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1 Abstract

Synchrony is broadly important to population and community dynamics due to its ubiquity
and implications for extinction dynamics, system stability, and species diversity. Investiga-
tions of synchrony in community ecology have tended to focus on covariance in the abun-
dances of multiple species in a single location. Yet, the importance of regional environmental
variation and spatial processes in community dynamics suggests that community properties,
such as species richness, could fluctuate synchronously across patches in a metacommunity, in
an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon
and the conditions under which it may occur using theoretical simulations and empirical
data from 20 marine and terrestrial metacommunities. Additionally, given the importance
of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species
richness is strongly related to stability. Our findings show that that metacommunities often
exhibit spatial synchrony in species richness. We also found that richness synchrony can
be driven by environmental stochasticity and dispersal, two mechanisms of population spa-
tial synchrony. Richness synchrony also depended on community structure, including species
evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to rich-
ness synchrony than to species richness itself, likely because richness synchrony integrates
information about community processes and environmental forcing. Our study highlights a
new approach for studying spatiotemporal community dynamics and emphasizes the spatial

dimensions of community dynamics and stability.

Key words: biodiversity, community synchrony, dispersal, ecosystem stability, Moran ef-

fect, spatial synchrony
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2 Introduction

Synchrony has broad importance in population and community ecology, and recent efforts
that integrate perspectives from these sub-disciplines have generated new insights into spa-
tiotemporal population and community dynamics (Wang & Loreau, 2014; Walter et al., 2021;
Wilcox et al., 2017; Arribas et al., 2019; Lee et al., 2019). Population spatial synchrony,
where temporal fluctuations in abundance are correlated across populations inhabiting mul-
tiple locations, is a fundamental feature of population dynamics observed across taxa and
over wide-ranging spatial scales (Liebhold et al., 2004; Walter et al., 2017). Mechanisms un-
derlying population spatial synchrony include dispersal, spatially correlated environmental
fluctuations driving shared demographic responses (Moran effects), and interactions with a
species that itself exhibits spatial synchrony (Moran, 1953; Liebhold et al., 2004). Spatially
synchronous populations are at greater risk of regional extirpation or extinction. This is es-
pecially true for species of conservation concern, such as stocks of exploited species (Schindler
et al., 2015), as simultaneous rarity reduces the population rescue effect of dispersal (Earn
et al., 1998; Heino, 1998).

In contrast to population spatial synchrony, community ecology tends to focus on a differ-
ent kind of synchrony: correlated temporal fluctuations of multiple species’ abundances in a
single location. This “community synchrony” can alter the stability of its aggregate proper-
ties. For example, community synchrony decreases the temporal stability of total abundance
or biomass production (Micheli et al., 1999; Loreau & de Mazancourt, 2008), which is com-
monly equated to ecosystem function (Donohue et al., 2016). Alternatively, stability is
maintained when species fluctuate independently and especially if their fluctuations nega-
tively covary. This negative covariance between species, commonly known as compensatory
dynamics, reflects heterogeneity in species’ responses to environmental drivers, possibly me-

diated through competitive release (Gonzalez & Loreau, 2009; Hallett et al., 2017).
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As exemplified via the sustained focus on metacommunity theory over the past decade
(Leibold et al., 2004; Leibold & Chase, 2017), there is growing recognition of the importance
of spatial scaling and the interplay of local versus regional dynamics on community attributes
such as biodiversity (Shoemaker & Melbourne, 2016; De Meester et al., 2016) and stability
(Wang & Loreau, 2014; Wang et al., 2019). That many of the factors that are central to
population spatial synchrony—including dispersal, temporal environmental variation, and
spatial heterogeneity—have also proven important to spatiotemporal community dynamics
suggests that we may, a priori, expect that biodiversity (e.g., species richness) could exhibit
spatial synchrony, at least under some conditions. To date, however, whether biodiversity
commonly exhibits spatial synchrony—and if so, why—is unknown. Here, we focus on spa-
tial synchrony in species richness and explore potential mechanisms through which richness
synchrony could arise, as well as its implications.

There are several reasons to investigate synchrony in richness. Biodiversity is often asso-
ciated with ecosystem function (Tilman & Downing, 1994; Schulze & Mooney, 2012; Rypel
& David, 2017) and stability thereof (Cottingham et al., 2001; de Mazancourt et al., 2013).
Species richness is widely used to quantify biodiversity, in part because presence-absence
data are more easily obtained than data on abundance, or indices thereof, needed for other
measures. Furthermore, studying synchrony in numbers of species bears quantitative simi-
larity to studying synchrony in numbers of individuals, as in population spatial synchrony,
even though the generating processes are more complex.

Here, we consider how spatial synchrony in species richness might arise mechanistically.
In a given location (e.g., a patch in a metacommunity), fluctuations in richness reflect local
colonization and extinction events. Species richness could therefore exhibit spatial synchrony
if colonization and extinction dynamics are themselves spatially correlated, for example due
to dispersal. Dispersal could in principle produce synchronous fluctuations in species rich-

ness even in a competitively neutral, homogeneous environment. Additionally, environmental
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fluctuations could themselves cause or enhance richness synchrony (Harrison & Quinn, 1989),
especially in settings where local extinctions are possible. Spatially correlated environmen-
tal fluctuations could also synchronize patch-level richness by altering available niche space
(Shoemaker & Melbourne, 2016) or shifting the suite of species favored under current con-
ditions (Pitt & Heady, 1978). We expect that Moran effects on species richness are likely
given that biodiversity can fluctuate in response to climatic variation (Peco et al., 1998), and
that Moran effects on populations comprising the community—which are common (Liebhold
et al., 2004)—may manifest in community metrics.

Drawing on the implications of spatial synchrony for population stability, and the impli-
cations of diversity and community synchrony for stability, we predict that spatial synchrony
in richness will relate strongly to stability of ecosystem function at the landscape scale. More
biodiverse systems systems may be more stable in the sense of tending to have lower tempo-
ral variance in ecosystem function (Cottingham et al., 2001). Synchrony is destabilizing in
the same sense because shared fluctuations reinforce each other and thereby total to large
variations in the aggregate, while asynchronous fluctuations cancel out (Hallett et al., 2014;
Anderson et al., 2021).

This study integrates insights from a theoretical metacommunity model with a synthesis
of 20 empirical metacommunities from terrestrial grassland and coastal marine biomes to
examine the prevalence of spatial synchrony in species richness, the ecological factors that
can promote or diminish it, and how it can provide insight into the stability of ecosystem
function. Specifically, we address the following research questions: 1) Do local fluctuations
in species richness exhibit spatial synchrony across metacommunity patches? 2) Are the
well-documented drivers of population spatial synchrony (i.e., Moran effects and dispersal)
also key drivers of spatial synchrony in richness? 3) Does a community’s strength of spatial
synchrony of richness relate to ecosystem stability and how does this compare to relationships

between richness and stability? Overall, our study demonstrates the commonness of spatial
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synchrony in species richness, identifies key abiotic and biotic factors that alter the degree
of richness synchrony, and explores how the spatial synchrony of richness may be strongly

related to the temporal stability of ecosystem function.

3 Methods

3.1 Quantifying synchrony in community properties

Although spatial synchrony has mainly been quantified for population variables, spatial
synchrony can, in principle, be quantified for any time-varying quantity with measurements
taken through time in different places. We measured spatial synchrony of species richness
as follows. We began with data consisting of species’ abundances at P locations (hereafter,
patches) through time. We measured species richness of each patch at each time step to
compute richness, R, ;, where p is the patch and ¢ is the time-step. We then linearly detrended
the time series, standardized variances of each time series to one, and computed the matrix
of Spearman correlations for fluctuations in richness through time between all patch pairs.
Finally, the lower triangle (excluding the diagonal) of the correlation matrix was averaged to
produce one representative value for each site (metacommunity), as commonly occurs when
examining community synchrony (Hallett et al., 2014; Kent et al., 2007), and allows us to

compare across metacommunities.

3.2 Theoretical modelling

To examine when we expect to observe spatial synchrony of richness and what mechanisms
most alter it, we applied the above workflow to simulated metacommunities. Coupling a
theoretical model that incorporates known underlying mechanisms with a statistical analy-

sis of the spatial synchrony of richness provides insight into the behavior of synchrony under
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different ecological mechanisms. In brief, our metacommunity model connects local patch-
level dynamics to regional dynamics via dispersal. Growth, competition, and environmental
effects occur within a patch, environmental conditions of each patch vary both through space
and time, and patches are connected via dispersal of individuals. Within-patch dynamics
follow a multispecies, metacommunity extension of the model of Loreau and de Mazancourt
(2013), which is a discrete-time modification of classic Lotka-Volterra competition dynam-
ics that incorporates both demographic and environmental stochasticity and disentangles
species’ carrying capacities from their competitive effects (Loreau & de Mazancourt, 2008;
Loreau, 2010).

First, prior to local population dynamics, dispersal between patches occurs. We model
dispersal as both local and global (global results are presented in Appendix S1). Abundance
N of each species s in a given patch p after dispersal, but before population growth, is

indexed as time step t + §, and is modeled as:

Ns,p,t+6 - Ns,p,t - Es,p,t + [s,p,t (1)

where F,; denotes emmigration of species s from patch p while I; ,; denotes immigraiton.

For global dispersal, s ,; = —dsNs ¢ and I, = d; Zx#p

gs_xtl where P denotes the total
number of patches in the metacommunity, and d is the across-patch stochastic dispersal prob-
ability, where propagule dispersal is binomially distributed with the probability of success
equal to d (Shoemaker & Melbourne, 2016). Alternatively, for local dispersal, propogules
disperse only to their nearest neighbor patches, and the landscape is modeled as a square

lattice with wrap-around boundaries (Kerr et al., 2002).

Following dispersal, within a patch, p, the abundance of each species changes through
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time t according to:

O-d,slud,s,p,t]

Ns,p,t+1 = Ns,p,t+5 eXp[Ts(l - + Oe,sllep,t + ) (2>

K, K;

Nspt+s 3 Bs,iNjp,t+o )
s j Ns,p,t+6

In the above equation, r is a species’ intrinsic (density-independent growth rate), K is its
carrying capacity in a patch, and 3, ; is the competition coefficient of species j on species s.
Compared to a classic Lotka-Volterra model, here we separate species’ interspecific compet-
itive effects (f35,;) from their carrying capacities (K). This formalization is related to the o
coeflicients of Lotka-Volterra dynamics where (s ; = o, ;K; /K, (Loreau & de Mazancourt,
2013). Model parameters and their values are given in Table 1.

Demographic stochasticity is incorporated as a traditional first-order normal approxima-
tion, and represents inherent variation between individuals in birth and death rates (Lande
et al., 2003). Here, 04 is the susceptibility of species s to demographic fluctuations and
d, s pt are independent, identically distributed normal variables with mean zero and variance
one representing fluctuations through time for each species in each patch.

Environmental stochasticity is similarly incorporated through i, ¢, which represents
environmental variation in each patch through time and o, 5, which quantifies the impact of
environmental variation on each species s. While Loreau and de Mazancourt (2013) restricted
[ept tO be uncorrelated, here we extend their model to allow for temporal autocorrelation in
environmental conditions and variation across patches. To do so, we follow the formulation
from Ripa and Lundberg (1996), where we first create a time series of regional climate

conditions, c:

Cty1 = QCt + b¢t (3)

We set the initial condition ¢y = 0. In eqn 3, a controls the temporal autocorrelation of the
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climate where a = 0 represents uncorrelated, white noise. When a > 0, successive events
are more likely to be similar to other events that occur closely in time (Ripa & Lundberg,
1996). Stochastic noise ¢, ~ Normal(0, 1) is scaled by the magnitude of its effect, b. Fol-
lowing Ripa and Lundberg 1996, b = (1 —a?)®%, which restricts var(c) to be the same for all
autocorrelation (a values) considered. From the time series of regional climactic conditions,
we create between-patch variation that represents the degree of microhabitat variation, as-
suming that spatial heterogeneity is less than temporal variation to match the spatial scale
of our empirical metacommunities (Ford et al., 2013; Gémez-Aparicio et al., 2005). To cre-
ate microhabitat variation, g, ~ Normal(ci, h) where h controls the variability between
patches.

Using the above model, we examine the relative effects of multiple abiotic and biotic
factors on the spatial synchrony of richness. We simulated metacommunities that differed
in: richness of the regional species pool (S; matching the empirically observed range), number
of patches (P; again matching the empirically observed range), spatial heterogeneity in patch
quality (h), temporal autocorrelation of the regional climate conditions (a), species’ responses
to environmental fluctuations (o, s), species’ growth rates (1), species’ competitive strengths
(Bs,j), and dispersal rates (d). All variable parameters were drawn independently from the
distributions in Table 1, which also includes values for non-focal parameters (e.g. pias, Ks).
We began each simulation with species’ abundances set to their carrying capacities, Kj,
and as the model quickly settles on its steady-state distribution, we simulated our model
for 100 time steps. We used the first 50 time steps as a “burn-in” period to remove any
effect of initial conditions on our analyses. The last 50 time steps were used for calculating
spatial synchrony of species richness, creating time series for each simulation with length on
the same order as those from our empirical analyses. We ran a total of 2500 simulations
and calculated spatial synchrony in species richness and the coefficient of variation in total

abundance in all simulations.
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3.3 Empirical datasets

We paired our theoretical model with a study of 20 empirical metacommunities encompassing
both grassland and coastal marine habitats, primarily drawing from the United States Long
Term Ecological Research Network. All datasets consisted of regularly sampled observations
of species’ abundance in a community for at least 6 plots and 10 years (Table 2). All datasets
focused on primary producer taxa in unmanipulated plots. Plots in empirical datasets were
taken to be equivalent to patches and for consistency are called patches henceforth. At some
sites, up to three distinct metacommunities were considered separately. Metacommunities
were considered distinct on the basis of diverging habitat such as soil type or disturbance
frequency, dissimilarity in species present, and the opinion of investigators familiar with these
sites. Additional description of dataset properties and provenance is provided in Appendix
S1: Section 1. We included all species having non-zero abundance in at least 5% of patch-
by-time combinations in order to minimize any potential bias of observational error on our
results. Preliminary analyses using different thresholds from 0% (no threshold) to 10%

indicated that measured spatial synchrony of richness was robust to our 5% threshold choice.

3.4 Analyses of empirical and theoretical communities

We applied parallel analyses to our model simulations and empirical data to address our
research questions. We first asked whether species richness exhibits spatial synchrony (Q1).
To address this question using theoretical simulations, we computed the mean richness syn-
chrony for all 2500 simulated metacommunities and examined the distribution of theoretical
richness synchrony measures. To address this question empirically, we computed the mean
spatial synchrony of richness for all 20 focal metacommunity datasets and tested the statisti-
cal significance of spatial synchrony of richness for each. Significance testing was performed

by comparing empirical values to surrogate values from simulated data generated under a null

10
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hypothesis of no spatial synchrony, while preserving the temporal autocorrelation structures
of the empirical data. Surrogate datasets were generated by taking the amplitude-adjusted
Fourier transform of input species richness time series, randomizing the phases of the Fourier
components so that any remaining spatial synchrony is due to chance alone, inverse trans-
forming the data, and measuring the synchrony of the surrogates (Schreiber & Schmitz,
2000). We generated 1,000 surrogates for each dataset, and considered richness synchrony
statistically significant when the empirical value exceeded 95% of surrogates.

To determine the key drivers of spatial synchrony in richness (Q2), we used multiple
linear regression to measure the combined effects of multiple predictors on the synchrony of
richness. Predictors were re-scaled to have a mean of zero and standard deviation of 1 so
that regression coefficients corresponded to effect sizes. In our theoretical simulations, we ex-
amined the effects of key parameters that fall into three general categories: abiotic temporal
factors, abiotic spatial factors, and demographic factors. Abiotic temporal factors included
in our regression are the effect of environmental variation on species (envsg, the variability
of environmental driver o.), and temporal autocorrelation in environmental variation (a)
(Table 1). Abiotic spatial factors include the total number of patches (P) and the amount of
patch heterogeneity (h). Finally, we examined the effect of demographic variation, specifi-
cally in the parameters: average species’ density-independent growth rates (r4,4), maximum
competitive strength (B,,4.), and species’ dispersal rates (d).

To answer Q2 for empirical metacommunities, we considered the following predictor
variables: biome (terrestrial or marine), metacommunity extent (maximum distance between
patches), species richness, evenness, beta diversity, and species turnover rate. To facilitate
model-data comparisons, we also examined the effects of species richness, evenness, beta
diversity, and turnover rate in simulated metacommunities. Species richness and evenness
were the mean richness and evenness of individual patches, averaged across time. Spatial

beta diversity was the mean Jaccard similarity (Hallett et al., 2016) among patches, with

11
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the species list for each patch inclusive of all years in the time series (after removing species
present in less than 5% of patch-years). Turnover rate was the average patch-level temporal
turnover in species composition (Hallett et al., 2016), and metacommunity extent was the
maximum distance between patches, measured in kilometers.

To address whether the strength of synchrony in richness predicts ecosystem stability
(Q3), we measured the temporal stability of ecosystem function as -1 x the coefficient of
variation (CV) over time of metacommunity total biomass/cover as a measure of ecosystem
stability. That is, —1x %, where /i is the sample mean and ¢ is the sample standard deviation.
We multiplied values by -1 so that increases in the statistic corresponded to increases in
stability. Other studies have used 1/CV, but in our data this created skewed distributions.
We examined how richness synchrony predicts ecosystem stability using linear regression, and
compared the strength of this relationship to the relationship between ecosystem stability
and: species richness, evenness, beta diversity, and turnover rate. We focus primarily on the
often-studied relationship between richness and ecosystem stability (e.g. Tilman & Downing
(1994); Garcia-Palacios et al. (2018)). Here, species richness is the average richness over all

patches and time steps (years).

4 Results

In both our theoretical model and across 20 empirical metacommunities, spatial synchrony in
species richness varied widely among communities, spanning nearly the entire plausible range
of the statistic (Figure 1). The distributions of theoretical and empirical richness synchrony
were qualitatively similar (Figure 1a,b). Coastal marine metacommunities tended to exhibit
less richness synchrony than terrestrial grasslands, but also tended to have the larger spatial
extents (Table 2). The magnitudes of spatial synchrony in richness tended to be significantly

greater than surrogates representing a null hypothesis of no synchrony, suggesting that spatial
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synchrony of richness is a common phenomenon across ecosystems (Appendix S1: Section
2); in all empirical metacommunities, p < 0.05, with the exception of Dry Tortugas (Florida
Keys) corals (DRT; p = 0.18) and Maui, Hawaii corals (MAU; p = 0.052).

When examining which parameters predominantly alter the synchrony of richness in
our model, we found that temporal abiotic variation had the strongest effect, followed by
demographic rates. Specifically, the effect sizes indicated that the strength of temporal envi-
ronmental variation (envs) and the degree of autocorrelation in the temporal environmental
fluctuations (a) had the strongest effects on richness synchrony (Fig. 2). Dispersal (d)
and competitive strength (f,,4.) had smaller, but still positive effect on richness synchrony.
The positive effect of dispersal was consistent with our expectations from population syn-
chrony, where increasing dispersal increases population synchrony. Surprisingly, however,
spatial heterogeneity in environmental variation had essentially no effect on richness syn-
chrony. This combination of predictors explained 25% of variation in richness synchrony
across 2,500 simulations.

In empirical metacommunities, biome (i.e. marine versus grassland ecosystems) was
strongly related to richness synchrony, but with a large standard error (Figure 3). Because
both the degree of spatial autocorrelation in environmental conditions and the rate of dis-
persal between patches typically decrease as the distance between them grows, we expected
that extent would have a negative effect on richness synchrony, consistent with dispersal and
Moran effects acting as key drivers of richness synchrony. Consistent with our prediction,
metacommunity extent was negatively related to synchrony in richness, however with a large
standard error (Figure 3).

As some underlying biological and abiotic factors were impossible to measure in observa-
tional studies, we examined potential covariates of richness synchrony that were calculated
for both theoretical models and observational data. There was a strong positive relationship

between species turnover on richness synchrony across both theoretical and empirical meta-
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communities (Figure 3). This is consistent with the fact that changes in species richness
imply turnover, but also highlights how community structure and environmental perturba-
tions also likely shaped the spatial synchrony of richness since these factors influence turnover
rates (Kraft et al., 2011; Myers et al., 2015). Given that some communities may be more
prone to turnover than others when faced with environmental variation, communities may
vary in the magnitude of spatial synchrony of richness. In empirical communities, richness
synchrony was positively related to the average richness of the metacommunity, but the stan-
dard error was large; in theoretical metacommunities, the effect had a similar magnitude but
was negative (Figure 3). In both theoretical and empirical metacommunities there was no
substantial effect of beta diversity on richness synchrony. For theoretical metacommunities
only, we further examined the importance of beta diversity using the decomposition method
of Baselga & Orme (2012) into components associated with change in species number ver-
sus species replacement between communities. The component associated with change in
species number had a positive effect on richness synchrony and the component associated
with species replacement had a negative effect on richness synchrony. We did not examine
this for empirical metacommunities because of the much lower sample size. Neither model
nor data show a notable effect of evenness on richness synchrony. In our simulations, these
possible explanatory variables were emergent properties of underlying community assembly
mechanisms, not directly controlled. This combination of predictors explained 69% of vari-
ability in richness synchrony in empirical metacommunities, and 5% of variability in richness
synchrony in simulated metacommunities.

Importantly, spatial synchrony of richness was negatively related to the stability of ecosys-
tem function in both theoretical and empirical metacommunities, and exhibited a stronger
relationship with stability than species richness itself (Figure 4). Both theoretical and em-
pirical relationships between the spatial synchrony of richness and community stability were

relatively strong (R? = 0.22 and R? = 0.42, respectively), compared to the relationship be-
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tween diversity and stability (R? = 0.08 and R? = 0.13, respectively). As such, across meta-
communities and underlying mechanisms—as manipulated in our simulation modeling—the
spatial synchrony of richness emerged as the stronger predictor of stability. Additionally, the
spatial synchrony of richness was generally more strongly related to stability than evenness,
beta diversity, turnover rate, although the relationship with turnover had an approximately
equal R? as for richness synchrony (Appendix S1: Section 3).

Theoretical simulations using global versus local dispersal yielded consistent results (Ap-

pendix S1: Section 4).

5 Discussion

Metacommunities often exhibit spatially synchronous fluctuations in species richness (Q1)
that are driven in part by Moran effects and dispersal (Q2), two canonical drivers of popu-
lation spatial synchrony (Liebhold et al., 2004; Moran, 1953; Walter et al., 2017). In both
mathematical models and observational data spanning marine and terrestrial metacommu-
nities, spatial synchrony of richness was negatively correlated with ecosystem stability, and
showed a stronger correlation than species richness itself (Q3). These findings integrate
perspectives on spatial synchrony from population ecology with biodiversity’s implications
for ecosystem stability and function, and reinforce the importance of spatial dimensions of
stability (Wang & Loreau, 2014; Wilcox et al., 2017; Lamy et al., 2019; Gonzalez et al., 2020;
Wang et al., 2019).

Spatial synchrony in species richness appears to be a common phenomenon. Across 20
empirical metacommunities in grassland and coastal marine habitats, spatial synchrony in
richness varied substantially, but in 90% of cases was greater than expected under a null
hypothesis of no spatial synchrony. In addition, spatial synchrony in species richness has

been documented in two recent studies (Barringer et al., 2020; Arribas et al., 2019), but
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these studies considered only a few empirical metacommunities. In our study, terrestrial
ecosystems tended to exhibit higher spatial synchrony in species richness. Marine metacom-
munities tended to have larger spatial extents (Table 2), which may partially explain this
pattern due to the potential for decreased dispersal and environmental spatial correlation
with increasing spatial extent. The biomes also tended to differ in the typical lifespans of in-
dividuals in the community (e.g. long-lived corals vs. a mix of annual and perennial plants),
possibly affecting the sensitivity of the community to interannual environmental variability.

The variability in the degree of spatial synchrony of richness exhibited by a metacom-
munity was influenced by attributes of the environment, especially the degree of temporal
variability in environmental conditions, and by the structure of the community. Fluctua-
tions in species richness imply year-to-year species turnover, and some communities will be
more prone to turnover than others due to underlying environmental conditions, disturbance
events (Worm & Duffy, 2003; Myers et al., 2015), and the demography of constituent species
(Ripa & Lundberg, 1996; Adler & Drake, 2008). How demography alters richness synchrony
likely interacts with the nature of environmental fluctuations. Some communities with many
rare, extinction-prone species could exhibit little richness synchrony if extinctions are spa-
tiotemporally random, e.g. if they arise more so from demographic stochasticity than from
environmental forcing. By contrast, a community with lower turnover might exhibit greater
synchrony in richness if turnover is closely tied to large, spatially synchronous environmental
perturbations that locally extirpate, or facilitate the emergence of, multiple species simulta-
neously.

In fact, the dependence of richness synchrony on both environmental variation and com-
munity structure seems to explain small discrepancies between our theoretical and empirical
results. In particular, species richness had opposing relationships with richness synchrony in
empirical versus theoretical cases (Figure 3). In empirical metacommunities, turnover was

higher than simulated communities, and richness and evenness were positively correlated,
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suggesting that as we added more species the aggregated community-level carrying capac-
ity was partitioned among more species; this lowered abundances on average, making more
species susceptible to environmental perturbation and leading to synchronous fluctuations in
richness. Meanwhile, in our simulated metacommunities, turnover rates were low and even-
ness was high but negatively correlated with richness. In this case, higher richness yielded
more rare species that tended to stochastically and asynchronously become locally extinct
and/or colonize new patches.

The relationship between biodiversity and stability of ecosystem function has generated a
great deal of interest in ecology over multiple decades of research (Tilman & Downing, 1994;
Schulze & Mooney, 2012; Cottingham et al., 2001; de Mazancourt et al., 2013). We found
that spatial synchrony in richness was more strongly related to stability of total biomass
production than was species richness itself (Figure 4). The negative relationship between
richness synchrony and ecosystem stability was expected due to the known destabilizing
effects of synchrony in population spatial (Anderson et al., 2021) and community (Hallett
et al., 2014; de Mazancourt et al., 2013) synchrony. However, it remains noteworthy since
the relationship between synchrony in species number and aggregate abundance (as in this
study) is less direct than the relationship between abundances in component units and
aggregate abundance (as in population spatial and community synchrony studies). The
relative success of the spatial synchrony of richness in predicting ecosystem stability seems
to arise primarily because it is a metric that simultaneously reflects information both about
community structure and both spatial and temporal environmental variability. For example,
greater stability and lower richness synchrony in marine metacommunities, which tended to
have larger extents in our study, could reflect spatial insurance effects (Wang & Loreau, 2014;
Lamy et al., 2019). Our study suggests that richness synchrony may generally be closely
related to ecosystem stability and function, providing additional insight into the relationship

between biodiversity, synchrony, and stability.

17



391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

409

410

411

412

413

414

Studying the spatial synchrony of species richness represents a promising approach for
investigating drivers of community variability and their consequences for stability of ecosys-
tem function. Although the causes of spatial synchrony in species richness appear complex
and remain only partly understood, richness synchrony appears to be an effective integrator
of several processes linking biodiversity and stability. While investigations of the spatial
synchrony of community variables are uncommon now, the growing availability of long-term,
spatially replicated community datasets enables broader application of this approach. Re-
gardless of whether this approach ultimately earns widespread use, the apparent commonness
of richness synchrony and its relationship to stability underscore the importance of spatial
structure and spatial scale to ecological stability and biodiversity-ecosystem function rela-
tionships (Chase & Ryberg, 2004; Wang & Loreau, 2014; Gonzalez et al., 2020; Downing
et al., 2008).
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Table 1: Model parameters, description, and ranges used in generating simulations.

Parameter Description Value/Range

S number of species in the regional species pool Sample(min= 15, max= 55)

P number of patches in the metacommunity Sample(min= 9, max= 49)

h spatial heterogeneity between patches Uniform(min= 0, max= 0.5)

a temporal autocorrelation in climate Uniform(min= 0, max= 0.75)

b magnitude of the effect of climate (1 —a?)%

e pt environmental fluctuations in each patch Normal(mean= ¢;, sd= h)
eNVgyg standard deviation of effect of env. variation Uniform(min= 0.05, max= 0.5)
Oc,s response of each species to env. variation Normal(mean= 0, sd=enuvg,)

Hd,sp.t demographic fluctuations Normal(mean= 0, sd= 1)
Od.s effect of demographic fluctuations Uniform(min= 0, max= 0.75)
Tavg scaled average growth rate Uniform(min= 0, max= 0.25)

T species-specific growth rate Uniform(min= 0.5 — r4,,, max= 0.5+ 74,,)
Bmax maximum competition coefficient Uniform(min= 0, max= 0.5)
Bs;  competition coefficient of species j on species s Uniform(min= 0, max= (,,4.)

d dispersal rate Uniform(min= 0, max= 0.2)

K, carrying capacity Lognormal(logmean= 3, Logsd= 1)
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Table 2: Empirical datasets. Dataset codes correspond to, respectively: DRT, Dry Tor-

tugas, FL; HAY, Hayes, KS; JRG, Jasper Ridge, CA; JRN_BASN, Jornada LTER Basin;

JRN_IBPE Jornada LTER International Biological Program exclosure; JRN_SUMM Jornada

LTER Mount Summerford; KNZ_UP, Konza Prairie upland; KNZ_LOW, Konza Prairie low-

land; LOK, Lower Florida Keys; MAU, Maui, HI; MCR_BACK, Moorea Coral Reef LTER

Backreef; MCR_FRNG, Moorea Coral Reef LTER fringing reef; MCR_OUT, Moorea Coral

Reef outer reef; MDK, Middle Florida Keys; SBC, Santa Barbrara Coastal LTER; SEV_B,

Sevilleta LTER blue gramma; SEV_C, Sevilleta LTER creosotebush; SEV_G, Sevilleta LTER

black gramma; UPK, Upper Florida Keys; USVI, US Virgin Islands LTER. Year corresponds

to the initial year of the time series. Fxtent gives the maximum inter-patch distance, in km.

Niaza gives the total number of taxa (i.e., y-diversity) of the metacommunity.

Dataset Year Length Npus Extent  Biome — Ny, Variable Plot size
DRT 2005 11 6 16.5 marine 25 % cover  0.25m?
HAY 1943 30 13 0.05 grassland 16 % cover 1m?
JRG 1983 34 12 0.03  grassland 25 % cover 1m?
JRN_BASN 1989 24 49 0.09  grassland 44  biomass 1m?
JRN_IBPE 1989 24 49 0.08 grassland 51  biomass 1m?
JRN_.SUMM 1989 24 49 0.09 grassland 53  biomass 1m?
KNZ_UP 1983 33 20 0.17  grassland 47 % cover 10m?
KNZ_LOW 1983 33 20 0.23  grassland 44 % cover 10m?
LOK 1996 20 14 49.0 marine 28 % cover  0.25m?
MAU 2001 16 9 50.4 marine 21 % cover  0.25m?
MCR_BACK 2006 10 30 16.65  marine 15 % cover 0.25m?
MCR_FRNG 2006 10 30 15.67  marine 28 % cover  0.25m?
MCR_.OUT 2006 10 30 17.29 marine 25 % cover  0.25m?
MDK 1996 20 8 55.4 marine 24 % cover  0.25m?
SBC 2001 18 34 73.38 marine 30  biomass 80m?
SEV_B 2002 13 30 0.70  grassland 42  biomass 1m?
SEV_C 1999 16 30 1.33  grassland 29  biomass 1m?
SEV_G 1999 16 22 0.81 grassland 27  biomass 1m?
UPK 1996 20 10 44.7 marine 23 % cover  0.25m?
USVI 1992 26 6 1.38 marine 17 % cover  0.25m?
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7 Figure Captions

Figure 1: Spatial synchrony in species richness in (A) 2500 simulated and (B, C) 20 empirical
metacommunities.

Figure 2: Effect sizes of variation in model parameters on the degree of spatial synchrony
of richness in simulated metacommunities. Effect sizes are linear regression coefficients on
standardized predictors. Error bars indicate 1 standard error.

Figure 3: Effect sizes of variation in attributes of empirical and theoretical metacommunities
on spatial synchrony of richness. Effect sizes are linear regression coefficients on standardized
predictors. There is no direct analog of biome or extent in our theoretical simulations, so no
bar is drawn. Error bars indicate 1 standard error.

Figure 4: Richness synchrony is related to stability of ecosystem function in theoretical (A)
and empirical (C) metacommunities, and more strongly so than species richness itself in both
theoretical (B) and empirical (D) metacommunities. Stability is measured, for simulations,
as the -1 x the coefficient of variation (CV) of total abundance, and for empirical datasets

as that of total biomass or total cover, depending on units of the underlying data (Table 2).
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Figure 1: Spatial synchrony in species richness in (A) 2500 simulated and (B, C) 20 empirical

metacommunities.
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Figure 2: Effect sizes of variation in model parameters on the degree of spatial synchrony
of richness in simulated metacommunities. Effect sizes are linear regression coefficients on
standardized predictors. Error bars indicate 1 standard error.
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bar is drawn. Error bars indicate 1 standard error.
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Figure 4: Richness synchrony is related to stability of ecosystem function in theoretical (A)
and empirical (C) metacommunities, and more strongly so than species richness itself in both
theoretical (B) and empirical (D) metacommunities. Stability is measured, for simulations,
as the -1 x the coefficient of variation (CV) of total abundance, and for empirical datasets
as that of total biomass or total cover, depending on units of the underlying data (Table 2).

31



	Abstract
	Introduction
	Methods
	Quantifying synchrony in community properties
	Theoretical modelling
	Empirical datasets
	Analyses of empirical and theoretical communities

	Results
	Discussion
	Acknowledgements
	Figure Captions

