity using a Lagrangian framework to account for viscous
dissipation, which captures the essential quantitative features
for pulsatile vesicle dynamics. Then we consider light-triggered
chemical reaction and discuss vesicles explosion with our model.
The model’s prediction is in good agreement with experimental
observations of vesicle explosion. Finally, we discuss the bifurcation
conditions under which irreversible exploding is favorable.

2 Model

2.1 Stochastic approach for pore formation

Even in a relaxed state, lipid membranes spontaneously form
prepores (i.e. metastable hydrophilic defects) as a result of non-
uniform membrane lipid density due to thermal fluctuations.
For a prepore to become unstable and transition into a pore, it
must overcome two energy barriers: the nucleation energy
barrier AE,, and the cavitation energy barrier AE..>>*" At low
membrane tension, AE. dominates AE,,, and thus controls the
distribution of the membrane lytic tension, ¢}, under external
stress. However, above the cross-over membrane tension, AE,
determines the membrane failure rate. Only recently, a stochastic
approach has been considered for incorporating a strain-rate-
dependant response to osmotic stress, using the Langevin
approach to model pore formation."> However, that model has
not included AE,, and hence is only suitable for small tension
loading rates and low membrane tension. Photo-assisted chemical
reactions, in contrast, can induce a large osmotic gradient rapidly,
causing a very high loading rate, ¢.

This journal is © The Royal Society of Chemistry 2020

To account for the strain-dependent response in both scenarios,
we propose a generalized model for pore formation. We determine
oy by introducing a semi-analytic technique of combining the
kinetics of membrane rupture with vesicle dynamics through a
Monte-Carlo sampling approach. Following Evans and Smith,> the
survival probability of the vesicle membrane S(¢) under a constant &
is formulated as

dS(O') - _khole
o =g S(o) O

[

Here, kpole is the frequency of prepore occurrences which
depends on g, line tension y, and the lateral membrane tension
¢. The dependence of membrane rupture probability on AE,
and AE. is inherently embedded in the expression of kygje.>> TO
get a direct relationship between survival probability S(¢) and o,
eqn (1) is written in terms of ¢ through a variable change ¢ = ¢
and solved with the initial condition, S(0) = 1. Fig. 2a and b
illustrate a typical stochastic process of pore formation pre-
senting the probability density of rupture p, = —dS(o)/do (solid
red curve, Fig. 2a), and the probability distributions of o
under different loading rates (Fig. 2b). Importantly, these plots
illustrate that the most probable o, increases with ¢. To
determine o, for each swell-burst cycle, samples are drawn
from the probability distribution informed by ¢ using a
Monte-Carlo approach (100 draws, for details see ESIT Section II).
We overlay a kernel density estimation (KDE) of sampled a;
with p, to show the underlying probability distribution (Fig. 2a).
The good agreement between true distribution and KDE
confirms the feasibility of such an algorithm to determine the
membrane rupture events of vesicles under osmotic stress. The
probability distribution with respect to various loading rates
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Fig. 2 Stochastic kinetics of hole nucleation in a lipid membrane. (a) Probability density of membrane rupture. The red solid line represents a true
probability distribution obtained from the numerical solution of egn (1) (for ¢ = 0.1 mN m~! s~!). The blue histogram shows samples drawn from the true
distribution (100 draws). The green dashed line shows a Gaussian kernel density estimation (KDE) of the drawn samples. (b) Probability density of
membrane rupture under different 6. The distribution of membrane lytic tension shifts towards the right with increasing ¢. (c) Geometrical schematic of
the vesicle model. R is the instantaneous radius of a vesicle, and « is the angle subtended by the pore at the center. Ap = pi, — pout is the Laplace pressure
jump. The arrows show the mass transport in (gi,) and out (goue) Of the vesicle. (d) Model comparison with the pulsatile experiments.t® (see Table S2, ESI

for the material properties used in the simulation).

will be used to determine the most probable g, for later discussion
as well as the comparison with the experiments.

2.2 Pore evolution

To model vesicle dynamics, we employ the Helfrich’s spontaneous
curvature-elasticity framework which allows us to include the effect
of spontaneous curvature, H,.>* The spontaneous (or intrinsic)
curvature Hy is defined as the preferred curvature of the lipid
bilayer for which the bending energy is minimum.** For a
symmetric lipid bilayer system, Hy = 0, although it can be non-
zero if the lipid bilayers are facing different solute species or
concentrations.”>>*
be written as

The total energy, E, of the vesicle system can

0_2

E =2myRsi
Yy smochzK

1
Ay + 7ka (H — HS)ZdA
27 )4

; ©)
- J Ap2nR*(1 + cos z)dR.

Ry

In writing eqn (2), we assume a spherical geometry of the vesicle
with a single circular pore embedded in it (Fig. 2c). Here we use
the instantaneous radius, R, and the angle subtended by the
pore at the center, «, as our configuration space, while Ry, Ay, 4, K,
and k;, are the vesicle’s initial radius, initial area, instantaneous
area, membrane compressibility coefficient, and bending rigidity
respectively. The total energy E in eqn (2), is comprised of energy
contributions from the pore edge,'® membrane stretching® and
bending®® as well as the work done by pressure due to changes in

8906 | Soft Matter, 2020, 16, 8904-8911

the volume of the system. Differing forms of eqn (2) have been used
in the theoretical frameworks ranging from interpreting shape
fluctuations in the spectra of microemulsions and vesicles” to
understanding phase separation dynamics of vesicles.”®°

As the membrane relaxes upon rupture, the energy is
dissipated by viscous forces in both the membrane'>"'**! and
the surrounding fluid.**** During the pore lifetime, we account
for viscous damping through a Rayleigh dissipation function as

@ = C;nsR sin aR?6* + 2nC,nmdR*42, (3)

where C; and C, are geometric coefficients coming from a
detailed flowfield solution in a recent study.** #s, 5, and d
are the solvent viscosity, membrane viscosity, and membrane
thickness respectively. The first term on the right hand side
of eqn (3), represents the viscous losses due to a relaxing
membrane imparting motion to the surrounding fluid while
the second term accounts for the internal membrane viscous
losses. In eqn (3), the viscous dissipation due to dilation, i.e. R,
is neglected. We treat eqn (2) and (3) in the Lagrangian frame-
work with non-conservative forces, while neglecting inertia,
to obtain the governing equations for evolution of vesicle
system as

ia_E - _ o (4 )
Rox~ O(Ra) a
OE 0
—_— = — . 4
oR Ok (4b)
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Eqn (4a) gives the governing equation for pore evolution as
simplified below

_yeosa 20 R da
R KR? do

(C\Rsino 4 2Cyn,d)o = (
| ()
+ Ekb(H — H)? sinoc).

Additionally, from eqn (4b), we obtain a relation governing the
excess pressure, Ap = pin — Pout, aS

20 R Jdo
KR?(1 + cosa) OR

ysino
R%(1 + cosa)

H? 2H,
+ kb( S),

Ap =

R R
using H = 2/R for a sphere. To compute 0¢/0R and Oc/0u, in
eqn (5) and (6) as presented in Rawicz et al,*® we use the

constitutive relation between the area strain ¢, = A/A, — 1 and
the membrane stress ¢ written as

2nR*(1 4 cosa) —4nRy® kT oA o
= In{ 1 —. 7
4TI:R()2 8nkb n + + K ( )

The term on the left hand side of eqn (7) represents the area
strain e,, where we use the relation A = 2nR?*(1 + cos o) for the
instantaneous surface area of the vesicle and 4, = 4nR,> for the
initial vesicle surface area. The first term on the right-hand side
of eqn (8) represents flattening of soft thermal undulations,
while the second term takes account of the direct Hookean-like
membrane stretching. During initial stretching, the undulation
term dominates the membrane response, however the direct stretch
term will dominate once the undulations are flattened out.

To incorporate stochasticity of pore nucleation in a
membrane, we rewrite eqn (5) to govern the nucleation and
evolution of pore as below

_ycosa 20 R da
R KR? 0o

(CiRsino+ 2Con,d)o = (

+ %kb(H — H,)?sin 9() 0(c — a1).

(8

We use the Heaviside step function, 6(¢ — gy), such that ¢ = 0 for
¢ < o). Here, we obtain ¢; by sampling from the probability
distribution (Fig. 2a) obtained by solving eqn (1). Next, we will
develop the governing equations for the vesicle radius R and
osmotic difference across the membrane Ac, respectively.

2.3 Mass conservation for solvent

As shown in Fig. 2c, the solvent flows into the vesicle (gi,) as it
experiences a hypotonic osmotic imbalance. At the same time,
the inner contents of the vesicle leak out (goy) through the pore
by the pressure jump, Ap. We utilize the continuity principle for
the governing relation of R written as

dv

dr = ¢inA — qowAp, (9)

This journal is © The Royal Society of Chemistry 2020
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4
of the vesicle. Substituting the volume V in eqn (9) and
simplifying using trigonometry identities, we obtain

9 1
where V = §R3 (2 + —coso — 708 Sa) represents the volume

(A +A,cos )R = GinA — (Gour — Rasino)d,.  (10)

Here, A = 21R*(1 + cos ) denotes the surface area of the vesicle,
and A, = nR’sin’o represents the area of the circular pore
(Fig. 2¢). Assuming low Reynolds number regime, Ap relates to
the leak-out flow go,¢ as

ApRsino
Ony

where Q is a geometric coefficient that generalizes the Sampson
flow through a circular orifice embedded in a plane to a finite
spherical geometry of the vesicle.** Using the Starling hypothesis,*®
we relate the solvent influx g, as

; (11)

Jout =

qin = PVS (AC - ﬂ)v (12)

RGT
where P is the permeability coefficient of the lipid bilayer, Ac is the
concentration difference across the membrane, v is the solvent
molar volume, and Rg is the universal gas constant. From eqn (11),
the excess pressure Ap built up inside the vesicle drives the inner
content out, thus helping the vesicle to fully relax. On the other
hand, from eqn (12), Ap opposes the solvent influx by countering the
concentration difference Ac = ¢;, — Cour across the membrane. ¢;,, and
Cout are the inner and outer solute concentrations, respectively.

2.4 Active osmotic gradient

In traditional osmotic stress experiments using GUVs, Ac is
passively controlled by the continuum mass transport processes of
the system. However, light-triggered reactions leverage chemical
decomposition to generate an osmotic imbalance in presence of a
photosensitizer. A photosensitizer absorbs photons, and thus
becomes excited to a singlet form. However, such a form is very
short-lived, and it jumps to a triplet state which is stable enough to
transfer energy to dissolved oxygen for production of a singlet
oxygen.”” The reactive oxygen species can further react in two ways:
with a specific substrate, (e.g, Na-bicine'®) or the photosensitizer
itself,"” which form new products inside the vesicle, and in turn
induce an osmotic shock rapidly. Such photoreactions provide a
“tunable” osmolar gradient in a spatio-temporally manner,
which allows for either swell-burst cycling'>"® or irreversible
exploding.’®"” Since osmolarity is a colligative property, it is
necessary to account for the generation of solute molecules by
light-triggered reactions.

When the deactivation constant of singlet oxygen via the
solvent dominates the rate constants of chemical and physical
quenching of singlet oxygen by the substrate, the rate of
disappearance of a specific substrate obeys the first-order
kinetics.*® To account for solute molecule generation, we adopt
a first-order kinetics for the photo-chemical reaction as

desub *_ ke
( d[ ) = _I(/)HCSUb (13)

Soft Matter, 2020, 16, 8904-8911 | 8907
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where cg,, is the substrate concentration, I is the intensity of
the absorbed light, ¢ is the quantum yield for singlet oxygen, &
is the rate constant for chemical quenching by the substrate,
and k4 is the deactivation coefficient by solvent molecules. Here
we neglect the mass transport in and out of the vesicle, and *
denotes the concentration changes only due to the chemical
reaction. The concentration of the product, j, follows

dej\* kr
(ﬁ) = (Z}”) I(/)Ecsub. (14)

Here, ZF represents stoichiometric coefficients of jth product
while setting Zg., = 1. Therefore, from eqn (14) and (15), the
rate of total solute concentration due to the photo-chemical
reaction is expressed as

d * k.
( C(ti(;tal) = (Z Z/p - l)ld)acsub (15)

Along with the photo-chemical reaction, the concentration
gradient, Ac = ¢in — Cout, across the membrane changes due to
osmotic influx, and leak-out of the inner content through pore.
Taking all the contribution into account and using principle of
mass conservation for the solutes, we obtain

(d VAC) _y (dctotal) o ApAc — % AoAc. (16)

dr dr

Here, D is the solute diffusion coefficient.
Using eqn (9) and (15), the rate of change of the concen-
tration difference is simplified as

9B (5220~ 1 )kean -

0 0.11 0.55 1.10

t(s)

Sl 20)

=

=

=

<
N

=
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where k =1 d)k—r is the effective rate constant for the substrate
d

degradation, as described in Gandin et al. depends on experi-
mental conditions.*® In eqn (17), the first term on the right
hand side represents molecular generation via the chemical
reaction inside the vesicle, while the second term accounts for
the concentration changes due to volume variation and diffusive
contribution through pore leakage of the inner vesicle contents.

The three coupled equations, eqn (8), (10) and (17), constitute
the continuum vesicle model with a stochastic approach to vesicle
rupture and incorporating light-triggered reactions. To demonstrate
the validity of our approach, we compare available experimental
results, as reported in Chabanon et al, for time periods of swell-
burst-reseal cycles against our model predictions." In the absence
of chemical reactions, we set k = 0 and Hy = —0.001 nm ™ *. As shown
in Fig. 2d, our model predictions are in good agreement with the
experimental data. We note that in the dilute limit of solute
molecules, Hg is small and does not alter the pulsatile behavior.
However, as photo-chemical reactions generate a very high Ac, this
assumption is no longer valid.

3 Model predictions and discussion

To determine Ac in the case of an active osmotic gradient, we need
the effective rate constant k to account for the photo-chemical
reactions. To this end, we use experimental images of Fig. 3a to
extract R as plotted in Fig. 3b, corresponding to each of the vesicles.
Before the pore opens (i.e. o« = 0 from Fig. 2c), eqn (10)~(12) imply

R = Py, (AL RAPT) (18)

b
1.31
w1151
/A
3 A Ry=061/s
1+ {:’/{ ™ f'{ =111/s & Rq—()ol/s-
. Ry =0.71/s » Ry=071/s
0 0.3 0.6
t(s)
C +

A k3=8T1/s

01 € " w ki=711/s & k=171/st

) o k=451/s ks = 5.71/s

0 0.3 0.6
t(s)

Fig. 3 Experimental data extraction for the light-triggered exploding of vesicles. (a) Experimental images from Zhu and Szostak.!® V; is the ith vesicle. (b)
R = R/Rq of the representative vesicles with respect to time. The lines passing through the symbols are a linear fit. (c) Total number of moles generated

inside the vesicles as a function of time. The lines passing through the symbols represent an exponential fit of the form A(l —

chemical reaction rate constant obtained for the ith vesicle.
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which can be reverted to obtain total moles generated M, as

_ (R Ap \ (4 5
Using experimental data (Fig. 3b) and computing Ap from
eqn (6), we plot M, against time (Fig. 3c). For « = 0 before the

membrane ruptures, using eqn (9) and (17) we express the rate
of change of the substrate concentration as

Csun 4V
Vv ode

desup
= —kcsup —
dr sub

(20)

Simplifying eqn (21) with further algebraic manipulations,
we obtain

Msub = _kMsub- (21)

From eqn (21), the total substrate moles are M, = Moe ™

where M, are the initial moles of the encapsulated substrate.
Therefore, the total moles of substrate converted into the
products follows Mo(1 — e *). Furthermore, by multiplying
the stoichiometric factor, 3 ZF — 1, the total number of moles
generated, Mg, inside a vesicle is written as

My = (D227 = 1) Mo(1 =), (22)

We then fit the total moles generated to an exponential form
A(1 — e ), as predicted by eqn (22), to extract the effective rate
constant k (Fig. 3c).

a
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After extracting the active osmotic gradient, we use our
model to predict the vesicle dynamics, as shown in Fig. 4a
and b. Fig. 4a shows the evolution of the normalized vesicle
radius R = R/R,. We note that the evolution of R in Fig. 4a is
smooth since there is only one instance of membrane rupture
before disintegrating into several daughter structures. However,
the stochasticity will be evident in a pulsatile regime with a series
of swell-burst-reseal cycles. The sudden plunge in vesicle radius
marks the instant of lipid membrane rupture. In simulations, we
choose values of R/R, at rupture similar to that obtained from
experiments (Fig. 3b). The concentration difference Ac is shown
in the inset of Fig. 4a. Note that the maximum Ac achieved here is
~2 M, an order of magnitude higher than 0(0.1) M in traditional
passive osmotic gradient experiments.'>*® For such a large osmotic
gradient, the loading rate is in the range of 200-400 mN m™* s,
This fact is corroborated by the rapid swelling in the experiments
(Fig. 3a). Such a high ¢ is the key why a high strain, ¢, & 60-80%,
is allowed before rupture (Fig. 3b and 4a).>>>* Under these
conditions, we expect the pore must grow very large. Indeed, as
in Fig. 4b, simulations show a huge pore growth (« &~ 50°). For a
passive osmotic gradient, ¢, at rupture remains in the range of
~4-10%,"">'®*1 and therefore relatively smaller pores are
formed given the smaller loading rates ~x1 mN m™ " s™".

To add further insights into why a large pore under an active
osmotic gradient can lead to exploding, we examine the energy
evolution of the vesicle system. We overlay the dynamical paths

50 75

® Pulsatile

= Exploding

Fig. 4 Model predictions of the pathway to vesicles explosion. (a) Simulation results for R = R/Ro. The sudden drop of the area strain indicates lipid
membrane rupture. Inset is Ac predicted by the model accounting for the chemical reaction. The osmotic gradient rises rapidly and remains constant
until the membrane rupture. (b) Evolution of pore size under an active osmotic gradient. The simulations were performed for each of five vesicles. The
model predicts a very large pore opening, « ~ 50°. Note that the time axis has been shifted to the initiation of the membrane rupture. (c) Dynamical paths
followed by two vesicles rupturing at two different ¢, values: 80% (red cubes) and 20% (green spheres) plotted over the energy surface. Schematics of
vesicle dynamics are shown at each stage. The black arrows are guides to the eyes. The vesicle rupturing at lower strain forms a loop indicative of pulsatile
behavior (green spheres). However, the vesicle rupturing at higher strain jumps into the buckling regime, ultimately fragmenting into smaller daughter
structures (red cubes). (d) Energy curves and dynamical paths in a 2D plane. Inset is a zoomed-in view of the shaded part to reveal the energy gradient at
the maximum pore growth. A vesicle having a smaller pore faces adverse energy gradient (green circles), leading it to reseal. In the other case, a vesicle
with a larger pore faces a favorable energy gradient (red squares), leading it to a buckling instability and ultimately exploding.
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of two vesicles rupturing at two different strains, namely ¢, =
20% (greenspheres), and ¢, = 80% (redcubes), on the energy
surface of a vesicle system (Fig. 4c) considering all the configura-
tions excluding the cases where the buckling instability occurs, i.e.
0 < —24mky/Ao. Therefore, the bottom edge of the energy surface
marks the buckling instability where the growth of the first mode
of thermal undulations becomes unbounded.** As shown in
Fig. 4c (green spheres), the vesicle rupturing at a small strain
forms a closed loop, an implication of the characteristic swell-
burst-reseal cycle. The vesicle rupturing at higher strain, however,
shows an exploding behavior (red cubes).

Additionally, we show the energy curves with the dynamical
paths in a 2D plane (Fig. 4d). As mentioned earlier, for the
vesicle rupturing at smaller strain, the pore grows smaller than
the case for the vesicle rupturing at larger strain. The inset of
Fig. 4d displays the zoomed-in view of the shaded region of this
plot. It shows that the vesicle rupturing at smaller strain (and
thus smaller pore sizes) faces an adverse energy gradient at the
end of the pore growth stage, helping vesicles to reseal (green
circles, Fig. 4d). For the larger pore size, the energy gradient is
favorable, transitioning the vesicle into the buckling regime
(red squares, Fig. 4d). Consequently, as the undulations amplitude
grows, the vesicle disintegrates into smaller daughter structures,
showing an exploding behavior.****

We note that H; = —0.011 nm ™" in our simulations for Fig. 4,
which agrees well with the exploding experiments. Such a value
is also consistent with the typical order of magnitude observed
in the literature.’® The spontaneous curvature develops as the
lipid bilayer faces a large concentration difference across the
membrane.?® After the membrane ruptures, the vesicle is in a
relaxed state, i.e. ¢ & 0, therefore leaving only the pore edge
energy, to compete with the bending energy. Large negative Hy
contributes to the excess bending energy, which dominates the
pore edge energy at large pore sizes. Therefore, the vesicle
prefers to unfold, driving it to the buckling instability and
ultimately to its disintegration.

4 Conclusions

In this study, we have developed a semi-analytic approach to
describe the mechanical response of semipermeable vesicles
under the osmotic stress, integrating both pulsatile and exploding
behaviors into a unified model. We have taken into account the
stochastic nature of membrane rupture, as well as a variable
osmotic gradient driven by chemical reactions. The considerations
of the rate-dependent response of lipid bilayers and the sponta-
neous curvature are critical for explaining vesicle explosion. We
have discussed different scenarios under hypo-osmotic shock
conditions. In addition, our model could be potentially used in
a hyper-osmotic environment as vesicles shrink to reach a
buckling instability, in which the spontaneous curvature comes
into play.

Photolytic chemical reactions provide an alternative to create
hypotonic environments leading to membrane rupture regardless
of the physiological conditions of tissue. Tuning the chemical

8910 | Soft Matter, 2020, 16, 89048911
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reaction, for example by choosing an appropriate chemical rate
constant, can allow active manipulation of release mechanisms
such as a slow and continuous release or an instant release of the
encapsulated molecules on demand. Additionally, we could
choose appropriate lipids to form vesicles to achieve a desired
release rate, according to the pharmacokinetics of the therapeutics.
Further experimental investigations are required to understand how
membrane material properties and the chemical rate constant
impact the optimal vesicle size range in which exploding might
be possible.

In summary, our model advances the fundamental under-
standing of the bifurcation in vesicle dynamics. By being able to
predict the conditions for different regimes, we have shown a
new avenue toward the precise design of vesicle-based biome-
dical systems for many potential applications, such as localized
delivery of cytotoxic drugs to target tumors with reduced
systemic toxicity, or controlled deposition of functional nano-
particles in microfluidic devices for biomedical detection.
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