
This article was downloaded by: [129.110.242.50] On: 22 June 2021, At: 07:19

Publisher: Institute for Operations Research and the Management Sciences (INFORMS)

INFORMS is located in Maryland, USA

INFORMS Journal on Computing

Publication details, including instructions for authors and subscription information:

http://pubsonline.informs.org

Breaking the rmax Barrier: Enhanced Approximation

Algorithms for Partial Set Multicover Problem

Yingli Ran, Zhao Zhang, Shaojie Tang, Ding-Zhu Du

To cite this article:

Yingli Ran, Zhao Zhang, Shaojie Tang, Ding-Zhu Du (2021) Breaking the rmax Barrier: Enhanced Approximation Algorithms for

Partial Set Multicover Problem. INFORMS Journal on Computing 33(2):774-784. https://doi.org/10.1287/ijoc.2020.0975

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-

Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2020, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)

and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual

professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to

transform strategic visions and achieve better outcomes.

For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org



INFORMS JOURNAL ON COMPUTING

http://pubsonline.informs.org/journal/ijoc ISSN 1091-9856 (print), ISSN 1526-5528 (online)

Breaking the rmax Barrier: Enhanced Approximation Algorithms for
Partial Set Multicover Problem

Yingli Ran,a Zhao Zhang,a Shaojie Tang,b Ding-Zhu Duc

aCollege of Mathematics and Computer Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; bNaveen Jindal School of
Management, University of Texas at Dallas, Richardson, Texas 75080; cDepartment of Computer Science, University of Texas at Dallas,
Richardson, Texas 75080

Contact: 724609171@qq.com (YR); hxhzz@sina.com, https://orcid.org/0000-0003-4191-7598 (ZZ); shaojie.tang@utdallas.edu,
https://orcid.org/0000-0001-9261-5210 (ST); dzdu@utdallas.edu (D-ZD)

Received: September 17, 2019

Revised: January 26, 2020; February 16, 2020

Accepted: March 4, 2020

Published Online in Articles in Advance:
October 13, 2020

https://doi.org/10.1287/ijoc.2020.0975

Copyright: © 2020 INFORMS

Abstract. Given an element set E of order n, a collection of subsets S⊆ 2E, a cost cS on each
set S ∈S, a covering requirement re for each element e ∈E, and an integer k, the goal of a
minimum partial set multicover problem (MinPSMC) is to find a subcollection ^⊆ S to
fully cover at least k elements such that the cost of F is as small as possible and element e is
fully covered by F if it belongs to at least re sets of F. This problem generalizes theminimum
k-union problem (MinkU) and is believed not to admit a subpolynomial approximation
ratio. In this paper, we present a (4 log nH(∆)In k + 2 log n

̅̅
n

√ )-approximation algorithm
for MinPSMC, in which ∆ is the maximum size of a set in S. And when k � Ω(n), we
present a bicriteria algorithm fully covering at least (1 − ε

2 log n) k elements with approxi-

mation ratioO(1
ε
(logn)2 H(∆)), where 0< ε< 1 is a fixed number. These results are obtained

by studying the minimum density subcollection problem with (or without) cardinality
constraint, which might be of interest by itself.
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1. Introduction
In this paper, we consider the following partial set
multicover problem. We are given an element set E of
order n, a collection of subsets6 ⊆ 2E, a cost cS on each
set S ∈ 6, a covering requirement re for each element
e ∈ E, and an integer k; the goal is to find a subcol-
lection ^ ⊆ 6 to fully cover at least k elements such
that the cost of ^ is as small as possible and element e
is fully covered by^ if it belongs to at least re sets of^.
We call this the minimum partial set multicover problem
(MinPSMC). MinPSMC can be viewed as a general-
ization of both the minimum partial set cover problem
(MinPSC) and the minimum set multicover problem
(MinSMC); MinPSC is the special case of MinPSMC
with re � 1 for all e ∈ E, andMinSMC is the special case
of MinPSMC with k � n. There are a lot of studies on
MinPSC and MinSMC, achieving tight performance
ratios (Slavı́k 1997, Vazirani 2013). However, study
on MinPSMC is very rare.

An important special case of MinPSMC is the
minimum k union (MinkU) problem. In MinkU, we are
given a hypergraph G with vertex set V and hyper-
edge set* togetherwith an integer 1 ≤ k ≤ m, wherem
is the number of hyperedges; the goal is to select k
hyperedges such that their union is as small as possible.

Notice that theMinkU problem is equivalent to finding
aminimumvertex setV′ ⊆ V, which contains at least k
hyperedges, and thus, a MinkU instance (V,*, k) can
be viewed as a MinPSMC instance (E,6, c, r, k) with
E � *, 6 � V, c ≡ 1, and re � fe for every e ∈ E, where
fe � |{S ∈ 6 : e ∈ S}| is the number of sets containing
element e (called frequency of e). To bemore concrete, a
vertex v ∈ V � 6 is viewed as a subset of E � * con-
taining all those hyperedges e � H ∈ * with v ∈ H. In
other words, v ∈ 6 covers element e � H if v ∈ H. For
an element e � H ∈ *, its frequency fe � |H|. So re � fe
implies that element e � H is fully covered by a subset
V′ ⊆ V (which is viewed as a subcollection of6) if and
only if H ⊆ V′. The MinkU problem is closely related
with the small set vertex expansion problem (SSVE) and
the small set expansion problem (SSE). MinkU is also a
generalization of the smallest k-edge subgraph problem
(SkES), the dual of which is the densest k-subgraph
problem (DkS). These problems have received a lot of
attention in recent years. One reason is because of
their relations with many important combinatorial
problems such as the node weighted Steiner network
problem (Nutov 2010) and the Steiner k-forest problem
(Hajiaghayi and Jain 2006). Another reason is be-
cause of their applications in the fields of cryptographic

774

Vol. 33, No. 2, Spring 2021, pp. 774–784



systems (Applebaum et al. 2010) and financial de-
rivatives (Arora et al. 2010), etc.

Another important special case of MinPSMC is
the minimum partial positive dominating set problem
(MinPPDS). For a graph G, a real number 0 < ρ ≤ 1,
and a subset of vertices D ⊆ V(G), a vertex v ∈ V(G)
is positive dominated by D if it has at least 	ρd(v)

neighbors in D, where d(v) is the degree of vertex v
inG. Given an integer k ≤ |V(G)|, the goal of MinPPDS
is to select aminimumvertex setD ⊆ V(G) such that at
least k vertices are positive dominated by D. When
k � n, the problem is called the minimum positive dom-
inating set (MinPDS), which was formulated byWang
et al. (2009, 2011) as a model to minimize seed se-
lection to influence all people in a social network. In
the real world, it might be too expensive to influence
all people. In view of cost effectiveness, it might be
satisfactory to influence only some percentage of the
people. Such a consideration leads to the MinPPDS
problem,whichwas first studied by Ran et al. (2017b).

1.1. Related Works

MinkU was proposed by Chlamtáč et al. (2018), in

which a 2
̅̅̅
m

√
approximation algorithm was given,

in which m is the number of hyperedges. Later,
Chlamtáč et al. (2017) improved the ratio toO(m1/4+ε).

MinkU is equivalent to the small set bipartite vertex
expansion problem proposed in Chlamtáč et al. (2017),
which considers a bipartite graph G � (U,V,E); the
goal is to choose k nodes in U to minimize the size of
their neighborhood. This is the bipartite version of the
SSVE problem, in which we are given an arbitrary
graphG� (V,E) and are asked to choose a subset S⊆V
with size k to minimize |NG(S)|, where NG(S) � {u ∈
S̄ : ∃v ∈ S such that uv ∈ E} is the (vertex) neighbor
set of S. A related problem is the SSE problem, in
which we are given a graph G � (V,E) and asked to
choose a subset S ⊆ V with size k to minimize E(S, S̄),
where E(S, S̄) � {uv ∈ E : u ∈ S, v ∈ S̄} is the edge cut
associated with S. Most studies on SSE and SSVE are
focused on the casewhen k is very close to n. For SSVE,
Louis and Makarychev (2014) gave a bicriteria al-
gorithm when k � Ω(n). This algorithm was refined
by Chlamtáč et al. (2017), outputting a solution with
size at most (1 + ε)k and approximation ratio min{O
(

̅̅̅̅̅̅̅
logn

√
· p−1 logp−1 log logp−1/ε),O(k logn)}, where 0 <

ε < 1 is an arbitrary constant, and p � k/n.
The SkES is theMinkUproblem restricted on simple

graphs. For SkES, the current best approximation
ratio is O(m3−2

̅̅
2

√
+ε) for any constant ε > 0 (Chlamtáč

et al. 2012), and m is the number of edges. This ratio
is tight assuming “dense versus random” conjecture
for DkS (Bhaskara et al. 2010), for which DkS is a dual
version of SkES. Given a graph G � (V,E) and an in-
teger k, the goal of DkS is to find a subset V′ ⊆ V with

cardinality k that maximizes the number of edges in
the subgraph of G induced by V′. For DkS, Asahiro
et al. (2002) presented a greedy algorithm with ap-
proximation ratio O(n/k), where n is the number of
vertices in the graph; Kortsarz and Peleg (1993) gave
an O(n2/5)-approximation; Feige et al. (2001) improved

the ratio to n1/3−ε for any constant ε > 0. The current
best approximation ratio is O(n1/4+ε) for any constant
ε > 0, which was obtained in Bhaskara et al. (2010).
MinPDS (the full version of MinPPDS) was first

proposed by Wang et al. (2009, 2011). It was shown
that MinPDS is APX-hard, and a greedy algorithm
achieves approximation ratio H(δmax), where δmax is
the maximum degree of the graph andH(δ) � ∑δ

i�1 1/i
is the δth harmonic number. Dinh et al. (2014) showed
that MinPDS cannot be approximated within a fac-

tor of (1 − ε) lnmax{δmax,
̅̅̅̅
|V|

√
}, where ε is an arbi-

trary positive real number smaller than one. They also
presented a (ln δmax +O(1))-approximation algorithm
(recall that ln δ ≤ H(δ) ≤ ln δ + 1) by observing that
MinPDS is a special case of the MinSMC problem.
Considering partial requirement, MinPDS was gen-

eralized to MinPPDS by Ran et al. (2017b). A greedy
algorithm was proposed achieving approximation
ratio γH(δmax), where γ � 1/(1 − (1 − p)η), p � k/n is
the required covering percentage, η ≈ δ2max/δmin, and
δmax, δmin are the maximum and minimum degrees of
the graph, respectively.
For MinSMC, Vazirani (2013) and Rajagopalan and

Vazirani (1998) both presented algorithms achieving
approximation ratio H(n), where n is the number of
elements to be covered. MinPSC was first studied by
Kearns (1990), and a greedy algorithm was presented
with approximation ratio at most 2H(n) + 3. Slavı́k
(1997) improved the algorithm, obtaining approxima-
tion ratio min{H(∆),H(k)}, where ∆ �max{|S| : S∈6}.
Using the primal-dual method, Gandhi et al. (2004)
gave an algorithm with approximation ratio f , where
f is the maximum number of sets containing a com-
mon element. The same ratio f was also obtained by
Bar-Yehuda (2001) using the local ratio method. From
these related works, it can be seen that both MinPSC
and MinSMC admit approximation ratios matching
those best ratios for the classic set cover problem.
Ran et al. (2017b) were the first to study an ap-

proximation algorithm forMinPSMC.However, their
ratio is meaningful only when the covering per-
centage p � k/n is very close to one. Afterward, Ran
et al. (2017a) presented a simple greedy algorithm for
MinPSMC achieving approximation ratio ∆. Zhang
et al. (2017) claimed to have obtained an O(rmax

log3n)-approximation for MinPSMC, in which rmax �
max{re : e ∈ E} is the maximum covering requirement.
However, there is a flaw in it. In their corrected version
(Shi et al. 2019), under the assumption that k � pnwith
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0 < p < 1, they in fact obtained a bicriteria algorithm

with cost at mostO(rmax(logn)2(1+ ln(1/ε) + 1−p
εp )) times

the optimal value while the number of elements fully
covered is at least (1 − ε)k. Under the same assump-
tions, Shi et al. (2020) gave a randomized bicriteria
algorithm with approximation ratio O(b/pε), where
b � max{(fere) : e ∈ E}. In a general case when rmax is
large, these ratios might be very large. Liu and
Huang (2018) show the advantage of using partial
multicover than using full multicover.

1.2. Motivation and Results

In previous works (Shi et al. 2019, 2020; Ran et al.
2020), the authors studied the MinPSMC problem
under the assumption that rmax is upper bounded by a
constant, and rmax � max{re : e ∈ E} is the maximum
covering requirement for elements. One main reason
for such an assumption is that their approximation
ratios depend on a parameter b � max{(fere) : e ∈ E}.
Notice that b ≤ f rmax . If rmax is not upper bounded by a
constant, then b might be very large. For many real-
world applications, such an assumption may not
hold. For example, in the MinPPDS problem with
ρ � 1/2, we have rmax � 	δmax/2
, where δmax is the
maximum degree of the graph, which can be as large
as n − 1 in a worst case. One typical feature of a social
network is the power-law property, and it is known
that in a power-law graph, the maximum degree is
Θ(β

̅̅
n

√
) for some parameter β. In this case, the per-

formance of those algorithms proposed in Ran
et al. (2020) and Shi et al. (2020, 2019) could be very
bad. The motivation of this paper is trying to de-
sign an approximation algorithm that does not re-
quire rmax to be a constant. This is done through
studying a related minimum density subcollection prob-
lem (MinDSC) the formal definition of which is given
in Section 2.1.

The MinDSC problem was first proposed in Zhang
et al. (2017) and was proved to be NP-hard by a re-
duction from the three-dimensional matching prob-
lem. An O(rmax log

2 n)-approximation algorithm was
presented. In this paper, we improve the algorithm,
obtaining a ratio at most 4 lognH(∆)with ∆ being the
maximum size of a set in 6, which no longer depends
on rmax. Making use of this result, we design a greedy
algorithm for MinPSMC whose approximation ratio
is at most 4 log nH(∆) ln k + 2 log n

̅̅
n

√
.

Although the main idea follows that of Shi et al.
(2019), we make two significant and nontrivial im-
provements to their work. First, we exploit a relation
between their linear program (LP) formulation with the
MinDSC problem to remove the dependence on rmax.
Second, their approximation algorithm is a bicriteria one
with a violation of factor (1 + ε) to the total covering
requirement, and their approximation ratio depends
on 1/ε and 1/p, where p � k/n. So, if k is very small,

then their ratio is very large, and the approximation
ratio we obtain in this paper is in its classic sense
(without violation) and also works for small k.
Furthermore, we present a bicriteria algorithm fully

covering at least (1 − ε
2 log n)k elements with approxi-

mation ratio 8n
εk (logn)3, where ε > 0 is an arbitrary

constant. In particular, our ratio is O(1ε (log n)2H(∆))
when k � pn, and 0 < p < 1 is a constant. For this
purpose, we define a new problem called minimum
density subcollection fully covering ≥ k elements (Min

DSC≥k), the goal of which is to find a minimum
density subcollection among those that fully cover at
least k elements. The cardinality constraint makes the
problem much more complicated. New ideas and more
delicate analysis are involved in studying MinDSC≥k.
We design an approximation algorithm for MinDSC≥k,
the output of which either fully covers at least (1 −

ε
2 log n)k elements and has density at most 8(log n)2H(∆) ·
optDSC≥k or is a feasible solution with density at most
8(log n)2H(∆)

ε optDSC≥k , where optDSC≥k is the optimal value
of MinDSC≥k. Based on this algorithm, a bicriteria
algorithm for MinPSMC is obtained. Compared with
the studies in Shi et al. (2019, 2020), our ratio is in-
dependent of rmax. Furthermore, the studies in Shi et al.
(2019, 2020) only consider the casewhen k � Ω(n), and
our results work for a general k. Our ratio is also an
improvement on that obtained in Shi et al. (2019).

2. Algorithm for MinPSMC
In the following, we first give the approximation
algorithm for the MinDSC problem. Then, we make
use of the solution for MinDSC to solve MinPSMC.

2.1. Algorithm for MinDSC

We present the formal definition of the MinDSC
problem as follows.

Definition 1 (MinDSC). Suppose E is an element set,
6 ⊆ 2E is a collection of subsets of E, c : 6 �→ R

+ is a
cost function on 6, r : E �→ Z

+ is a covering require-
ment function on E. For a subcollection ^ ⊆ 6, the
density of ^ is defined as

den ^( ) � c ^( )
|# ^( )| .

Here, #(^) is the set of elements fully covered by ^

and |#(^)| is the cardinality of #(^). The goal of
MinDSC is to find a subcollection ^ with the mini-
mum density.
We design an approximation algorithm for MinDSC

based on an LP formulation. As shown by Shi et al.
(2020), a natural LP for MinDSC has integrality gap
arbitrarily large. So, a new LP formulation is given in
Shi et al. (2020). To introduce this LP formulation, we
need the following terminologies.

Ran et al.: Partial Set Multicover
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For an element e, an re-cover set is a subcollection
6

′ ⊆ 6e � {S ∈ 6 : e ∈ S}with |6′| � re. So any re-cover
set fully covers element e. Denote by Ωe the family of
all re-cover sets andΩ � ⋃

e∈E Ωe the family of all cover
sets. The following example illustrates theses concepts.

Example 1. Let E� {e1,e2,e3}, 6� {S1,S2,S3} with S1 �
{e1,e2}, S2 � {e1,e3}, S3 � {e1,e2,e3}, r(ei) � 2 for i � 1, 2, 3.
For this example, Ωe1 � {41,42,43} with 41�{S1,S2}e1 ,
42�{S1,S3}e1 ,43�{S2,S3}e1 ,Ωe2�{44}with44�{S1,S3}e2 ,
Ωe3 � {45} with 45 � {S2, S3}e3 , and Ω � {41, ... ,45}.

Remark 1. Notice that different elements may have a
same collection of sets as cover sets. For the preceding
example, {S1,S3} is an re1 -cover set as well as an
re2 -cover set. In this case, this collection of sets should
be viewed as different re-cover sets. This is why we use
superscript e1 and e2 to distinguish them. The idea
behind this definition is that if an re-cover set 4 ∈ Ω is
taken, then e is fully covered by those sets in 4.

The following is an integer program for MinDSC:

min

∑
S∈6

cSxS

∑
e∈E

ye

s.t.

∑
4 : 4∈Ωe

l4 ≥ ye, ∀e ∈ E,

xS ≥ max
4 : S∈4∈Ω

l4, ∀S ∈ 6,

xS ∈ 0, 1{ }, ∀S ∈ 6,

ye ∈ 0, 1{ }, ∀e ∈ E,

l4 ∈ 0, 1{ }, ∀4 ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

In this integer program, ye � 1 indicates that element e
is fully covered. The first constraint says that, in order
that e is fully covered, at least one re-cover set is
chosen. The second constraint says that a set Smust be
picked if it belongs to some cover set that has been
chosen. It should be remarked that there exists an
optimal solution to (1) such that, for any element e
with ye � 1, there is exactly one re-cover set Q that has
l4 � 1 and all the other re-cover sets have l-value zero.
In fact, suppose (x, y, l) is an optimal solution to (1),
then, for any element e with ye � 1, to satisfy the first
constraint of (1), there is at least one re-cover set with
l-value one. If there are more re-cover sets with l-value
one, we can modify the solution as follows. Suppose
Ωe � {41, . . . ,4t} and l(41) � · · · � l(4s) � 1, l(4s+1) � · · · �
l(4t) � 0, where 2 ≤ s ≤ t. Reset l(41) � 1 and l(4i) � 1
for i � 2, . . . , t. After such a reassignment, all con-
straints in (1) are still satisfied but the object value
is not affected. Hence, we may replace the second
constraint of (1) by

xS ≥
∑

4 : S∈4∈Ωe

l4, ∀S ∈ 6 and ∀e ∈ E

without changing the optimal value. The modified
integer program can be relaxed to the following linear
program (LP1):

min
∑
S∈6

cSxS

s.t.

∑
e∈E

ye � 1

∑
4 : 4∈Ωe

l4 ≥ ye, ∀e ∈ E,

xS ≥
∑

4 : S∈4∈Ωe

l4, ∀S ∈ 6 and ∀e ∈ E,

xS ≥ 0, ∀S ∈ 6,

ye ≥ 0, ∀e ∈ E,

l4 ≥ 0, ∀4 ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Notice that there exists an optimal solution to (2) in
which all variables have values at most one. This is
obvious for ye. If the second constraint is strict, then
we may reduce the values of some l4 that neither
violates the feasibility nor increases the objective
value. So we may assume that

∑
4 : 4∈Ωe

l4 � ye, and
thus, l4 ≤ 1 because ye ≤ 1. As a consequence, the
right-hand side of the third constraint is no more
than one. Combining this with the fact that the ob-
jective is to minimize a linear combination of xS’s, we
have xS ≤ 1 for any S ∈ 6. The following lemma shows
that (2) is indeed a relaxation of theMinDSC problem.

Lemma1. The optimal value of the linear program (2), denoted
as optLP1

, satisfies optLP1
≤ optMinDSC, where optMinDSC is

the optimal value for MinDSC.

Proof. For anyoptimal solution (x∗,y∗,4∗) of theMinDSC
instance, suppose

∑
e∈E y

∗
e � N, then (x∗/N, y∗/N,4∗/N)

satisfies all constraints of (2) and, thus, is a feasible
solution to (2). As a consequence, optLP1

≤∑
S∈6 cS(x∗S/N)�∑

S∈6 cSx
∗
S/

∑
e∈E y

∗
e � optMinDSC.

Lemma 2. Program (2) is polynomial-time solvable.

Proof. Observe that the number of variables in the
form of l4 in program (2) is exponential. Consider the
dual program of (2):

max t

s.t.

∑
e∈E

peS ≤ cS, ∀S ∈ 6

ze ≤
∑

S : S∈4
peS, ∀e ∈ E and ∀4 ∈ Ωe

t ≤ ze, ∀e ∈ E,

peS ≥ 0, ∀S ∈ 6 and ∀e ∈ E

ze ≥ 0, ∀e ∈ E.

t ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

By LP primal-dual theory (see, for example, Korte and
Vygen 2008), optimal primal solution and optimal
dual solution can be determined by each other through
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complementary slackness conditions. Notice that the
numberof nonzeroprimalvariables isupperboundedby
the rank of the primal coefficient matrix and, thus, is a
polynomial; hence, the exponential number of primal
variables does not cause trouble becausewe only need to
determine those that are nonzero. As a consequence, one
can solve (2) by solving (3). Although (3) has an ex-
ponential number of constraints, the ellipsoid algo-
rithm tells us that, as long as one can find a poly-
nomial time separation oracle, then the LP can be
solved within any additive error in polynomial time.
A procedure is called a separation oracle for an LP if,
given a point x, it either correctly decides that x be-
longs to the feasible domain of the LP or finds a vi-
olated constraint at x. Because both |6| and |E| are
polynomial, to solve (3), it suffices to construct a
separation oracle for the second set of constraints,
which is accomplished in the following way.

For any element e ∈ E, let ge be the function on Ωe

defined by ge(4) �
∑

S : S∈4 peS for 4 ∈ Ωe. Notice that ge
is a modular set function on Ωe; that is, for any two
re-cover sets 41, 42 ∈Ωe, ge(41 ∪ 42) + ge(41 ∩ 42) �
ge(41) + ge(42). Because the minimum value of a mod-
ular set function can be found in polynomial time even
when its feasible domain has exponential size (in fact,
even the minimization of a submodular set function can
be done in polynomial time; Fujishige 2005), we can
compare the minimum value of ge with ze for each e in
polynomial time. If there exists an element e with
min4∈Ωe

ge(4) < ze, then we find a violated constraint.
Otherwise, we can draw the conclusion that the
current ({peS}, {ze}, t} is a feasible solution. This serves
as a separation oracle for the second set of constraints,
and the proof is completed because of the preced-
ing argument.

Our algorithm is presented in Algorithm 1. It differs
from the algorithm of Shi et al. (2020) in line 4. In Shi
et al. (2020), the authors employ an approximation
algorithm for the minimum node weighted Steiner net-
work problem to find a multicover of Yi0 , and our al-
gorithm makes use of an approximation algorithm for
MinSMC directly.

Algorithm 1 (Algorithm for MinDSC)

Input: A MinDSC instance (E,6, c, r).
Output: A subcollection 6

′.
1: Find an optimal solution (x f , y f , l f ) to linear

program (2).
2: Let Yi � {e ∈ E : 2−(i+1) < y

f
e ≤ 2−i} for 0 ≤ i ≤ I − 1

and YI � {e∈E : y
f
e ≤ 2−I}, where I � 2�logn� − 1.

3: Let i0 be an index such that |Yi0 | ≥ 2i0/(I + 1).
4: Find an approximate solution 6′ to MinSMC on

instance (Yi0 ,6, c, r).
5: Output 6′.

The improvement on the approximation ratio is
achieved by exploiting a relation between (LP1) and
an LP formulation for MinSMC, denoted as (LP2)
as follows:

min
∑
S∈6

cSxS

s.t.

∑
S : e∈S

xS ≥ re, ∀e ∈ Y,

xS ≤ 1, ∀S ∈ 6,

xS ≥ 0, ∀S ∈ 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where Y is taken to be Yi0 here. Notice that, for
MinSMC, a set can be taken atmost once. Because, in a
general case, we have re > 1, constraint xS ≤ 1 cannot
be omitted from the LP relaxation. It is known that
the preceding program (4) has integrality gap H(∆),
where∆ is themaximumsize of a set in6 (Rajagopalan
and Vazirani 1998).

Theorem 1. For n ≥ 32, Algorithm 1 has a performance
ratio at most 4 log nH(∆) for MinDSC.

Proof. We prove the theorem by first establishing the
following two claims.
Claim 1. An index i0 as in line 3 of Algorithm 1

exists, and i0 ≤ I − 1.

Proof. In fact, by
∑

e∈E ye � 1, there exists an index i0
such that

∑
e∈Yi0

y
f
e ≥ 1/(I + 1). Because y

f
e ≤ 2−i0 for

every e ∈ Yi0 , we have |Yi0 | ≥ 2i0/(I + 1). Notice that, for

i � I, it can be calculated that
∑

e∈YI
y
f
e ≤ n2−I < 1/(I + 1)

when n ≥ 32. Hence, the preceding i0 ≤ I − 1.
Claim 2. optLP2(Yi0) ≤ 2i0+1optLP1 , where optLP2(Yi0) is

the optimal value of linear program (4) on MinSMC
instance (Yi0 ,6, c, r).

Proof. Consider x f computed in line 1 of Algorithm 1.
Construct a new vector {x̂S}S∈6 by setting x̂S � min
{1,2i0+1x f

S} for S ∈ 6. We claim that

x̂S{ }S∈6 is a feasible solution to (4)on instance Yi0 ,6,c,r
( )

.

(5)

Clearly, x̂S ≤ 1. So we only need to show that the first
constraint in (4) is satisfied. For this purpose, de-
note* � {S ∈ 6 : 2i0+1x

f
S > 1} and*e � {S ∈ * : e ∈ S}.

Then every S ∈*has x̂S � 1. Let6r � 6 \*, rre �max{0,
re − |*e|}, and Er � Yi0 \ {e : rre � 0} (where superscript
r represents residual). To prove the first constraint
in (4), it suffices to show that

∑
S : e∈S∈6r

x̂S ≥ rre holds for any e ∈ Er. (6)
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Denote by 4
r,Ωr

e,Ω
r the restriction of 4,Ωe,Ω on

(Er,6r, rr) and set l̂4r � l
f
4
for Qr �� ∅. For any element

e ∈ Er, we have rre > 0, and thus, re > |*e|. So, for any
4
r ∈ Ω

r
e, the set

4
r � 4 \*e �� ∅ (7)

and l̂4r inherits the value l
f
4
. Combining this argument

with the fact that (x f , l f , y f ) is a feasible solution to (2),
we have

∑
4r : 4r∈Ωr

e

l̂4r �
∑

4 : 4∈Ωe

l
f
4
≥ yfe. (8)

By the nonnegativity of l
f
4
, we have

x
f
S ≥

∑
4 : S∈4∈Ωe

l
f
4
≥

∑
4r : S∈4r∈Ωr

e

l̂4r ∀S ∈ 6
r( ). (9)

Observe that the cover set 4r defined in (7) contains at
least rre sets, and we have

∑
S : S∈4r

l̂4r ≥ rre. (10)

It follows that, for any e ∈ Er,

∑
S : e∈S∈6r

x̂S �
∑

S : e∈S∈6r

2i0+1x
f
S

≥ 2i0+1
∑

S : e∈S∈6r

∑
4r : S∈4r∈Ωr

e

l̂4r

by (9)
( )

� 2i0+1
∑

4r : 4r∈Ωr
e

∑
S : S∈4r

l̂4r

by exchangng the summation
( )

≥ 2i0+1
∑

4r : 4r∈Ωr
e

rre · l̂4r

by (10)
( )

≥ 2i0+1rrey
f
e

by (8)
( )

> rre since e ∈ Er ⊆ Yi0 and every
(

× element e ∈ Yi0 has 2
i0+1y f

e > 1
)
.

Inequality (6) is proved, and (5) follows.
Combining (5) with the observation that x̂S ≤ 2i0+1x

f
S

(by the definition of x̂S), we have

optLP2
Yi0

( )
≤

∑
S : S∈6

cSx̂S ≤ 2i0+1
∑

S : S∈6
cSx

f
S � 2i0+1optLP1

.

Claim 2 is proved.

Then,we have the following sequence of inequalities:

c 6
′( )

|# 6
′( )| ≤

c 6
′( )

|Yi0 |
since6′fully covers all the elements in Yi0

( )

≤ H ∆( ) · optLP2
Yi0

( )

2i0/ I+1( )
because the integrality gap for (4)
(

isH ∆( ) and |Yi0 | ≥ 2i0/ I+1( )
)

≤ 2i0+1H ∆( ) · optLP1

2i0/ I+1( )
by Claim 2
( )

≤ 4lognH ∆( )optMinDSC

by Lemma 1 and the definition of I
( )

. (11)

The theorem is proved.

2.2. Algorithm for MinPSMC Using Our

Algorithm for MinDSC

The algorithm for MinPSMC is presented in Algo-
rithm 2. It iteratively picks an approximate densest
subcollection of sets until at least k elements are fully
covered.We use6j to denote the approximate densest
subcollection picked in the jth iteration and denote by
^(j) � ⋃j

i�1 6i. Every time an approximate densest
subcollection 6j is picked, the instance is updated
into a residual instance (E(j),6(j), c, r(j), k(j)) as follows:
6

(j) � 6 \^(j) is the collection of remaining sets, r
(j)
e �

max{0, re − |^(j)
e |} is the residual covering requirement

of element e, C(j) � #(^(j)) is the set of elements fully
covered after the jth iteration, E(j) � E \ C(j) is the set of
elements with positive residual covering require-
ment, k(j) � max{0, k − |C(j)|} is the total residual cov-
ering requirement. Suppose the while loop is exe-
cuted g times; that is, g is the index with |#(^(g−1))| < k
and |#(^(g))| ≥ k. One problem is that the last sub-
collection 6g picked by line 4 of the algorithm may
fully cover more residual elements than needed, and
thus, its cost might be too large although its density is
small. To solve such a problem, the algorithm outputs
the better solution of ^(g) (which is ^(g−1) ∪ 6g) and
^(g−1) ∪*, where * consists of k(g−1) � k − |#(^(g−1))|
cheapest bundles of the (g − 1)th residual instance. To
be more concrete, * is computed by Algorithm 3, the
idea of which is as follows. A bundle for element e is a
collection consisting of exactly r

(g−1)
e sets from 6

(g−1)
e .

So the residual covering requirement of e is satisfied
by choosing one of its bundles. For each element,
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we choose one of its cheapest bundles as its repre-
sentative bundle. Then, k cheapest representative bun-
dles fully covers at least k residual elements.

Algorithm 2 (Greedy Algorithm for MinPSMC)

Input: An instance (E,6, c, r, k) for MinPSMC.
Output: A subcollection of sets ^ fully cover at least

k elements.
1: j← 0, ^

(0) ←∅, 6
(0) ←6, E(0) ←E, C(0) ←∅,

r(0) ← r, k(0) ← k.
2: while k(j) > 0 do
3: j ← j + 1.
4: Compute subcollection6j onMinDSC instance

(E(j−1),6(j−1), c, r(j−1)) .
5: Let^(j) ← ^

(j−1) ∪ {6j} and update the instance
into a residual one with data 6

(j),C(j), r(j),
E(j), k(j) as described in the preceding paragraph.

6: end while
7: if |#(^(j))| � k then
8: * ← 6j.
9: else (in this case |#(^(j))| > k)

10: * ← CheapestBundle(E(j−1),6(j−1),c,r(j−1),k(j−1)).
11: end if
12: Output ^ ← argmin{c(^(j)), c(^(j−1) ∪*)}.

Algorithm 3 (Function CheapestBundle (E,6, c, r, k))
1: For each e ∈ E, let *(e) ← argmin{c(5) :

5 ⊆ 6e, |5| � re)}.
2: Order elements of E as e1, e2, . . . such that

c(*(e1)) ≤ c(*(e2)) ≤ · · ·.
3: Return * ← ⋃k

i�1 *(ei).

Theorem 2. Making use of an α-approximation algorithm
for MinDSC in line 4 of the algorithm, Algorithm 2 has
approximation ratio at most α ln k +

̅̅̅̅
αn

√
.

Proof. Suppose the while loop is executed g times and
61, . . . ,6g are the approximate densest subcollections
picked by the algorithm. Let OPT be an optimal so-
lution to MinPSMC and denote opt � c(OPT). We use
#

(j)(5) to denote the number of elements fully cov-
ered by subcollection 5 with respect to the (j − 1)th
residual instance. For each j � 1, 2, . . . , g, because 6j is
an α-approximate densest subcollection with respect to

the (j − 1)th residual instance and OPT \^(j−1) fully
covers at least k(j−1) � k − |#(^(j−1))| residual elements,
we have

c 6j

( )

#
j( ) 6j

( )⃒⃒
⃒

⃒⃒
⃒
≤ α ·

c OPT \^ j−1( )
( )

#
j( ) OPT \^ j−1( )
( )⃒⃒

⃒
⃒⃒
⃒
≤ α · opt

k j−1( ) . (12)

Notice that |#(j)(6j)| � k(j−1) − k(j) holds for j� 1, . . . ,g−1.
Combining this with (12),

∑g−1

j�1
c 6j

( )
≤ α

∑g−1

j�1

k j−1( ) − k j( )

k j−1( ) opt. (13)

Making use of the following fact, for two integers a, b
with b ≥ a,

b − a

b
�
∑b−a

i�1

1

b
≤ 1

b
+ 1

b − 1
+ · · · 1

a + 1
� H b( ) −H a( ),

where H(b) � ∑b
i�1 1/i is the bth harmonic number,

we have

∑g−1

j�1

k j−1( ) − k j( )

k j−1( ) �
∑g−1

j�1
H k j−1( )
( )

−H k j( )
( )( )

� H k 0( )( )
−H k g−1( )

( )
.

Combining this with (13) and the observation that
k(0) � k and k(g−1) ≥ 1, we have

c ^
g−1( )

( )
�
∑g−1

j�1
c 6j

( )
≤α H k 0( )

( )
−H k g−1( )

( )( )
opt

≤α H k( )−1( )opt. (14)

For j � g, because |#(6(g))|≤n−|C(g−1)|, inequality (12)
implies

c 6g

( )
≤ α ·

n − C g−1( )
⃒⃒
⃒

⃒⃒
⃒

k g−1( ) opt. (15)

Notice that every bundle chosen in Algorithm 3 has
cost upper bounded by opt, and through line 10 of
Algorithm 2, k(g−1) bundles are chosen. Hence,

c *( ) ≤ k g−1( )opt. (16)

Combining (15) and (16), we have

min c 6g

( )
, c *( )

{ }

≤ min
α n − C g−1(

)⃒⃒
⃒

⃒⃒
⃒

( )

k g−1( ) , k g−1( )
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
opt.

Notice that the maximum value for min{α(n−|C(g−1)|)/
k(g−1),k(g−1)} is achieved when α(n− |C(g−1)|)/k(g−1) �
k(g−1), that is, when k(g−1) �

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α(n − |C(g−1)|)

√
, and the

maximum value is
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
α(n − |C(g−1)|)

√
≤

̅̅̅̅
αn

√
. So

min c 6g

( )
, c *( )

{ }
≤

̅̅̅̅
αn

√
· opt. (17)
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Combining (14) with (17) and the well-known fact
that H(k) ≤ ln k + 1, we have

c ^( ) � c ^
g−1( )

( )
+min c 6g

( )
, c *( )

{ }

≤ α H k( ) − 1( ) +
̅̅̅̅
αn

√( )
opt

≤ α ln k +
̅̅̅̅
αn

√( )
opt.

The claimed ratio is proved.

As a consequence of Theorem 1, we have the fol-
lowing corollary.

Corollary 1. MinPSMC admits a (4 log nH(∆) ln k + 2
log n

̅̅
n

√
)-approximation.

3. A Bicriteria Algorithm for MinPSMC
In this section, we give a bicriteria algorithm for Min-
PSMC. For this purpose, we first study the MinDSC≥k

problem,which is aMinDSCproblemwith the chosen
subcollection fully covering at least k elements. A
bicriteria approximation algorithm for MinDSC≥k is
presented (in which the total covering requirement is
violated only by a little), based on which a bicriteria
approximation guarantee for MinPSMC is obtained.
In particular, when k � Ω(n), our ratio is better than
that in Shi et al. (2019).

3.1. LP Formulation for MinDSC≥ k

The following is an integer program for MinDSC≥k:

min

∑
S∈6

cSxS

∑
e∈E

ye

s.t.

∑
4 : 4∈Ωe

l4 ≥ ye, ∀e ∈ E,

xS ≥ max
4 : S∈4∈Ω

l4, ∀S ∈ 6,
∑
e∈E

ye ≥ k,

xS ∈ 0, 1{ }, ∀S ∈ 6,

ye ∈ 0, 1{ }, ∀e ∈ E,

l4 ∈ 0, 1{ }, ∀4 ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

Wemay relax (18) into a family of linear programs L̃Pk

as follows:

min
∑
S∈6

cSxS

s.t.

∑
e∈E

ye � 1

∑
4 : 4∈Ωe

l4 ≥ ye, ∀e ∈ E,

xS ≥
∑

4 : S∈4∈Ωe

l4, ∀S ∈ 6 and ∀e ∈ E,

xS ≥ 0, ∀S ∈ 6,

ye ≥ 0, ∀e ∈ E,

ye ≤ 1/k, ∀e ∈ E,

l4 ≥ 0, ∀4 ∈ Ω.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

The next lemma shows that the minimum optimal
value of the preceding family of linear programs
lower bounds that of the MinDSC≥k problem.

Lemma 3. Denote by optL̃Pk
the optimal value of L̃Pk

and optDSC≥k the optimal value for MinDSC≥k. Then,
optL̃Pk

≤ optDSC≥k .

Proof. Suppose^∗ is an optimal solution to MinDSC≥k

and |#(^∗)| � 
∗. Then, 
∗ ≥ k. Let xS � 1/
∗ for S ∈ ^
∗.

For each element e ∈ #(^∗), let ye � 1/
∗ and choose
exactly one re-cover set 4e ⊆ ^

∗ and let l4e
� 1/
∗.

Set all the other variables to be zeros. It can be
verified that (x, y, l) is a feasible solution to linear
program L̃Pk. Hence,

optL̃Pk
≤

∑

S∈^∗
cSxS �

∑
S∈^∗ cS

∗ � optDSC≥k .

The lemma is proved.

Similar to the proof of Lemma 2, we obtain the
following lemma.

Lemma 4. Program (19) is polynomial-time solvable.

3.2. Algorithm and Analysis

Our algorithm is presented in Algorithm 4.

Algorithm 4 (Bicriteria Algorithm for Min DSC≥k)

Input: A MinDSC≥k instance (E,6, c, r) with |E| � n
and a real number 0 < ε ≤ 1.

Output: A subcollection 6
′ that fully covers at least

(1 − ε
2 log n)k elements.

1: p ← 	log log(n2)
.
2: Find a minimum optimal solution (x f , y f , l f )
to L̃Pk.

3: Let Yi � {e∈E : 2−(i+1) < ky
f
e ≤ 2−i} for 0 ≤ i ≤ I − 1

and YI � {e∈E : ky
f
e ≤ 2−I}, where I� 2�logn�−1.

Denote Y′
i � Y0 ∪ Y1 ∪ · · · ∪ Yi for i � 0, 1, . . . , I.

4: Let i0 be an index such that |Yi0 | ≥ 2i0k/(I + 1).
5: if i0 ≥ p then
6: Find an approximate solution 6

′ to MinSMC
on instance (Yi0 ,6, c, r).

7: else
8: Find an approximate solution ^′ to MinSMC

on instance (Y′
p,6, c, r).

9: if |Y′
p| ≥ (1 − ε

2 log n)k then
10: 6

′ ← ^
′

11: else
12: For {Zj � Yj \ Y′

p}Ij�0, let j0 be an index such

that |Zj0 | ≥ 2j0k(1 −∑
e∈Y′

p
y
f
e )/(I + 1).

13: Find an approximate solution ^′′ to
MinSMC on instance (Zj0 ,6, c, r).

14: 6′ ← ^′ ∪^′′

15: end if
16: end if
17: Output 6′.
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To analyze the approximation ratio of the algorithm,
weexplore the relationbetween L̃Pk and linear program
formulation (4) of MinSMC on instance (Y,6, c, r).
Theorem 3. For n ≥ 32, Algorithm 4 either outputs a so-
lution fully covering at least (1 − ε

2 log n)k elements with
density at most 8(log n)2H(∆) · optDSC≥k or outputs a
feasible solution to MinDSC≥k with density at most
8(log n)2H(∆)

ε optDSC≥k .

Proof. Similar to the proof of Theorem 1, we have the
following two claims.

Claim 1. An index i0 as in line 4 of Algorithm 4
exists, and i0 ≤ I − 1.

Claim 2. For any index i ≤ I − 1, let optLP2
(Y) be

the optimal value of linear program (4) for MinSMC
on instance (Y,6, c, r), where Y ⊆ Y′

i . Then, optLP2(Y) ≤
2i+1k· optL̃Pk

.

In the case when i0 ≥ p, we have |Yi0 | ≥ 2pk/(I + 1) ≥ k
by the choice of p. Hence, the subcollection6′ calculated in
line 6 of Algorithm 4 is a feasible solution to MinDSC≥k.
Then, by a similar argument as in the proof of the last in-
equality of Theorem 1, combining claims 1 and 2 for Y � Yi0 ,
Lemma 3, the fact that 6′ fully covers all the elements in Yi0 ,
and the known integrality gap H(∆) for (4), we have

c 6
′( )

|# 6
′( )| ≤

c 6
′( )

|Yi0 |
≤ H ∆( ) · optLP2 Yi0

( )

2i0k/ I + 1( )

≤
2i0+1kH ∆( ) · optL̃Pk

2i0k/ I + 1( )
≤ 4 log nH ∆( )optDSC≥k .

This finishes the proof for the first case.
In the following, suppose i0 < p.

Claim 3. den(^′) ≤ 8(logn)2H(∆)optDSC≥k .

Proof. By claim 2, we have optLP2
(Y′

p) ≤ 2p+1k · optL̃Pk
.

Because i0 < p implies |Y′
p| ≥ |Yi0 | ≥ 2i0k/(I + 1), similar

to the proof of claim 2, we have

c ^′( )
|# ^′( )| ≤

c ^′( )
|Y′

p|
≤
H ∆( ) · optLP2

Y′
p

( )

2i0k/ I + 1( )

≤
2p+1kH ∆( ) · optL̃Pk

2i0k/ I + 1( )
≤ 8 log n

( )2H ∆( )optDSC≥k .

So, in the case when 6
′ is determined by line 10 of

Algorithm 4, 6′ is a bicriteria solution satisfying the
claim of the theorem.

Finally, we consider the case when 6
′ is determined

in line 14 of Algorithm 4. Notice that, in this case,
|Y′

p| < (1 − ε
2 log n)k.

Claim 4. An index j0 as in line 12 of Algorithm 4
exists and j0 ≤ I − 1.

Proof. Denote E′ � E \ Y′
p. By

∑
e∈E′ ky

f
e � k(1 −∑

e∈Y′
p

y
f
e ), there exists an index j0 such that

∑
e∈Zj0

ky
f
e ≥ k(1−∑

e∈Y′
p
y
f
e )/(I + 1). Because ky

f
e ≤ 2−j0 for every e ∈ Zj0 ⊆

Yj0 , we have |Zj0 | ≥ 2j0k(1 −∑
e∈Y′

p
y
f
e )/(I + 1). Because

|Y′
p| < (1 − ε

2 log n)k, we have |Y′
p| ≤ k − 1. Combining this

with ky
f
e ≤ 1, we have

k 1 −
∑
e∈Y′

p

y f
e

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ ≥ k − Y′

p

⃒⃒
⃒

⃒⃒
⃒ ≥ 1. (20)

So, if j0 � I, then n ≥ |Zj0 | ≥ 2I/(I + 1) ≥ 2(2�log n�−1)/
2�log n�, which is impossible when n ≥ 32. So j0 ≤ I− 1.
Claim 5. The subcollection 6

′ determined in line
14 of Algorithm 4 fully covers at least k elements and,
thus, is a feasible solution to MinDSC≥k.

Proof. Because Zj0 ⊆ E \ Y′
p by line 12 of Algorithm 4,

we have j0 ≥ p + 1. Combining this with the definition
of p in line 1 of Algorithm 4, we have 2j0/(I + 1) ≥
2p+1/(I + 1) ≥ 2. Then, by the choice of j0 in line 12 of
Algorithm 4 and (20),

Zj0

⃒⃒ ⃒⃒
≥
2j0k 1 −

∑
e∈Y′

p
y f
e

( )

I + 1
≥ k 1 −

∑
e∈Y′

p

y f
e

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠ ≥ k − Y′

p

⃒⃒
⃒

⃒⃒
⃒.

(21)

Hence, |#(6′)| ≥ |Y′
p| + |Zj0 | ≥ k.

Claim 6. den(^′′) ≤ 8
ε (log n)2H(∆)optDSC≥k .

Proof. By claim 2, optLP2
(Zj0)≤2j0+1koptL̃Pk

. Because |Y′
p| <

(1 − ε
2 log n)k, we have k(1 −∑

e∈Y′
p
y
f
e) ≥ k − |Y′

p| > εk
2 logn.

By a similar argument as in the proof of claim 5,

c ^′′( )
|# ^( )| ≤

c ^′′( )
|Zj0 |

≤ H ∆( ) · optLP2
Zj0

( )

2j0k 1 −
∑
e∈Y′

p

y f
e

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠/ I + 1( )

<
2j0+1kH ∆( ) · optL̃Pk

2j0εk/ 2 log n I + 1( )
( )

≤ 8

ε
log n
( )2H ∆( )optDSC≥k .
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By claim 5, the subcollection 6
′ determined in line

14 of Algorithm 4 is a feasible solution to MinDSC≥k.
Combining claim 3 with claim 6, 6′ has density

c 6
′( )

|# 6
′( )| ≤

c ^
′( ) + c ^′′( )

Y′
p

⃒⃒
⃒

⃒⃒
⃒ + Zj0

⃒⃒ ⃒⃒ ≤ max
c ^

′( )
Y′
p

⃒⃒
⃒

⃒⃒
⃒
,
c ^′′( )
Zj0

⃒⃒ ⃒⃒
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

≤ 8

ε
log n
( )2H ∆( )optDSC≥k .

The theorem is proved.

Corollary 2. Let opt be the optimal value of MinPSMC. For
n ≥ 32, Algorithm 4 outputs a bicriteria solution fully
covering at least (1 − ε

2 log n)k elements with cost at most
8n
kε (log n)2H(∆) · opt. In particular, when k � pn, where 0 <
p < 1 is a constant, Algorithm 4 outputs a bicriteria solution
fully covering at least (1 − ε

2 log n)k elements with cost at
most O(1ε (log n)2H(∆))opt.

Proof. Let OPT be an optimal solution to MinPSMC.
Because OPT is a feasible solution of MinDSC≥k,
we have

optDSC≥k ≤ opt

|# OPT( )| ≤
opt

k
.

Combining this with Theorem 3, Algorithm 4 either
outputs a solution fully covering at least (1 − ε

2 logn)k
elements with cost at most 8n

k (log n)2H(∆) · opt or
outputs a feasible solution to MinPSMC with cost at

most
8n(log n)2H(∆)

kε opt. Thus, the corollary is proved.

4. Conclusion and Discussion
In this paper, we give two approximation algorithms
for the minimum partial set multicover problem.
The first algorithm achieves approximation ratio
4 lognH(∆) ln k + 2

̅̅
n

√
logn. Unlike previouswork, the

ratio is independent of the maximum covering re-
quirement rmax, and, thus, can be applied, say, on the
MinPPDS problem in which the maximum degree
of the graph is not upper bounded by a constant. The
second is a bicriteria algorithm, which performs
better in the case when the total covering require-
ment k � Ω(n), that is, when k � pn, where 0 < p < 1
is a constant, the solution fully covers at least (1 −

ε
2 logn)k elements and achieves approximation guar-
antee O(1ε (log n)2H(δ)), where δ is the maximum de-
gree in the graph. The ratio is obtained by studying
the MinDSC≥k problem, which might be of interest by
itself. Whether MinDSC≥k admits a good approxima-
tion instead of a bicriteria one is an interesting question.
Another question is whether MinPPDS admits a better
approximation by exploring the graph structural prop-
erties of the problem.

Because MinkU is a special case of MinPSMC, our
algorithm can also be applied to MinkU. In fact, by
showing that the MinDSC problem corresponding to
MinkU can be solved in polynomial time, we can
obtain a (ln k +

̅̅̅
m

√
)-approximation for MinkU, where

m is the number of hyperedges. However, this ratio is
not as good as the best known ratio O(m1/4+ε) for
MinkU. It is interesting to ask whether the techniques
in Chlamtáč et al. (2017) can be generalized to give a
better approximation for MinPSMC.
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