
Sampling Multiple Edges Efficiently1

Talya Eden ! Ï2

CSAIL at MIT, USA3

Saleet Mossel !4

CSAIL at MIT, USA5

Ronitt Rubinfeld ! Ï6

CSAIL at MIT, USA7

Abstract8

We present a sublinear time algorithm that allows one to sample multiple edges from a distribution9

that is pointwise ϵ-close to the uniform distribution, in an amortized-efficient fashion. We consider10

the adjacency list query model, where access to a graph G is given via degree and neighbor queries.11

The problem of sampling a single edge in this model has been raised by Eden and Rosenbaum12

(SOSA 18). Let n and m denote the number of vertices and edges of G, respectively. Eden and13

Rosenbaum provided upper and lower bounds of Θ∗(n/
√

m) for sampling a single edge in general14

graphs (where O∗(·) suppresses poly(1/ϵ) and poly(log n) dependencies). We ask whether the query15

complexity lower bound for sampling a single edge can be circumvented when multiple samples are16

required. That is, can we get an improved amortized per-sample cost if we allow a preprocessing17

phase? We answer in the affirmative.18

We present an algorithm that, if one knows the number of required samples q in advance, has19

an overall cost that is sublinear in q, namely, O∗(√q · (n/
√

m)), which is strictly preferable to20

O∗(q · (n/
√

m)) cost resulting from q invocations of the algorithm by Eden and Rosenbaum.21

Subsequent to a preliminary version of this work, Tětek and Thorup (arXiv, preprint) proved22

that this bound is essentially optimal.23
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1 Introduction33

The ability to select edges uniformly at random in a large graph or network, namely edge34

sampling, is an important primitive, interesting both from a theoretical perspective in various35

models of computation (e.g., [19, 2, 3, 1, 13, 12, 7, 4, 15]), and from a practical perspective in36

the study of real-world networks (e.g., [20, 22, 31, 6, 27]). We consider the task of outputting37

edges from a distribution that is close to uniform; more precisely, the output distribution on38

edges will be pointwise ϵ-close to the uniform distribution, so that each edge will be returned39

with probability in [ 1−ϵ
m , 1+ϵ

m ]. Note that this is a stronger notion than the more standard40

notion of ϵ-close to uniform in total variation distance (TVD).1 We consider this task in the41

1 See Section 1.1.0.2 for a detailed discussion comparing TVD-closeness to pointwise closeness.
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23:2 Sampling Multiple Edges Efficiently

sublinear setting, specifically, in the adjacency list query model, where the algorithm can42

perform uniform vertex queries, as well as degree and neighbor queries.43

Three recent algorithms have been presented for this problem in the adjacency list model.44

The first, by Eden and Rosenbaum [13], is an O∗(n/
√

m) query complexity2 algorithm that45

works in general graphs.3 This was later refined by Eden, Ron, and Rosenbaum [7] to an46

O∗(mα/n) algorithm for graphs that have arboricity4 at most α (where it is assumed that α47

is given as input to the algorithm). Finally, in [26], Tětek and Thorup combined techniques48

from the previous two works and presented the state of the art algorithm for sampling a49

single edge. This algorithm exponentially improves on the dependency in 1/ϵ compared to50

the algorithm by [13]. All of these algorithms were also shown to be essentially optimal if51

one is interested in outputting a single edge sample. Naively, to sample q edges in general52

graphs, one can invoke the [26] algorithm q times, with expected complexity O∗(q · (n/
√

m)).53

In this paper, we prove that this query complexity can be improved to O∗(√q · (n/
√

m)).54

That is, we prove that there exists an algorithm with a better amortized query complexity.55

1.1 Results56

We present an algorithm that returns an edge from a distribution that is pointwise ϵ-close57

to uniform, and efficiently supports many edge sample invocations. Assuming one knows58

in advance the number of required edge samples q, the overall cost of q edge samples is59

O∗(q · (n/
√

m) + q) = O∗(q · (n/
√

m)), where the equality is since we can assume that60

q = O(n2/m).5 Subsequent to a preliminary version of this work, Tětek and Thorup [26,61

Theorem 15 ] proved that the above result is essentially optimal.62

Our algorithm is based on two procedures: a preprocessing procedure that is invoked63

once, and a sampling procedure which is invoked whenever an edge sample is requested.64

There is a trade-off between the preprocessing cost and per-sample cost of the sampling65

procedure. Namely, for a trade-off parameter x ≥ 1, which can be given as input to the66

algorithm, the preprocessing query complexity is O∗(n2/(m · x)) and the per-sample cost of67

the sampling procedure is O(x/ϵ).68

▶ Theorem 1.1 (Informal.). Let G be a graph over n vertices and m edges. Assume access69

to G is given via the adjacency list query model. There exists an algorithm that, given an70

approximation parameter ϵ and a trade-off parameter x, has two procedures: a preprocessing71

procedure, and a sampling procedure. The sampling procedure outputs an edge from a72

distribution that is pointwise ϵ-close to uniform. The preprocessing procedure has O∗(n2/(m ·73

x)) expected query complexity, and the expected per-sample query complexity of the sampling74

procedure is O(x/ϵ).75

As mentioned previously, this result is essentially optimal, due to a lower bound by Tětek76

and Thorup [26].77

2 We note that in all the mentioned algorithms the running time is asymptotically equal to the query
complexity, and therefore we limit the discussion to query complexity.

3 Throughout the paper O∗(·) is used to suppresses poly(log n/ϵ) dependencies.
4 The arboricity of a graph is the minimal number of forests required to cover its edge set.
5 Observe that if the number of required samples q exceeds n2/m, then one an simply perform

O(n2 log n/m) uniform pair queries and with high probability recover all edges in the graph. Hence, we
can assume that q ≤ n2/m, and so the term q does not asymptotically affect the complexity.
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▶ Theorem 1.2 (Theorem 15 in [26], restated). Let ϵ be some small constant 0 < ϵ < 1. Any78

algorithm that samples q edges from a distribution that is pointwise ϵ-close to uniform in the79

adjacency list query model must perform Ω(√q · (n/
√

m)) queries.80

To better understand how the complexity of our upper bound compares to what was81

previously known, we give some possible instantiations. First, setting x = n/
√

m implies82

a preprocessing phase with O∗(n/
√

m) queries and a cost of O(n/
√

m) per sample, thus83

recovering the bounds of [13]. Second, setting x = 1 implies a preprocessing phase with84

O(n2/m) queries and a cost of O(1/ϵ) per sample. This can be compared to the naive85

approach of querying the degrees of all the vertices in the graph, and then sampling each86

vertex with probability proportional to its degree and returning an edge incident to the87

sampled vertex.6 Hence, the naive approach yields an O(n) preprocessing cost and O(1) per-88

sample cost while our algorithm with x = 1 yields an O∗(n2/m) = O∗(n/davg) preprocessing89

and O(1/ϵ) per-sample cost, where davg denotes the average degree of the graph.90

For a concrete example, consider the case where m = Θ(n) and q = O(
√

n) edge samples91

are required. Setting x = n1/4 gives an overall cost of n3/4 for sampling q edges, where92

previously this would have required O(n) queries (by either the naive approach, or performing93

O(
√

n) invocations of the O∗(n/
√

m) = O∗(
√

n) algorithm of [26]). In general, if the number94

of queries q is known in advance, then setting x = n/
√

m√
q , yields that sampling q edges has an95

overall cost of O∗(√q · (n/
√

m)), where previously this would have required O∗(q · (n/
√

m))96

queries resulting from q invocations of the algorithm by [26]. We discuss some more concrete97

applications in the following section.98

1.1.0.1 From the augmented model to the general query model.99

Recently, it has been suggested by Aliakbarpour et al. [3] to consider query models that also100

provide queries for uniform edge samples, and multiple algorithms have since been developed101

for this model, e.g., [4, 15, 5, 28].102

Currently, for “transferring" results in models that allow uniform edge samples back to103

models that do not allow such queries in a black-box manner,7 one must either (1) pay a104

multiplicative cost of O∗(n/
√

m) per query (replacing each edge sample query in an invocation105

of the [13] algorithm for sampling edges), (2) pay an additive cost of O(n) (using the naive106

approach described above), or (3) pay an additive cost of O∗(n2/m) if pair queries8 are107

allowed.9108

For example, the works by Assadi, Kapralov and Khanna [4], Fichtenberger, Gao and109

Peng [15], and Biswas, Eden and Rubinfeld [5] give algorithms that rely on edge samples for110

the tasks of approximately counting and uniformly sampling arbitrary subgraphs in sublinear111

time. Specifically, these works assume the augmented query model which allows for vertex,112

degree, neighbor, pair as well as uniform edge samples queries. When only vertex, degree,113

neighbor and pair queries (without uniform edge samples) are provided, this is referred to as114

the general query model [21]. Currently, there are no dedicated algorithms for these tasks115

in the general model, that does not allow edge samples. For approximating the number116

of 4-cycles, denoted #C4, the algorithms of [4, 15] have query complexity of O∗(m2/#C4).117

6 Indeed, the naive approach returns an edge from a distribution that is exactly uniform.
7 This is true for results for which pointwise-close to uniform edge samples are sufficient, as in the case in

all the current sublinear results that rely on edge samples (that we know of).
8 Pair queries return whether there is an edge between two vertices in the graph.
9 As one can sample all edges in the graph with high probability using O∗(n2/m) uniform pair queries

(by the coupon collector’s argument), and then return from the set of sampled edges.
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For a graph with m = O(n) edges and #C4 = Θ(n3/2) 4-cycles, this results in an O∗(
√

n)118

query complexity in the augmented model. Using our algorithm, we can set q = O(
√

n),119

and approximately count the number of #C4’s in O∗(n3/4) queries in the general query120

model, where previously to our results this would have cost O(n) queries. We note that this121

“black-box" transformation from the augmented model to the general query model is not122

guaranteed to be optimal in terms of the resulting complexity in the general model. Indeed,123

dedicated algorithms for counting and sampling stars and cliques in the general model, prove124

that this is not the case [18, 9, 11, 10, 8, 28]. Nonetheless, to the best of our knowledge,125

no other results are currently known for subgraphs apart from stars or cliques, and so this126

approach provides the only known algorithms for arbitrary subgraph counting and sampling127

in the general model.128

1.1.0.2 Pointwise vs. TVD.129

A more standard measure of distance between two distributions P and Q is the total130

variation distance (TVD), dT V (P, Q) = 1
2

∑
x∈Ω |P (x)−Q(x)|. Observe that this is a strictly131

weaker measure. That is, pointwise-closeness implies closeness in TVD. Thus our algorithm132

immediately produce a distribution that is TVD close to uniform. However, being close133

to a distribution in TVD, does not imply pointwise-closeness.10 Furthermore, in various134

settings, this weaker definition is not sufficient, as is the case in some of the applications we135

mentioned previously. For instance, the uniform edge samples in the algorithms of [4, 15]136

cannot be replaced in a black-box manner by edge samples that are only guaranteed to137

be close to uniform in TVD. For a concrete example, consider the task of approximately138

counting the number of triangles. Let G = A∪B be a graph, where A is a bipartite subgraph139

over (1− ϵ)m edges, and B is a clique over ϵm edges. An algorithm that returns a uniformly140

distributed edge in A is close in TVD to uniform over the entire edge set of G. However, it141

does not allow one to correctly approximate the number of triangles in G, as the algorithm142

will never return an edge from the clique, which is where all the triangles reside.143

1.2 Technical Overview144

Sampling (almost) uniformly distributed edges is equivalent to sampling vertices with145

probability (almost) proportional to their degree d(v)
2m .11 Hence, from now on we focus on146

the latter task.147

Consider first the following naive procedure for sampling vertices with probability pro-148

portional to their degree. Assume that dmax, the maximum degree in the graph is known.149

Query a vertex uniformly at random and return it with probability d(v)
dmax

; otherwise, return150

fail. Then each vertex is sampled with probability d(v)
n·dmax

. Therefore, if we repeatedly invoke151

the above until a vertex is returned, then each vertex is returned with probability d(v)
2m , as152

desired. However, the expected number of attempts until a vertex is returned is O( n·dmax
m )153

(since the overall success probability of a single attempt is
∑

v∈V
d(v)

n·dmax
= 2m

n·dmax
), which154

could be as high as O( n2

m ) when dmax = Θ(n).155

10 E.g., a distribution that ignores ϵ/2-fraction of the edges and is uniform on the rest is close in TVD to
uniform, but clearly it is not pointwise close.

11 Since if every v is sampled with probability in (1 ± ϵ) d(v)
2m , performing one more uniform neighbor query

from v implies that each specific edge (v, w) in the graph is sampled with probability in (1 ± ϵ) · 1
2m .
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Our idea is to partition the graph vertices into light and heavy, according to some degree156

threshold τ , that will play a similar role to that of dmax in the naive procedure above. Our157

algorithm has two procedures, a preprocessing procedure and a sampling procedure. The158

preprocessing procedure is invoked once in the beginning of the algorithm, and the sampling159

procedure is invoked every time an edge sample is requested. In the preprocessing procedure160

we construct a data structure that will later be used to sample heavy vertices. In the sampling161

procedure, we repeatedly try to sample a vertex, each time either a light or a heavy with162

equal probability, until a vertex is returned. To sample light vertices, we invoke the above163

simple procedure with τ instead of dmax. Namely, sample a uniform random vertex v, if164

d(v) ≤ τ , return it with probability d(v)
τ . To sample heavy vertices, we use the data structure165

constructed by the preprocessing procedure as will be detailed shortly.166

In the preprocessing procedure, we sample a set S of O
(

n
τ ·

log n
ϵ2

)
vertices uniformly167

at random. We then construct a data structure that allows to sample edges incident12 to168

S uniformly at random. It holds that with high probability for every heavy vertex v, its169

number of neighbors in S, denoted dS(v), is close to its expected value, d(v) · |S|
n . Also, it170

holds that with high probability the sum of degrees of the vertices in S, denoted d(S), is171

close to its expected value, 2m · |S|
n . Hence, to sample heavy vertices, we first sample an172

edge (u, v) incident to S uniformly at random (without loss of generality u ∈ S) and then we173

check if the second endpoint v is heavy. If so, we return v, and otherwise we fail. By the174

previous discussion on the properties of S, it holds that every heavy vertex is sampled with175

probability approximately dS(v)
d(S) ≈

d(v)
2m .176

1.3 Comparison to Previous Work177

For the sake of this discussion assume that ϵ is some small constant. Most closely related to178

our work, is the algorithm of [13]. Their algorithm also works by partitioning the graph’s179

vertices to light and heavy vertices according to their some degree threshold θ. Their method180

of sampling light edges is identical to ours: one simply samples a vertex uniformly at random,181

and keeps it with probability d(v)/θ. In our algorithm, τ is the degree threshold for light and182

heavy vertices, so that τ and θ plays the same role. The difference between our works is in183

the sampling of heavy vertices. To sample heavy vertices, the algorithm of [13] tries to reach184

heavy vertices by sampling light vertices, and then querying one of their neighbors uniformly185

at random. For this approach to output heavy vertices with almost equal probability to light186

vertices, θ must be set to Ω(
√

m). Our approach for sampling heavy vertices is different, and187

relies on the preprocessing phase, which later allows us to reach heavy vertices with O(1)188

queries. This allows us, in a sense, to decouple the dependence of the threshold τ and the189

success probability of sampling light vertices. Hence, we can allow to set the degree threshold190

τ to smaller values, which results in a more efficient per-sample complexity (at a cost of a191

preprocessing step).192

The algorithm of [7] also outputs a uniformly distributed single edge, however in graphs193

with bounded arboricity α. Here too the algorithm first defines light vertices, setting the194

threshold to Θ(α). Sampling heavy edge is then performed by starting at light vertices195

as before, but taking longer random walks of length ℓ, for ℓ chosen uniformly in [log n].196

This method was later used by Tětek [26] to exponentially improve the dependence in ϵ of197

sampling a single edge in the general setting. It is an interesting open question whether198

12 We say that an edge (u, v) is incident to S if either u or v are in S.
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23:6 Sampling Multiple Edges Efficiently

there exists an algorithm for sampling multiple edges in bounded arboricity graphs which199

has better complexity than the algorithm of this work.200

1.4 Further Related Work201

We note that some of the related works were already mentioned, but we list them again for202

the sake of completeness.203

1.4.0.1 Sampling edges in the adjacency list model.204

As discussed previously, the most related work to ours is that of [13] for sampling a single205

edge from an almost uniform distribution in general graphs in O∗(n/
√

m) expected time.206

This was later refined by Eden, Rosenbaum and Ron [7] to an O∗(nα/m) expected time207

algorithm in bounded arboricity graphs, where a bound α on the arboricity of the graph at208

question is also given as input to the algorithm.13 Recently, Tětek and Thorup [26] proved209

that the dependency in ϵ in the algorithm of [13] could be improved from 1/
√

ϵ to log(1/ϵ).210

They further proved (subsequent to our work) that given additional access to what they refer211

to as hash-based neighbor queries, there exists an algorithm for sampling multiple edges212

(with and without replacement) from the exactly uniform distribution in O∗(√q · (n/
√

m))213

time.214

1.4.0.2 The augmented edge samples model.215

In [3], Aliakbarpour et al. suggested a query model which allows access to uniform edge216

samples and degree queries. In this model they presented an algorithm for approximately217

counting the number of s-stars in expected time O∗(m/#H1/s), where #H denotes the218

number of s-stars in the graph. In [4], Assadi, Kaparalov and Khanna considered the219

combined power of neighbor, degree, pair and uniform vertex and edge samples. In this220

model, they presented an algorithm that approximates the number of occurrences of any221

arbitrary subgraph H in a graph G in expected time O∗(mρ(H)/#H), where ρ(H) is the222

fractional edge cover14 of H, and #H is the number of occurrences of H in G. In the same223

model, Fichtenberger, Gao, and Peng [15] simplified the above algorithm and proved the same224

complexity for the additional task of sampling a uniformly distributed copy of H. Recently,225

Biswas, Eden and Rubinfeld [5], paramerterized the complexity of counting and sampling226

arbitrary subgraph by what they refer to as the decomposition cost of H, improving the227

above results for a large family of subgraphs H. In [28], Tětek considers this model in the228

context of approximately counting triangles in the super-linear regime.229

1.4.0.3 Sampling from networks.230

Sampling from networks is a very basic primitive that is used in a host of works for studying231

networks’ parameters (e.g., [20, 22, 31, 6, 27]). Most approaches for efficiently sampling232

edges from networks are random walk based approaches, whose complexity is proportional233

to the mixing time of the network, e.g., [22, 16, 25, 24]. We note that our approach cannot234

be directly compared with that of the random walk based ones, as the query models are235

different: The adjacency list query model assumes access to uniform vertex queries and one236

13 Note that since for all graphs α ≤
√

m, this results is always at least as good as the previous one.
14 The fractional edge cover of a graph is minimum weight assignment of weights to the graph’s edges, so

that the sum of weights over the edges incident to each vertex is at least 1.
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can only query one neighbor at a time, while random walk based approaches usually only237

assume access to arbitrary seed vertices and querying a node reveals its set of neighbors.238

Furthermore, while in theory the mixing time of a graph can be of order O(n), in practice,239

social networks tend to have smaller mixing times [24], making random walk based approaches240

very efficient. Still, denoting the mixing time of the network by tmix, such approaches require241

one to perform Ω(tmix) queries in order to obtain each new sample, thus leaving the question242

of a more efficient amortized sampling procedure open.243

2 Preliminaries244

Let G = (V, E) be an undirected simple graph over n vertices. We consider the adjacency245

list query model, which assumes the following set of queries:246

Uniform vertex queries: which return a uniformly distributed vertex in V .247

Degree queries: deg(v), which return the degree of the queried vertex.248

Neighbor queries nbr(v, i) which return the ith neighbor of v, if one exists and ⊥249

otherwise.250

We sometimes say that we perform a “uniform neighbor query" from some vertex v. This can251

be simply implemented by choosing an index i ∈ [d(v)] uniformly at random, and querying252

nbr(v, i).253

Throughout the paper we consider each edge from both endpoints. That is, each edge254

{u, v} is considered as two oriented edges (u, v) and (v, u). Abusing notation, let E denote255

the set of all oriented edges, so that m = |E| =
∑

v∈V d(v) and davg = m/n. Unless stated256

explicitly otherwise, when we say an “edge", we refer to oriented edges.257

For a vertex v ∈ V we denote by Γ(v) the set of v’s neighbors. For a set S ⊆ V we denote258

by E(S) the subset of edges (u, v) such that u ∈ S, and by m(S) the sum of degrees of all259

vertices in S, i.e. m(S) = |E(S)| =
∑

v∈S d(v). For every vertex v ∈ V and set S ⊆ V , we260

denote by dS(v) the degree of v in S, dS(v) = |Γ(v) ∩ S|.261

We consider the following definition of ϵ-pointwise close distributions:262

▶ Definition 1 (Definition 1.1 in [13]). Let Q be a fixed probability distribution on a finite263

set Ω. We say that a probability distribution P is pointwise ϵ-close to Q if for all x ∈ Ω,264

|P (x)−Q(x)| ≤ ϵQ(x) , or equivalently P (X) ∈ (1± ϵ)Q(X) .265

If Q = U , the uniform distribution on Ω, then we say that P is pointwise ϵ-close to uniform.266

3 Multiple Edge Sampling267

As discussed in the introduction, our algorithm consists of a preprocessing procedure that268

creates a data structure that enables one to sample heavy vertices, and a sampling procedure269

that samples an almost uniformly distributed edge. Also recall that our procedures are270

parameterized by a value x which allows for a trade-off between the preprocessing complexity271

and the per-sample complexity. Namely, allowing per-sample complexity of O(x/ϵ), our272

preprocessing procedure will run in time O∗(n/(davg ·x)). If one knows the number of queries,273

q, then setting x = n/
√

m√
q yields the optimal trade-off between the preprocessing and the274

sampling.275
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23:8 Sampling Multiple Edges Efficiently

3.1 Preprocessing276

In this section we present our preprocessing procedure that will later allow us to sample heavy277

vertices. The procedure and its analysis are similar to the procedure Sample-degrees-typical278

of Eden, Ron, and Seshadhri [11].279

The input parameters to the procedure are n, the number of vertices in the graph, x, the280

trade-off parameter, δ, a failure probability parameter, and ϵ, the approximation parameter.281

The output is a data structure that, with probability at least 1− δ, allows one to sample282

heavy vertices with probability (roughly) proportional to their degree.283

We note that we set x = min{x,
√

n/davg} since for values x = Ω(
√

n/davg) it is better to284

simply use the O∗(
√

n/davg) per-sample algorithm of [13]. We shall make use of the following285

theorems.286

▶ Theorem 3.1 (Theorem 1.1 of [17], restated.). There exists an algorithm that, given query287

access to a graph G over n vertices and m edges, an approximation parameter ϵ ∈ (0, 1
2 ), and288

a failure parameter δ ∈ (0, 1), returns a value m such that with probability at least 1 − δ,289

m ∈ [(1 − ϵ)m, m]. The expected query complexity and running time of the algorithm are290

O( n√
m
· log2 n

ϵ2.5 ).291

▶ Theorem 3.2 (Section 4.2 and Lemma 17 in [14], restated.). For a set S of size at least292

n√
m
· 34

ϵ , it holds that with probability at least 5/6, m(S)/s > 1
2 · (1− ϵ) · davg.293

▶ Theorem 3.3 (A data structure for a discrete distribution (e.g., [29, 30, 23]).). There exists294

an algorithm that receives as input a discrete probability distribution P over ℓ elements, and295

constructs a data structure that allows one to sample from P in linear time O(ℓ).296

Preprocessing (n, ϵ, δ, x)
1. Invoke the algorithm of [17]a to get an estimate davg of the average degree davg.

2. Let x = min
{

x,
√

n/davg

}
3. Let t = ⌈log3( 3

δ )⌉, and let τ = x·davg
ϵ .

4. For i = 1 to t do:
a. Let Si be a multiset of s = n

τ ·
35 log(6nt/δ)

ϵ2 vertices chosen uniformly at
random.

b. Query the degrees of all the vertices in Si and compute m(Si) =
∑

v∈Si
d(v).

5. Let S be the first set Si such that m(Si)
s ∈

[ 1
4 · davg, 12 · davg

]
.

a. If no such set exists, then return fail.
b. Else, set up a data structureb D(S) that supports sampling each vertex v ∈ S

with probability d(v)
m(S) .

6. Let γ = m(S)
davg·|S|

.
7. Return (γ, τ, x, D(S)).

a See Theorem 3.1
b See Theorem 3.3

The following definitions will be useful in order to prove the lemma regarding the297

performance of the Preprocessing procedure.298

▶ Definition 2. We say that a sampled set S ⊆ V is ϵ-good if the following two conditions299

hold:300
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For every heavy vertex v ∈ V>τ , dS(v) ∈ (1± ϵ)|S| · d(v)
n .301

m(S)
s ∈

[ 1
4 · davg, 12 · davg

]
.302

▶ Definition 3. We say that davg is an ϵ-good estimate of davg if davg ∈ [(1− ϵ)davg, davg].303

▶ Lemma 4. Assume query access to a graph G over n vertices, ϵ ∈ (0, 1
2 ), δ ∈ (0, 1), and304

x ≥ 1. The procedure Preprocessing(n, ϵ, δ, x), with probability at least 1 − δ, returns a305

tuple (γ, τ, x, D(S)) such that the following holds.306

D(S) is a data structure that supports sampling a uniform edge in E(S), for an ϵ-good307

set S, as defined in Definition 2.308

x ∈ [1,
√

n/davg], τ = x·davg
ϵ , and γ = m(S)

davg·|S|
, where davg is an ϵ-good estimate of davg, as309

defined in Definition 3.310

The expected query complexity and running time of the procedure are311

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
.312

Proof. We start with proving that with probability at least 1− δ the set S chosen in Step 5313

is a good set. Namely, that (1) m(S)
|S| ∈

[ 1
4 · davg, 12 · davg

]
, and that (2) for all heavy vertices314

v ∈ V>τ , dS(v) ∈ (1± ϵ)s · d(v)
n .315

By Theorem 1.1 of [17] (see Theorem 3.1), with probability at least 1 − δ
3 , davg is an316

ϵ-good estimate of davg, that is317

(1− ϵ)davg ≤ davg ≤ davg. (1)318

We henceforth condition on this event, and continue to prove the latter property. Fix an
iteration i ∈ [t]. Observe that E

[
m(Si)

s

]
= davg. By Markov’s inequality,15 equation (1), and

the assumption that ϵ ∈ (0, 1
2 ),

Pr
[

m(Si)
s

> 12 · davg

]
≤ davg

12 · davg
≤ 1

12(1− ϵ) ≤
1
6 .

Recall that s = n
τ ·

35 log(6nt/δ)
ϵ2 , τ = x·davg

ϵ , and x ≤
√

n/davg and that we condition on319

davg ≥ (1 − ϵ)davg. Thus, τ ≤
√

m
ϵ , and s ≥ 34

ϵ
n√
m

. Therefore, by Lemma 17 in [14] (see320

Theorem 3.2), for every i, it holds that321

Pr
[

m(Si)
s
≤ 1

2 · (1− ϵ) davg

]
≤ 1

6 . (2)322

By equations (1), (2), and the assumption that ϵ ∈ (0, 1
2 ),

Pr
[

m(Si)
s

<
1
4 · davg

]
≤ Pr

[
m(Si)

s
≤ 1

2 · (1− ϵ) davg

]
≤ 1

6

By the union bound, for every specific i,

Pr
[

m(Si)
s

<
1
4 · davg or m(Si)

s
> 12 · davg

]
≤ 1

3 .

Hence, the probability that for all the selected multisets {Si}i∈[t], either m(Si)
s < 1

4 · davg or323

m(Si)
s > 12 · davg is bounded by 1

3t = δ
3 (recall t = ⌈log3( 3

δ )⌉). Therefore, with probability at324

15 Markov’s inequality: if X is a non-negative random variable and a > 0, P (X ≥ a) ≤ E(X)
a .
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least 1− 2δ
3 , it holds that m(S)

s ∈
[ 1

4 · davg, 12 · davg
]
, and the procedure does not return fail325

in Step 5a.326

Next, we prove that there exists a high-degree vertex v ∈ V>τ such that dS(v) /∈327

(1± ϵ)s · d(v)
n with probability at most δ

3 . Fix an iteration i ∈ [t], and let Si = {u1, . . . , us}328

be the sampled set. For any fixed high-degree vertex v ∈ V>τ and for some vertex u ∈ V, let329

χv(u) =
{

1 u is a neighbor of v

0 otherwise
.330

Observe that Eu∈V [χv(u)] = d(v)
n , and that dSi

(v) =
∑

j∈[s] χv(uj). Thus, E [dSi
(v)] =331

s· d(v)
n . Since the χv(u) variables are independent {0, 1} random variables, by the multiplicative332

Chernoff bound,16
333

Pr
[∣∣∣∣dSi

(v)− s · d(v)
n

∣∣∣∣ ≥ ϵ · s · d(v)
n

]
≤ 2 exp

(
−ϵ2 · s · d(v)

3n

)
≤ δ

3nt
, (3)334

where the last inequality is by the assumption that ϵ ∈ (0, 1
2 ), the setting of s = n

τ ·
35 log(6nt/δ)

ϵ2 ,335

and since we fixed a heavy vertex v so that d(v) ≥ τ . By taking a union bound over all336

high-degree vertices, it holds that there exists v ∈ V>τ such that dSi(v) /∈ (1± ϵ) s·d(v)
n with337

probability at most δ
3t .338

Hence, with probability at least 1− δ, D(S) is a data structure of a good set S. Moreover,339

by steps 2, 6, and 3 in the procedure Preprocessing(n, ϵ, δ, x) it holds that x ∈
[
1,

√
n/davg

]
,340

γ = m(S)
davg·|S|

, and τ = x·davg
ϵ respectively. By equation (1), davg is an ϵ-good estimate for davg.341

We now turn to analyze the complexity. By [17] (see Theorem 3.1), the query complexity342

and running time of step 1 is O
(

n√
m
· log2(n)

ϵ2.5

)
. The expected query complexity and running343

time of the for loop are O(t · s) = O( n
davg·x ·

log2(n log(1/δ)/δ)
ϵ ), where the equality holds by344

the setting of s, t and since the expected value of davg is davg. Step 5 takes O(t) time.345

By [29, 30, 23] (see Theorem 3.3), the running time of step 5b is O(s). All other steps takes346

O(1) time. Hence, the expected query complexity and running time are dominated by the for347

loop. By the setting of x = min{x,
√

n/davg} we have O(s ·t) = O
(

n

davg·x
· log2(n log(1/δ)/δ)

ϵ

)
=348

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
which proves the claim. ◀349

3.2 Sampling an edge350

In this section we present our sampling procedures. The following definition and claim will351

be useful in our analysis.352

▶ Definition 5. Let τ be a degree threshold. Let V≤τ = {v ∈ V | d(v) ≤ τ}, and let353

V>τ = V \ V≤τ . We refer to V≤τ and V>τ as the sets of light vertices and heavy vertices,354

respectively. Let E≤τ = {(u, v) | u ∈ V≤τ} and E>τ = {(u, v) | u ∈ V>τ}.355

▶ Definition 6. If the procedure Preprocessing(n, ϵ, δ, x) returns a tuple (γ, τ, x, D(S))356

such that the following items of Lemma 4 hold, then we say that this invocation is successful.357

16 Multiplicative Chernoff bound: if X1, . . . , Xn are independent random variables taking values in {0, 1},
then for any 0 ≤ δ ≤ 1, Pr

[∣∣∣∑i∈[n] Xi − µ

∣∣∣ ≥ δµ

]
≤ 2e− δ2µ

3 where µ = E
[∑

i∈[n] Xi

]
.
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D(S) is a data structure that supports sampling a uniform edge in E(S), for an ϵ-good358

set S, as defined in Definition 2.359

x ∈ [1,
√

n/davg], τ = x·davg
ϵ , and γ = m(S)

davg·|S|
, where davg is an ϵ-good estimate of davg, as360

defined in Definition 3.361

▷ Claim 7. Let γ = m(S)
davg·|S| and γ = m(S)

davg·|S|
. If S is an ϵ-good set, as in Definition 2, and362

davg is an ϵ-good estimate of davg, as in Definition 3, then it holds that γ ∈ [1/4, 12] and that363

γ ∈ [(1− ϵ)γ, γ].364

Proof. By the assumption that S is an ϵ-good set, it holds that m(S)
|S| ∈ [ 1

4 · davg, 12 · davg].365

Therefore, γ ∈ [ 1
4 , 12]. By the assumption that davg is an ϵ-good estimate of davg, namely366

davg ∈ [(1− ϵ)davg, davg], it holds that γ ∈ [(1− ϵ)γ, γ]. ◀367

3.2.1 The sampling procedures368

We now present the two procedures for sampling light edges and heavy edges.369

Sample-Uniform-Edge (γ, τ, x, D(S), ϵ)
1. While True do:

a. Sample uniformly at random a bit b← {0, 1}.
b. If b = 0 invoke Sample-Light(γ, τ).
c. Otherwise, invoke Sample-Heavy(τ, D(S), x, ϵ).
d. If an edge (v, u) was returned, then return (v, u).

Sample-Light (γ, τ)
1. Sample a vertex v ∈ V uniformly at random and query for its degree.
2. If d(v) > τ return fail.
3. Query a uniform neighbor of v. Let u be the returned vertex.
4. Return (v, u) with probability d(v)

τ · 1
4γ , otherwise return fail.

Sample-Heavy (τ, D(S), x, ϵ)
1. Sample from the data structure D(S) a vertex v ∈ S with probability d(v)

m(S) .
2. Sample uniform neighbor of v. Let u be the returned vertex.
3. If d(u) ≤ τ return fail.
4. Sample uniform neighbor of u. Let w be the returned vertex.
5. Return (u, w) with probability ϵ/4x, otherwise return fail.

Our procedure for sampling an edge Sample-Uniform-Edge gets as input a tuple370

(γ, τ, x, D(S)) which is the output of the procedure Preprocessing. Our guarantees on371

the resulting distribution of edge samples rely on the preprocessing being successful (see372

Definition 6), which happens with probability at least 1− δ.373

▶ Lemma 8. Assume that Preprocessing has been invoked successfully, as defined in374

Definition 6. The procedure Sample-Light(γ, τ) returns an edge in E≤τ such that each375

edge is returned with probability ϵ|S|
4n·x·m(S) . The query complexity and running time of the376

procedure are O(1).377
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Proof. Let (v, u) be a fixed edge in E≤τ .378

Pr[(v, u) returned] = Pr[ (v is sampled in Step 1) and (u sampled in Step 3)379

and ((v, u) returned in Step 4)]380

= 1
n
· 1

d(v) ·
d(v)
τ · 4γ

.381

382

Note that by Claim 7, 1/4γ ≤ 1 and therefore, Step 4 is valid and the above holds. Hence,383

by the setting of τ = x·davg
ϵ and γ = m(S)

davg·|S|
,384

Pr[(v, u) is returned] = 1
n · τ · 4γ

= ϵ · |S|
4n · x ·m(S) .385

The procedure performs at most one degree query and one uniform neighbor query. All386

other operations take constant time. Therefore, the query complexity and running time of387

the procedure are constant. ◀388

▶ Lemma 9. Assume that Preprocessing has been invoked successfully, as defined in389

Definition 6. The procedure Sample-Heavy(τ, D(S), x, ϵ) returns an edge in E>τ such that390

each edge is returned with probability (1±ϵ)ϵ|S|
4n·x·m(S) . The query complexity and running time of391

the procedure are O(1).392

Proof. Let (u, w) be an edge in E>τ . We first compute the probability that u is sampled in393

Step 2. Recall, the data structure D(S) supports sampling a vertex v in S with probability394
d(v)

m(S) . The probability that u is sampled in Step 2 is equal to the probability that a vertex395

v ∈ S which is a neighbor of u is sampled in step 1, and u is the selected neighbor of v in396

Step 2. Namely,397

Pr[u is sampled in Step 2] =
∑

v∈S∩Γ(u)

d(v)
m(S) ·

1
d(v) =

∑
v∈S∩Γ(u)

1
m(S) = dS(u)

m(S) .398

By the assumption that Preprocessing has been invoked successfully, so that S is ϵ-good,
and because u ∈ V>τ ,

dS(u) ∈ (1± ϵ) · |S| · d(u)
n

.

Hence, the probability that (u, w) is returned by the procedure is399

Pr[(u, w) is returned] = Pr[ (u sampled in Step 2) and (w sampled in Step 5)400

and ((u, w) returned in Step 5)]401

= dS(u)
m(S) ·

1
d(u) ·

ϵ

4x
∈

(1± ϵ)|S| · d(u)
n · ϵ

m(S) · d(u) · 4x
= (1± ϵ)ϵ|S|

4n · x ·m(S) .402

403

The procedure performs one degree query and two neighbor queries, and the rest of404

the operations take constant time. Hence the query complexity and running time are405

constant. ◀406

We are now ready to prove the formal version of Theorem 1.1.407

▶ Theorem 3.4. There exists an algorithm that gets as input query access to a graph G,408

n, the number of vertices in the graph, ϵ ∈ (0, 1
2 ), an approximation parameter, δ ∈ (0, 1),409

a failure parameter, and x > 1, a trade-off parameter. The algorithm has a preprocessing410

procedure and a sampling procedure.411



T. Eden, S. Mossel and R. Rubinfeld 23:13

The preprocessing procedure has expected query complexity412

O

(
max

{
n

davg·x ,
√

n

davg

}
· log2(n log(1/δ)/δ)

ϵ

)
, and it succeeds with probability at least413

1 − δ. If the preprocessing procedure succeeds, then each time the sampling procedure is414

invoked it returns an edge such that the distribution on returned edges is 2ϵ-point-wise415

close to uniform, as defined in Definition 1. Each invocation of the sampling procedure has416

expected O(x/ϵ) query and time complexity.417

Proof. By 9, the procedure Preprocessing procedure succeeds with probability at least418

1− δ. Furthermore, it has expected running time and query complexity as stated.419

Condition on the event that the invocation of Preprocessing was successful. Let P420

denote the distribution over the returned edges by the procedure Sample-Uniform-Edge.421

By Lemma 2.3 in [13], in order to prove that P is pointwise 2ϵ-close to uniform, it suffices to422

prove that for every two edges e, e′ in the graph, P (e)
P (e′) ∈ (1± 2ϵ). By Lemma 8, every light423

edge e is returned with probability ϵ·|S|
4n·x·m(S) . By Lemma 9, every heavy edge e′ is returned424

with probability (1±ϵ)ϵ|S|
4n·x·m(S) . Therefore, for every two edges e, e′ in the graph, P (e)

P (e′) ∈ (1± 2ϵ).425

Next, we prove a lower bound on the success probability of a single invocation of the426

while loop in Step 1 in Sample-Uniform-Edge.427

Pr[an edge is returned] = 1
2 Pr[Sample-Light returns an edge]428

+ 1
2 Pr[Sample-Heavy returns an edge]429

≥ 1
2 |E≤τ | ·

ϵ · |S|
4n · x ·m(S) + 1

2 · |E>τ | ·
(1− ϵ)ϵ · |S|
4n · x ·m(S)430

≥ 1
2 ·

(1− ϵ) · ϵ|S| ·m
4n · x ·m(S) = (1− ϵ)ϵ

8γx
≥ ϵ

192x
,431

432

where the second inequality is due to Claim 7, i.e. γ ≤ 12. Hence, the expected number of433

invocations until an edge is returned is O(x/ϵ).434

◀435
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