
8904 | Soft Matter, 2020, 16, 8904--8911 This journal is©The Royal Society of Chemistry 2020

Cite this: SoftMatter, 2020,

16, 8904

Light-triggered explosion of lipid vesicles†

Vinit Kumar Malik,a Sangwoo Shin b and Jie Feng *a

Lipid vesicles have received considerable interest because of their applications to in vitro reductionist cell

membrane models as well as therapeutic delivery vehicles. In these contexts, the mechanical response of

vesicles in nonequilibrium environments plays a key role in determining the corresponding dynamics. A

common understanding of the response of lipid vesicles upon exposure to a hypotonic solution is a

characteristic pulsatile behavior. Recent experiments, however, have shown vesicles exploding under an

osmotic shock generated by photo-reactions, yet the explanatory mechanism is unknown. Here we

present a generalized biophysical model incorporating a stochastic account of membrane rupture to

describe both swell-burst-reseal cycling and exploding dynamics. This model agrees well with

experimental observations, and it unravels that the sudden osmotic shock strains the vesicle at an

extreme rate, driving the vesicle into buckling instabilities responsible for membrane fragmentation, i.e.

explosion. Our work not only advances the fundamental framework for non-equilibrium vesicle dynamics

under osmotic stress, but also offers design guidelines for programmable vesicle-encapsulated substance

release in therapeutic carriers.

1 Introduction

Giant unilamellar vesicles (GUVs) are commonly employed as a

simple representative system to study biological cell behaviors.

In addition, with the development of biological techniques and

use of bottom-up approaches, GUVs also serve as fundamental

building blocks to construct a cell-mimicking system.1 Therefore,

GUVs are considered as an excellent tool for enhancing a funda-

mental understanding of lipid membranes and artificial cells

ranging from phase separation and lipid domain emergence2 to

physiological response of cells to their extracellular environ-

ment.3,4 In these contexts, the mechanical response of vesicles

plays a key role in predicting shape transformation of cells,5

illuminating the origins of life,6 and determining the content

release dynamics in targeted nanotherapeutics;7 leaving vesicle

stability in nonequilibrium environments an indispensable aspect

of the dynamics. In particular, osmoregulatory has a significant

effect on vesicle stability, sometimes leading to drastic outcomes

such as fusion and fission of cells and liposomes.8,9 Hence,

vesicles response under osmotic stress has been a topic of interest

in the soft matter community for decades.10–15 For instance, as

illustrated in Fig. 1a, a vesicle swollen due to hypotonicity will relax

following initial bursting, subsequently resealing owing to the

excess pore edge energy. This cycle of swell-burst-reseal continues

until the osmotic gradient drops below a value that the vesicle

membrane can withstand.

Recently, light-induced osmotic shock has been used to

trigger catastrophic lysis of micro-scale vesicles, resulting in

rapid release of inner contents16,17 in contrast to continuous

pulsatile behavior.18 During rupture under such conditions,

formation of only a single pore in the vesicle membrane has

been observed.17 We refer this scenario as ‘‘exploding’’, in

which the vesicle becomes unstable, with the membrane frag-

menting into daughter structures as shown in Fig. 1b. It has been

suggested that photo-chemical reactions of encapsulated photo-

active materials lead to a sudden increase of osmotic imbalance,

as an ‘‘active osmotic gradient’’, causing vesicle explosion.16

Nonetheless, a general framework that allows the bifurcation of

vesicle dynamics into either swell-burst-reseal cycling (Fig. 1a) or

exploding (Fig. 1b) has not been explicated so far (see Table S1,

ESI† for a summary of previous literatures). Such questions arise

not only in vesicle osmoregulation, but also in other important

scenarios, such as osmosensing and osmosignaling in living

cells. In addition, the selective and rapid release of entrapped

species from various compartments in artificial cells is another

example where such a framework can provide guidelines in a soft

matter system.19

Here we develop a general biophysical model for the osmotic

response of vesicles under the light-triggered osmotic shock,

integrating stochastic poration of the membrane, continuum

transport and light-induced reactions. We first present a stochastic

account of membrane poration in order to accommodate
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strain-rate-dependent responses of the lipid membrane. Next,

we develop a vesicle model based on Helfrich’s curvature

elasticity using a Lagrangian framework to account for viscous

dissipation, which captures the essential quantitative features

for pulsatile vesicle dynamics. Then we consider light-triggered

chemical reaction and discuss vesicles explosion with our model.

The model’s prediction is in good agreement with experimental

observations of vesicle explosion. Finally, we discuss the bifurcation

conditions under which irreversible exploding is favorable.

2 Model
2.1 Stochastic approach for pore formation

Even in a relaxed state, lipid membranes spontaneously form

prepores (i.e.metastable hydrophilic defects) as a result of non-

uniform membrane lipid density due to thermal fluctuations.

For a prepore to become unstable and transition into a pore, it

must overcome two energy barriers: the nucleation energy

barrier DEn, and the cavitation energy barrier DEc.
20,21 At low

membrane tension, DEc dominates DEn, and thus controls the

distribution of the membrane lytic tension, sl, under external

stress. However, above the cross-over membrane tension, DEn
determines the membrane failure rate. Only recently, a stochastic

approach has been considered for incorporating a strain-rate-

dependant response to osmotic stress, using the Langevin

approach to model pore formation.15 However, that model has

not included DEn, and hence is only suitable for small tension

loading rates and low membrane tension. Photo-assisted chemical

reactions, in contrast, can induce a large osmotic gradient rapidly,

causing a very high loading rate, _s.

To account for the strain-dependent response in both scenarios,

we propose a generalized model for pore formation. We determine

sl by introducing a semi-analytic technique of combining the

kinetics of membrane rupture with vesicle dynamics through a

Monte-Carlo sampling approach. Following Evans and Smith,22 the

survival probability of the vesicle membrane S(s) under a constant _s

is formulated as

dSðsÞ

ds
¼

�khole

_s
SðsÞ: (1)

Here, khole is the frequency of prepore occurrences which

depends on _s, line tension g, and the lateral membrane tension

s. The dependence of membrane rupture probability on DEn
and DEc is inherently embedded in the expression of khole.

22 To

get a direct relationship between survival probability S(s) and s,

eqn (1) is written in terms of s through a variable change s ¼ _st

and solved with the initial condition, S(0) = 1. Fig. 2a and b

illustrate a typical stochastic process of pore formation pre-

senting the probability density of rupture pr = �dS(s)/ds (solid

red curve, Fig. 2a), and the probability distributions of sl

under different loading rates (Fig. 2b). Importantly, these plots

illustrate that the most probable sl increases with _s. To

determine sl for each swell-burst cycle, samples are drawn

from the probability distribution informed by _s using a

Monte-Carlo approach (100 draws, for details see ESI† Section II).

We overlay a kernel density estimation (KDE) of sampled sl

with pr to show the underlying probability distribution (Fig. 2a).

The good agreement between true distribution and KDE

confirms the feasibility of such an algorithm to determine the

membrane rupture events of vesicles under osmotic stress. The

probability distribution with respect to various loading rates

Fig. 1 Schematic for the dynamic response of a lipid vesicle under an active osmotic gradient. A vesicle may follows two experimentally observed paths

under an active osmotic gradient: (a) pulsatile swell-burst-reseal cycling, in which the pore forms and reseals cyclically until the membrane can withstand

the residual osmotic pressure; (b) exploding, in which the vesicle explodes along with the formation of smaller daughter structures.
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will be used to determine the most probable sl for later discussion

as well as the comparison with the experiments.

2.2 Pore evolution

To model vesicle dynamics, we employ the Helfrich’s spontaneous

curvature-elasticity framework which allows us to include the effect

of spontaneous curvature, Hs.
23 The spontaneous (or intrinsic)

curvature Hs is defined as the preferred curvature of the lipid

bilayer for which the bending energy is minimum.24 For a

symmetric lipid bilayer system, Hs = 0, although it can be non-

zero if the lipid bilayers are facing different solute species or

concentrations.25,26 The total energy, E, of the vesicle system can

be written as

E ¼ 2pgR sin aþ
s2

2K
A0 þ

1

2
kb

ð

A

H �Hsð Þ2dA

�

ðR

R0

Dp2pR2ð1þ cos aÞdR:

(2)

In writing eqn (2), we assume a spherical geometry of the vesicle

with a single circular pore embedded in it (Fig. 2c). Here we use

the instantaneous radius, R, and the angle subtended by the

pore at the center, a, as our configuration space, while R0, A0, A, K,

and kb are the vesicle’s initial radius, initial area, instantaneous

area, membrane compressibility coefficient, and bending rigidity

respectively. The total energy E in eqn (2), is comprised of energy

contributions from the pore edge,10 membrane stretching25 and

bending23 as well as the work done by pressure due to changes in

the volume of the system. Differing forms of eqn (2) have been used

in the theoretical frameworks ranging from interpreting shape

fluctuations in the spectra of microemulsions and vesicles27 to

understanding phase separation dynamics of vesicles.28–30

As the membrane relaxes upon rupture, the energy is

dissipated by viscous forces in both the membrane12,13,31 and

the surrounding fluid.32,33 During the pore lifetime, we account

for viscous damping through a Rayleigh dissipation function as

F = pC1ZsR sin aR2 _a2 + 2pC2Zmd̃R
2
_a2, (3)

where C1 and C2 are geometric coefficients coming from a

detailed flowfield solution in a recent study.34 Zs, Zm, and d

are the solvent viscosity, membrane viscosity, and membrane

thickness respectively. The first term on the right hand side

of eqn (3), represents the viscous losses due to a relaxing

membrane imparting motion to the surrounding fluid while

the second term accounts for the internal membrane viscous

losses. In eqn (3), the viscous dissipation due to dilation, i.e.
:
R,

is neglected. We treat eqn (2) and (3) in the Lagrangian frame-

work with non-conservative forces, while neglecting inertia,

to obtain the governing equations for evolution of vesicle

system as

1

R

@E

@a
¼ �

@F

@ R _að Þ
; (4a)

@E

@R
¼ �

@F

@ _R
: (4b)

Fig. 2 Stochastic kinetics of hole nucleation in a lipid membrane. (a) Probability density of membrane rupture. The red solid line represents a true

probability distribution obtained from the numerical solution of eqn (1) (for _s ¼ 0:1 mN m�1 s�1). The blue histogram shows samples drawn from the true

distribution (100 draws). The green dashed line shows a Gaussian kernel density estimation (KDE) of the drawn samples. (b) Probability density of

membrane rupture under different _s. The distribution of membrane lytic tension shifts towards the right with increasing _s. (c) Geometrical schematic of

the vesicle model. R is the instantaneous radius of a vesicle, and a is the angle subtended by the pore at the center. Dp = pin � pout is the Laplace pressure

jump. The arrows show the mass transport in (qin) and out (qout) of the vesicle. (d) Model comparison with the pulsatile experiments.15 (see Table S2, ESI†

for the material properties used in the simulation).
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Eqn (4a) gives the governing equation for pore evolution as

simplified below

ðC1R sin aþ 2C2ZmdÞ _a ¼ �
g cos a

R
�
2sR0

2

KR2

@s

@a

�

þ
1

2
kbðH �HsÞ

2 sin a

�

:

(5)

Additionally, from eqn (4b), we obtain a relation governing the

excess pressure, Dp = pin � pout, as

Dp ¼
g sin a

R2 1þ cos að Þ
þ

2sR0
2

KR2 1þ cos að Þ

@s

@R

þ kb
Hs

2

R
�
2Hs

R2

� �

;

(6)

using H = 2/R for a sphere. To compute qs/qR and qs/qa, in

eqn (5) and (6) as presented in Rawicz et al.,35 we use the

constitutive relation between the area strain ea = A/A0 � 1 and

the membrane stress s written as

2pR2 1þ cos að Þ � 4pR0
2

4pR0
2

¼
kBT

8pkb
ln 1þ

sAs

24pkb

� �

þ
s

K
: (7)

The term on the left hand side of eqn (7) represents the area

strain ea, where we use the relation A = 2pR2(1 + cos a) for the

instantaneous surface area of the vesicle and A0 = 4pR0
2 for the

initial vesicle surface area. The first term on the right-hand side

of eqn (8) represents flattening of soft thermal undulations,

while the second term takes account of the direct Hookean-like

membrane stretching. During initial stretching, the undulation

term dominates themembrane response, however the direct stretch

term will dominate once the undulations are flattened out.

To incorporate stochasticity of pore nucleation in a

membrane, we rewrite eqn (5) to govern the nucleation and

evolution of pore as below

ðC1R sin aþ 2C2ZmdÞ _a ¼ �
g cos a

R
�
2sR0

2

KR2

@s

@a

�

þ
1

2
kbðH �HsÞ

2 sin a

�

yðs� slÞ:

(8)

We use the Heaviside step function, y(s� sl), such that _a = 0 for

s o sl. Here, we obtain sl by sampling from the probability

distribution (Fig. 2a) obtained by solving eqn (1). Next, we will

develop the governing equations for the vesicle radius R and

osmotic difference across the membrane Dc, respectively.

2.3 Mass conservation for solvent

As shown in Fig. 2c, the solvent flows into the vesicle (qin) as it

experiences a hypotonic osmotic imbalance. At the same time,

the inner contents of the vesicle leak out (qout) through the pore

by the pressure jump, Dp. We utilize the continuity principle for

the governing relation of R written as

dV

dt
¼ qinA� qoutAp; (9)

where V ¼
p

3
R3 2þ

9

4
cos a�

1

4
cos 3a

� �

represents the volume

of the vesicle. Substituting the volume V in eqn (9) and

simplifying using trigonometry identities, we obtain

(A + Ap cos a)
:
R = qinA � (qout � R _a sin a)Ap. (10)

Here, A = 2pR2(1 + cos a) denotes the surface area of the vesicle,

and Ap = pR2 sin2 a represents the area of the circular pore

(Fig. 2c). Assuming low Reynolds number regime, Dp relates to

the leak-out flow qout as

qout ¼
DpR sin a

QZs
; (11)

where Q is a geometric coefficient that generalizes the Sampson

flow through a circular orifice embedded in a plane to a finite

spherical geometry of the vesicle.34Using the Starling hypothesis,36

we relate the solvent influx qin as

qin ¼ Pns Dc�
Dp

RGT

� �

; (12)

where P is the permeability coefficient of the lipid bilayer, Dc is the

concentration difference across the membrane, ns is the solvent

molar volume, and RG is the universal gas constant. From eqn (11),

the excess pressure Dp built up inside the vesicle drives the inner

content out, thus helping the vesicle to fully relax. On the other

hand, from eqn (12), Dp opposes the solvent influx by countering the

concentration differenceDc = cin� cout across themembrane. cin and

cout are the inner and outer solute concentrations, respectively.

2.4 Active osmotic gradient

In traditional osmotic stress experiments using GUVs, Dc is

passively controlled by the continuummass transport processes of

the system. However, light-triggered reactions leverage chemical

decomposition to generate an osmotic imbalance in presence of a

photosensitizer. A photosensitizer absorbs photons, and thus

becomes excited to a singlet form. However, such a form is very

short-lived, and it jumps to a triplet state which is stable enough to

transfer energy to dissolved oxygen for production of a singlet

oxygen.37 The reactive oxygen species can further react in two ways:

with a specific substrate, (e.g, Na-bicine16) or the photosensitizer

itself,17 which form new products inside the vesicle, and in turn

induce an osmotic shock rapidly. Such photoreactions provide a

‘‘tunable’’ osmolar gradient in a spatio-temporally manner,

which allows for either swell-burst cycling12,13 or irreversible

exploding.16,17 Since osmolarity is a colligative property, it is

necessary to account for the generation of solute molecules by

light-triggered reactions.

When the deactivation constant of singlet oxygen via the

solvent dominates the rate constants of chemical and physical

quenching of singlet oxygen by the substrate, the rate of

disappearance of a specific substrate obeys the first-order

kinetics.38 To account for solute molecule generation, we adopt

a first-order kinetics for the photo-chemical reaction as

dcsub

dt

� ��

¼ �If
kr

kd
csub (13)
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where csub is the substrate concentration, I is the intensity of

the absorbed light, f is the quantum yield for singlet oxygen, kr
is the rate constant for chemical quenching by the substrate,

and kd is the deactivation coefficient by solvent molecules. Here

we neglect the mass transport in and out of the vesicle, and *

denotes the concentration changes only due to the chemical

reaction. The concentration of the product, j, follows

dcj

dt

� ��

¼ Z
p
j

� �

If
kr

kd
csub: (14)

Here, Zpj represents stoichiometric coefficients of jth product

while setting Zsub = 1. Therefore, from eqn (14) and (15), the

rate of total solute concentration due to the photo-chemical

reaction is expressed as

dctotal

dt

� ��

¼
X

Z
p
j � 1

� �

If
kr

kd
csub: (15)

Along with the photo-chemical reaction, the concentration

gradient, Dc = cin � cout, across the membrane changes due to

osmotic influx, and leak-out of the inner content through pore.

Taking all the contribution into account and using principle of

mass conservation for the solutes, we obtain

dVDc

dt

� �

¼ V
dctotal

dt

� ��

�qoutApDc�
D

R
ApDc: (16)

Here, D is the solute diffusion coefficient.

Using eqn (9) and (15), the rate of change of the concen-

tration difference is simplified as

dDc

dt
¼

X

Z
p
j � 1

� �

kcsub �
Dc

V
qinAþ

D

R
Ap

� �

; (17)

where k ¼ If
kr

kd
is the effective rate constant for the substrate

degradation, as described in Gandin et al. depends on experi-

mental conditions.38 In eqn (17), the first term on the right

hand side represents molecular generation via the chemical

reaction inside the vesicle, while the second term accounts for

the concentration changes due to volume variation and diffusive

contribution through pore leakage of the inner vesicle contents.

The three coupled equations, eqn (8), (10) and (17), constitute

the continuum vesicle model with a stochastic approach to vesicle

rupture and incorporating light-triggered reactions. To demonstrate

the validity of our approach, we compare available experimental

results, as reported in Chabanon et al., for time periods of swell-

burst-reseal cycles against our model predictions.15 In the absence

of chemical reactions, we set k = 0 andHs =�0.001 nm�1. As shown

in Fig. 2d, our model predictions are in good agreement with the

experimental data. We note that in the dilute limit of solute

molecules, Hs is small and does not alter the pulsatile behavior.

However, as photo-chemical reactions generate a very high Dc, this

assumption is no longer valid.

3 Model predictions and discussion

To determine Dc in the case of an active osmotic gradient, we need

the effective rate constant k to account for the photo-chemical

reactions. To this end, we use experimental images of Fig. 3a to

extract R as plotted in Fig. 3b, corresponding to each of the vesicles.

Before the pore opens (i.e. a = 0 from Fig. 2c), eqn (10)–(12) imply

_R ¼ Pns Dc�
Dp

RGT

� �

; (18)

Fig. 3 Experimental data extraction for the light-triggered exploding of vesicles. (a) Experimental images from Zhu and Szostak.16 Vi is the ith vesicle. (b)

R̃ = R/R0 of the representative vesicles with respect to time. The lines passing through the symbols are a linear fit. (c) Total number of moles generated

inside the vesicles as a function of time. The lines passing through the symbols represent an exponential fit of the form A(1 � e�kit), where ki is the

chemical reaction rate constant obtained for the ith vesicle.
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which can be reverted to obtain total moles generated Mg as

Mg ¼
_R

Pns
þ

Dp

RGT

� �

4

3
pR3

� �

: (19)

Using experimental data (Fig. 3b) and computing Dp from

eqn (6), we plot Mg against time (Fig. 3c). For a = 0 before the

membrane ruptures, using eqn (9) and (17) we express the rate

of change of the substrate concentration as

dcsub

dt
¼ �kcsub �

csub

V

dV

dt
: (20)

Simplifying eqn (21) with further algebraic manipulations,

we obtain

:
Msub = �kMsub. (21)

From eqn (21), the total substrate moles are Msub = M0e
�kt,

where M0 are the initial moles of the encapsulated substrate.

Therefore, the total moles of substrate converted into the

products follows M0(1 � e�kt). Furthermore, by multiplying

the stoichiometric factor,
P

Zpj � 1, the total number of moles

generated, Mg, inside a vesicle is written as

Mg ¼
X

Z
p
j � 1

� �

M0 1� e�kt
� �

; (22)

We then fit the total moles generated to an exponential form

A(1 � e�kt), as predicted by eqn (22), to extract the effective rate

constant k (Fig. 3c).

After extracting the active osmotic gradient, we use our

model to predict the vesicle dynamics, as shown in Fig. 4a

and b. Fig. 4a shows the evolution of the normalized vesicle

radius R̃ = R/R0. We note that the evolution of R̃ in Fig. 4a is

smooth since there is only one instance of membrane rupture

before disintegrating into several daughter structures. However,

the stochasticity will be evident in a pulsatile regime with a series

of swell-burst-reseal cycles. The sudden plunge in vesicle radius

marks the instant of lipid membrane rupture. In simulations, we

choose values of R/R0 at rupture similar to that obtained from

experiments (Fig. 3b). The concentration difference Dc is shown

in the inset of Fig. 4a. Note that the maximum Dc achieved here is

E2 M, an order of magnitude higher than O(0.1) M in traditional

passive osmotic gradient experiments.15,18 For such a large osmotic

gradient, the loading rate is in the range of 200–400 mN m�1 s�1.

This fact is corroborated by the rapid swelling in the experiments

(Fig. 3a). Such a high _s is the key why a high strain, ea E 60–80%,

is allowed before rupture (Fig. 3b and 4a).20,22 Under these

conditions, we expect the pore must grow very large. Indeed, as

in Fig. 4b, simulations show a huge pore growth (aE 501). For a

passive osmotic gradient, ea at rupture remains in the range of

E4–10%,11,12,18,31 and therefore relatively smaller pores are

formed given the smaller loading rates E1 mN m�1 s�1.

To add further insights into why a large pore under an active

osmotic gradient can lead to exploding, we examine the energy

evolution of the vesicle system. We overlay the dynamical paths

Fig. 4 Model predictions of the pathway to vesicles explosion. (a) Simulation results for R̃ = R/R0. The sudden drop of the area strain indicates lipid

membrane rupture. Inset is Dc predicted by the model accounting for the chemical reaction. The osmotic gradient rises rapidly and remains constant

until the membrane rupture. (b) Evolution of pore size under an active osmotic gradient. The simulations were performed for each of five vesicles. The

model predicts a very large pore opening, aE 501. Note that the time axis has been shifted to the initiation of the membrane rupture. (c) Dynamical paths

followed by two vesicles rupturing at two different ea values: 80% (red cubes) and 20% (green spheres) plotted over the energy surface. Schematics of

vesicle dynamics are shown at each stage. The black arrows are guides to the eyes. The vesicle rupturing at lower strain forms a loop indicative of pulsatile

behavior (green spheres). However, the vesicle rupturing at higher strain jumps into the buckling regime, ultimately fragmenting into smaller daughter

structures (red cubes). (d) Energy curves and dynamical paths in a 2D plane. Inset is a zoomed-in view of the shaded part to reveal the energy gradient at

the maximum pore growth. A vesicle having a smaller pore faces adverse energy gradient (green circles), leading it to reseal. In the other case, a vesicle

with a larger pore faces a favorable energy gradient (red squares), leading it to a buckling instability and ultimately exploding.
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of two vesicles rupturing at two different strains, namely ea =

20% (greenspheres), and ea = 80% (redcubes), on the energy

surface of a vesicle system (Fig. 4c) considering all the configura-

tions excluding the cases where the buckling instability occurs, i.e.

s o �24pkb/A0. Therefore, the bottom edge of the energy surface

marks the buckling instability where the growth of the first mode

of thermal undulations becomes unbounded.39 As shown in

Fig. 4c (green spheres), the vesicle rupturing at a small strain

forms a closed loop, an implication of the characteristic swell-

burst-reseal cycle. The vesicle rupturing at higher strain, however,

shows an exploding behavior (red cubes).

Additionally, we show the energy curves with the dynamical

paths in a 2D plane (Fig. 4d). As mentioned earlier, for the

vesicle rupturing at smaller strain, the pore grows smaller than

the case for the vesicle rupturing at larger strain. The inset of

Fig. 4d displays the zoomed-in view of the shaded region of this

plot. It shows that the vesicle rupturing at smaller strain (and

thus smaller pore sizes) faces an adverse energy gradient at the

end of the pore growth stage, helping vesicles to reseal (green

circles, Fig. 4d). For the larger pore size, the energy gradient is

favorable, transitioning the vesicle into the buckling regime

(red squares, Fig. 4d). Consequently, as the undulations amplitude

grows, the vesicle disintegrates into smaller daughter structures,

showing an exploding behavior.40–43

We note that Hs = �0.011 nm�1 in our simulations for Fig. 4,

which agrees well with the exploding experiments. Such a value

is also consistent with the typical order of magnitude observed

in the literature.26 The spontaneous curvature develops as the

lipid bilayer faces a large concentration difference across the

membrane.26 After the membrane ruptures, the vesicle is in a

relaxed state, i.e. s E 0, therefore leaving only the pore edge

energy, to compete with the bending energy. Large negative Hs

contributes to the excess bending energy, which dominates the

pore edge energy at large pore sizes. Therefore, the vesicle

prefers to unfold, driving it to the buckling instability and

ultimately to its disintegration.

4 Conclusions

In this study, we have developed a semi-analytic approach to

describe the mechanical response of semipermeable vesicles

under the osmotic stress, integrating both pulsatile and exploding

behaviors into a unified model. We have taken into account the

stochastic nature of membrane rupture, as well as a variable

osmotic gradient driven by chemical reactions. The considerations

of the rate-dependent response of lipid bilayers and the sponta-

neous curvature are critical for explaining vesicle explosion. We

have discussed different scenarios under hypo-osmotic shock

conditions. In addition, our model could be potentially used in

a hyper-osmotic environment as vesicles shrink to reach a

buckling instability, in which the spontaneous curvature comes

into play.

Photolytic chemical reactions provide an alternative to create

hypotonic environments leading to membrane rupture regardless

of the physiological conditions of tissue. Tuning the chemical

reaction, for example by choosing an appropriate chemical rate

constant, can allow active manipulation of release mechanisms

such as a slow and continuous release or an instant release of the

encapsulated molecules on demand. Additionally, we could

choose appropriate lipids to form vesicles to achieve a desired

release rate, according to the pharmacokinetics of the therapeutics.

Further experimental investigations are required to understand how

membrane material properties and the chemical rate constant

impact the optimal vesicle size range in which exploding might

be possible.

In summary, our model advances the fundamental under-

standing of the bifurcation in vesicle dynamics. By being able to

predict the conditions for different regimes, we have shown a

new avenue toward the precise design of vesicle-based biome-

dical systems for many potential applications, such as localized

delivery of cytotoxic drugs to target tumors with reduced

systemic toxicity, or controlled deposition of functional nano-

particles in microfluidic devices for biomedical detection.
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