Flexible Program Alignment to Deliver
Data-Driven Feedback to Novice Programmers*

Victor J. Marin, Maheen Riaz Contractor, and Carlos R. Rivero

Rochester Institute of Technology
vxm49640rit.edu, mc1927@rit.edu, crr@cs.rit.edu

Abstract. Supporting novice programming learners at scale has become
a necessity. Such a support generally consists of delivering automated
feedback on what and why learners did incorrectly. Existing approaches
cast the problem as automatically repairing learners’ incorrect programs;
specifically, data-driven approaches assume there exists a correct pro-
gram provided by other learner that can be extrapolated to repair an
incorrect program. Unfortunately, their repair potential, i.e., their capa-
bility of providing feedback, is hindered by how they compare programs.
In this paper, we propose a flexible program alignment based on program
dependence graphs, which we enrich with semantic information extracted
from the programs, i.e., operations and calls. Having a correct and an
incorrect graphs, we exploit approximate graph alignment to find corre-
spondences at the statement level between them. Each correspondence
has a similarity attached to it that reflects the matching affinity between
two statements based on topology (control and data flow information)
and semantics (operations and calls). Repair suggestions are discovered
based on this similarity. We evaluate our flexible approach with respect
to rigid schemes over correct and incorrect programs belonging to nine
real-world introductory programming assignments. We show that our
flexible program alignment is feasible in practice, achieves better per-
formance than rigid program comparisons, and is more resilient when
limiting the number of available correct programs.

Keywords: Automated Program Repair - Data-driven Feedback.

1 Introduction

The recent worldwide interest in computer science has originated an unprece-
dented growth in the number of novice programming learners in both traditional
and online settings [2, 14, 18, 21]. A main challenge is supporting novice program-
ming learners at scale [5,10,17], which typically consists of delivering feedback
explaining what and why they did incorrectly in their programs [7]. Different
than traditional settings, online programming settings often have a large pro-
portion of novice learners with a variety of backgrounds, who usually tend to

* This material is based upon work supported by the National Science Foundation
under Grant No. 1915404.

2 Marin, Contractor and Rivero

need a more direct level of feedback and assistance [1]. A common practice is to
rely on functional tests; however, feedback generated based solely on test cases
does not sufficiently support novice learners [3,9, 17].

Current approaches cast the problem of delivering feedback to novices at
scale as automatically repairing their incorrect programs [3,12,13,15,17,18].
Note that, similar to existing approaches, we consider a program to be correct
if it passes a number of predefined test cases [3,18]; otherwise, it is incorrect.
Once a repair is found, it can be used to determine pieces of feedback to deliver
to learners [17]. Non-data-driven approaches aim to find repairs by mutating
incorrect programs until they are correct, i.e., they pass all test cases [11]. Data-
driven approaches exploit the fact that repairs can be found in existing correct
programs and extrapolated to a given incorrect program [18]. This paper focuses
on the latter since, in a given programming assignment, there is usually a variety
of correct programs provided by other learners that can be exploited to repair
incorrect programs [3, 13,15, 18].

The “search, align and repair” [18] framework consists of the following steps:
1) Given an incorrect program p;, search for a correct program p,. that may be
useful to repair p;; 2) Align p; with respect to p. to identify discrepancies and
potential modifications in order to repair p;; and 3) Apply those modifications
to p; until the resulting program p} passes all test cases. Current approaches
instantiating the “search, align and repair” framework use rigid comparisons to
align incorrect and correct programs, i.e., they require the programs to have the
same or very similar control flows (conditions and loops), and they are affected
by the order of program statements [3,15,18,13]. As a result, such approaches
may miss a potentially valuable set of correct programs that can repair incorrect
programs using flexible program comparisons.

In this paper, we explore a new alignment step that relies on a flexible pro-
gram comparison based on approximate graph alignment of program dependence
graphs. On one hand, a program dependence graph combines information about
the control and the data (use of variables) flows of a program [4]. On the other
hand, approximate graph alignment finds a correspondence between the nodes
of two graphs [8]. Such a correspondence takes both topology and semantics of
the graphs into account. When applied over program dependence graphs, topol-
ogy implies programs that approximately match with respect to their control
and data flow information, while semantics are modeled as operations and calls
performed in the programs. Each pair that belongs to an alignment has a node
similarity associated to it. Replacement suggestions are computed as those pairs
whose similarities substantially deviate from the average similarity of a given
alignment. Furthermore, addition and removal suggestions are those non-aligned
nodes that are connected to replacement suggestions.

We evaluate our alignment step using nine real-world introductory program-
ming assignments from a popular online programming judge (CodeChef). We
collected publicly-available correct and incorrect programs in these assignments
from real-world learners. We compare our flexible alignment with respect to ex-
isting rigid alignments: CLARA [3], Refazer [15], and Sarfgen [18]. For a fair

Flexible Alignment to Deliver Data-Driven Feedback 3

comparison, we evaluate program comparison schemes using a common repair
framework. We use different scenarios in which we vary the number of correct
programs available. We show that our flexible program comparison achieves a
better repair performance than other rigid program comparisons, and that it is
more resilient to provide repairs when the number of correct programs available
is reduced.

The paper is organized as follows: Section 2 summarizes previous approaches
and ours; Section 3 presents background information; Section 4 describes our flex-
ible comparison; Section 5 discusses our experimental results; Section 6 presents
the related work; and Section 7 recaps our conclusions and future work.

2 Overview

We consider CLARA [3], Refazer [15], Sarfgen [18], and sk_p [13] the state of the
art in searching, aligning and repairing programs. CLARA and Sarfgen compare
variable traces between an incorrect and a correct programs that share the same
control statements like if or while. Refazer uses pairs of incorrect/correct pro-
gram samples to learn transformation rules, which aid a program synthesizer to
transform incorrect into correct programs. Finally, sk_p uses partial fragments
of contiguous statements to train a neural network to predict possible repairs.

In the alignment step, these approaches compare an incorrect program with
respect to a correct program based on rigid schemes, which limits their repair
potential. To illustrate our claim, the Java programs presented in Figure 1 aim
to compute the minimum value in an array and the sum of all its elements, and
print both minimum and sum values to console. Note that the values of the input
array are assumed to be always less or equal than 100. In Sarfgen, an incorrect
program will be only repaired if its control statements match with the control
statements of an existing correct program. This is a hard constraint since: a) It
requires a correct program with the same control statements to exist, and b) Such
a correct program may not “naturally” exist. For instance, the control statements
of the correct program in Figure la do not match with the incorrect program in
Figure 1b; in order to match, the correct program should “artificially” contain
an if statement before or after line 7, and such a statement should not modify
the final output of the program. CLARA relaxes these constraints such that,
outside loop statements (while or for), both programs can have different control
statements, but they need to be the same inside loops. This relaxation still forces
a correct program with the same loop signature to exist.

Refazer uses the tree edit distance to find discrepancies between two pro-
grams. The tree edit distance between two equivalent abstract syntax trees with
different order of statements implies multiple edits. For example, Figure 1c shows
an excerpt of the edits to transform the abstract syntax tree of the correct into
the incorrect program in our example, which implies removing and adding full
subtrees; however, only two edits would be necessary, i.e., changing “<” by “>”
and removing the subtree formed by lines 8-9 in Figure 1b. In sk_p, different
order of statements result in different partial fragments, so additional correct

4 Marin, Contractor and Rivero

1| void g(int[] a){

2 int 1 = 0, m = 101, s = 0;
1| void £(int[1 a){ ;| while (i < a.length) {
o int x = 0, m = 101, s = 03 " if (m < a[il)

while (x < a.length) { 5 m = al[i];

A s += alx]; € s += alil;

if (m > al[x]) 7 it+;
6 m = al[x]; 8 if (m == 0)
7 X++; 9 i--;
8 } 10 }
ol print(s + "," + m); 11| print(s + "," + m);
10 12

(a) Correct program (b) Incorrect program

(c) Excerpt of (simplified) abstract syntax tree edits

while (x < a.length) { while (x < a.length) {
ol s += alx]; 2| if (m > alx])
if (m > a[x]) 3 m = alx];

(d) Lines 3-5 in Figure la (e) Fragment needed to fix Figure 1b

Fig. 1: Comparison of different existing methods

programs will be required to train the program repairer. For instance, Figure 1d
shows a fragment extracted from the correct program; however, the incorrect
program will only be fixed by a fragment like the one in Figure le.

We propose an alignment step based on approximate alignment of program
dependence graphs. Figure 2 shows an excerpt of the program dependence graphs
derived from the programs in Figure 1. Each node corresponds to a statement
in such programs, e.g., ug corresponds to line 3 in Figure la. The first step
consists of transforming programs into program dependence graphs that are
further annotated with semantic labels. For example, Ctrl in uz summarizes
that the corresponding statement is a control statement. In addition, ug is also
annotated with Lt that represents the “less than” operation of the statement.
We apply approximate graph alignment over two (correct and incorrect) program
dependence graphs G; and G». For each pair of nodes (u;,v;) such that u; and
v; belong to G and G, respectively, we compute a node similarity based on
topology and semantic labels. Having all pairwise node similarities, we compute

Flexible Alignment to Deliver Data-Driven Feedback 5

us, {Ctrl, Lt,
length}

; L b

uz, {Add, Assign
Postincr}

v7, {Add, Assign, [y _
PostIncr} - —

Vo, {Assign,
Sub, PostDecr}

Fig. 2: Alignment of program dependence graphs derived from Figures 1a and 1b

an alignment from the nodes in G to the nodes in G5. We cast this problem
as finding a matching with maximum similarity in bipartite graphs [16]. Bold,
double-headed edges in Figure 2 represent a sample alignment with maximum
similarity. Finally, we discover individual pairs in a given alignment that are
useful for repairing an incorrect program. We rely on the node similarities in a
given alignment to make this decision, i.e., each pair of nodes whose similarity
deviates k standard deviations from the mean of the node similarities in the
alignment are selected as repair suggestions. The intuition behind this is that
the similarity of such pairs is smaller than the rest of the similarities in the
alignment, i.e., they are less similar than others. In our example, we suggest
(us,v4) as a repair to fix the incorrect program in Figure 1b. There may be nodes
in the larger program dependence graph that are not present in the alignment.
These nodes are suggested to be added or removed depending on whether they
belong to a correct or an incorrect program, respectively. In our example, both
vg and vg belong to an incorrect program, so they are suggested to be removed.

3 Background

A program dependence graph G = (V, E,l,l.) of a program p is a directed,
labeled multigraph, where V is a set of nodes representing statements in p,
E : V xV is a set of directed edges, Is : V — (Ls,m) is a node labeling
function, and I, : E — {Ctrl, Data} is an edge labeling function. Let (vs,v¢) €
E, l.((vs,v¢)) = Ctrl indicates that the execution of node v; depends on node
vs evaluating to true; furthermore, l.((vs,v:)) = Data represents that vy uses
a variable declared or re-assigned by vs. Ls contains labels that summarize the
semantics of a program statement, such as Assign, Call, and Ctrl to denote
variable assignments, calls to other methods, and condition or loop statements,
respectively. In addition, L includes labels to represent operation semantics and
constants of a program statement, which include Ace, Add, and Sub to encode

6 Marin, Contractor and Rivero

array access, addition, and subtraction, respectively. Since a program statement
may contain multiple operations that are the same, e.g., multiple array accesses,
m : Ly — N is a function to support multisets. Note that, for the sake of
simplicity, we omit the details of multi-method program dependence graphs,
i.e., programs that contain multiple methods. In such cases, we extend L, and
{Ctrl, Data} allowing nodes denoting method entry points, method calls, and
parameters and result of a method call [4].

Let G = (V1, E1) and G2 = (Va, E3) be two directed graphs such that |V;| <
|V3|. Subgraph isomorphism consists of finding all non-induced solutions ¢ : V; —
Vs such that V(u;,u;) € E1 = (¢(u;), (u;)) € Eo. The problem of approximate
graph alignment consists of finding an injective function ¢ : V3 — V5 such that
|V1| < |Va|. This problem is a relaxation of the subgraph isomorphism problem
in which we assume that |Vi| ~ |V2|, and G; is approximately contained in Gs.

4 Flexible program alignment

We wish to compute an alignment between the statements in a correct program
with respect to the statements in an incorrect program. The computation of
such an alignment takes topological and semantic information into account. On
one hand, topological information encodes the context of each statement regard-
ing its control and data dependencies, i.e., what are the statements that must
be fulfilled in order for a given statement to be executed, and what are the
variable uses of such a statement. On the other hand, semantic information al-
lows us to distinguish statements that are performing different operations, such
as addition or an API call. Let Gy = (Vi, Ey, 1L, 1) and Gy = (Va, Ea,12,12)
be two program dependence graphs. At this stage, we are agnostic to correct-
ness and incorrectness of the programs evaluated, so G; can be either correct
(and Gy is then incorrect), or incorrect (and Gy is then correct). Our first goal
consists of computing all the pairwise similarities between nodes in V; and V5.
The similarity of nodes u; € V4 and v; € V5 is measured as follows [6, 8, 20]:
Sim(u;,v;) = aTop(us, v;) + (1 —a) Sem(u;, v;), where T'op and Sem are topo-
logical and semantic similarities, respectively, and « € [0,1] is a parameter to
balance the contribution of each type of similarity. Sim(u;,v;) = 1 entails that
both nodes are identical.

We compute similarities Sim(u;,v;) for every pair of nodes u; € Vi and
v; € Va. The next step consists of computing an alignment between both graphs,
ie, p: Vi = Vo (JVi] < |Vz|). We cast the problem of finding an alignment as
finding a maximum weight matching in bipartite graphs. Let B = (V1, Vs, F,w)
be a bipartite graph where V; and V5 are the sets of nodes of G; and Go (ViNVs =
(0), respectively, FE : Vi x V5 is a set of undirected edges, and w : F — R is a
function that assigns weights to the edges as follows: w(u;,v;) = Sim(u,,v;).
There are several algorithms in the literature to compute maximum weighted
matchings that find augmenting paths that alternatively connect edges in V; and
V5, ensuring that the final similarity weight is maximized and, thus, producing
the alignment ¢ with maximum similarity [16].

Flexible Alignment to Deliver Data-Driven Feedback 7

Once we have computed an alignment ¢ : V7 — V5 between two program
dependence graphs G; and Gs, our goal is to discover repair suggestions, i.e.,
statements in the correct program that can be used to fix the incorrect pro-
gram. To discover these statements, we rely on the node similarities of the pairs
available in the approximate graph alignment ¢. Recall that approximate graph
alignment assumes that |V;| < |Va|, which leads to two different situations: 1) If
(31 is correct and G is incorrect, non-aligned nodes belong to the incorrect pro-
gram and we aim to remove them. This is the case of superfluous/inadequate
statements. 2) Otherwise, non-aligned nodes belong to the correct program and
we aim to add them to the incorrect program. This is the case of missing state-
ments. Programs in Figures 1a and 1b are an example of the former situation
since the first one is correct and smaller than the second one, which is incorrect.
In such a case, we aim to remove lines 8 and 9 from the incorrect program.

First, we address the problem of finding replacement suggestions, i.e., which
pairs of nodes in a given alignment ¢ are appealing to repair incorrect state-
ments replacing them by correct statements. Intuitively, we analyze which node
similarities in ¢ significantly deviate from the rest of the node similarities, for
which we rely on mean and standard deviation. Let u, and o, be the mean
and standard deviation of the node similarities in ¢, respectively. We establish
a similarity threshold that, for all pairs whose node similarities are below such
threshold, we will consider them as replacement suggestions, i.e., they signifi-
cantly deviate from the rest. Therefore, we consider a pair (u;, ¢(u;)) to be a
replacement suggestion if Sim(u;, ¢(u;)) < pp — k oy, where k € R > 0.

Second, we address the problem of finding suggestions of statements to be
added or removed. Recall that we suggest statements to be added when the size
of the incorrect program is less than the size of the correct program (total number
of nodes). Otherwise, if the correct program is smaller than the incorrect, we
suggest statements to be removed. Note that, in practice, the number of addition
or removal suggestions can be large if the core of both programs are similar but
they have differences in implementation. A common example in our experiments
is learners who reutilize their own implementation of a console manager for
reading from and writing to console. Other learners exploit utility classes to
achieve the same behavior, e.g., java.util.Scanner. In such cases, even when
the core of both programs is similar, there are a large number of non-aligned
nodes that correspond to the ad-hoc console manager. If we remove such nodes,
it is very unlikely that the resulting program would be correct. As a result, we
only suggest nodes to be added or removed if they are directly or indirectly (one
hop) connected with nodes suggested as replacements without taking direction
into account. More formally, v € Valv ¢ ran ¢ is suggested as an addition or
removal if Ju € Vi|(u,p(u)) € P A |Pathy(p(u),v,G2)| < 1, where P is the
set of replacement suggestions and Pathy (u,v,G) is the shortest path between
nodes v and v in the undirected version of graph G.

We adapt edge correctness [8] (FC) to compute a global similarity between
program dependence graphs that measures the number of edges that are pre-
served in a approximate alignment ¢, which is defined as follows: EC(p) =

Marin, Contractor and Rivero

Table 1: Summary statistics of CodeChef assignments

d[#C| #1 | LOC #V #E
BUYING2 |BU| 861 | 741 |43.4 £ 29.9[45.2 £ 25.7|108.7 & 62.4
CARVANS [CA| 719 |1,122(36.6 £ 28.0{37.0 £ 23.7| 91.0 £ 57.7
CLEANUP |CL |1,650| 889 |55.4 4 29.0{57.4 + 23.1|154.6 + 66.9
CONFLIP [CO|[1,203] 450 |41.8 + 30.7/39.3 + 25.1| 81.4 + 62.3
JOHNY JO [1,534] 454 [39.3 + 28.3/40.3 + 24.4] 99.3 £ 65.0
LAPIN LA | 561 | 288 |49.6 + 32.3|53.6 £ 28.3]125.4 & 78.3
MUFFINS3 |MU|2,394| 527 |23.6 & 27.4/20.5 & 24.0| 40.2 £ 63.0
PERMUT?2 |PE [1,890|1,083|41.7 & 28.4/38.3 & 22.4| 89.1 & 55.8
SUMTRIAN| SU |1,883(1,032(49.3 + 28.4/52.5 + 23.2|147.5 £ 60.7

> (uiuy)er 1P (Wi, ug, 0, Ea) /| Ey |, where TP (ui, uj, ¢, E2) = 1iff (p(ui), p(u;)) €
Ey N lé((ulvu])) = lg((@(ul)ﬂo(uj))), otherwise, Ip(uiaujvgovE?) =0.

5 Evaluation

We focus on nine assignments from CodeChef (https://codechef.com) shown in
Table 1, where #C and #I entail the total number of correct and incorrect pro-
grams, respectively; LOC, #V and #E stand for average and standard deviation
of lines of code, and nodes and edges in the program dependence graphs, respec-
tively. Programs were collected in Nov, 2017. All CodeChef assignments follow
the same structure: each test case must be read from console by a given pro-
gram, and such test case consists of a single block of text that requires parsing
and, usually, involves more than one loop before performing any computations
to solve the assignment at hand.

We aim to compare our flexible alignment approach with respect to rigid
alignments used in state-of-the-art approaches: CLARA [3], Refazer [15] and
Sarfgen [18]. We implemented a common repair framework with a number of
variations in the search step as follows:

— In SameCDG (SC), a correct and an incorrect programs are considered only
if there exists a graph isomorphism between their control nodes (Sarfgen).

— SameLoop (SL) is a relaxation of SameCDG such that any combination of
control statements are allowed unless they are included in a loop (CLARA).

— Flexible (F'L) ranks correct programs based on edge correctness with respect
to an incorrect program and selects top-t correct programs.

— Rigid (RI) is more restrictive than F'L since only edge correctness that
belongs to the interval [1,.85) are considered (Refazer).

We evaluate the power set of suggestions in an incremental way starting from
the empty set with an upper limit ! [19]. The repair process takes as input the
lines of the incorrect program that are impacted, and adds, removes, and/or
replaces them by lines in the correct program. When adding or replacing lines,

Flexible Alignment to Deliver Data-Driven Feedback 9

1.0 1.0

0.8 0.8

0.6 0.6

04 04

0.2 0.2

0.0 0.0
BU CA CL cO JO LA MU PE SuU BU CA CL CcO JO LA MU PE SuU
(a) Using Cigo, a =.5and k=1 (b) Using Cas, a = .5 and k =1

Fig. 3: Repairs achieved by the different approaches. From left to right, bars cor-
respond to SC, SL, RI and F L, respectively. The Y axis presents the percentage
of incorrect programs fully (darker color) and partially (lighter color) repaired.

variables can be different since we may compare programs coming from different
learners. As a result, the repair process also evaluates all possible combinations
of variables in the original incorrect program [19]. We perform this repair step
for all possible combinations of correct-incorrect programs resulting from the
search step depending on each approach (SC, SL, RI and FL). We evaluate all
possible pairs of correct-incorrect programs; however, CLARA and Sarfgen use
variable traces to select a single correct program.

We consider two scenarios in which we limit the number of correct programs
available to repair incorrect programs sorted by submission date, ascending:
100% (Choo) and 25% (C2s). These sets simulate different stages in time of a
given assignment in which we have only collected a partial number of correct
programs. We deem o = .5 and k = 1 as proper parameter values. Comparing
Choo in Figure 3a with respect to Co5 in Figure 3b, we observe a performance
drop for all approaches except for FL, which keeps competitive performance
in both full and partial repairs. These results match our hypothesis that our
flexible program alignment is appealing when there exist fewer correct programs
for a given assignment. In C(g, we observe that F'L is able to achieve more full
repairs than SC and SL except in the CA, JO and MU assignments, where SC
and SL perform better. In these assignments, there exist correct programs with
the same loop structure that are suitable to repair incorrect programs; however,
our ranking based on edge correctness does not promote these in favor of other
correct programs with a different loop structure but similar semantics.

6 Related work

CLARA [3] compares variable traces to cluster correct programs based on test
cases. A single correct program is selected as a cluster representative. Each in-
correct program is compared to every cluster representative based on variable

10 Marin, Contractor and Rivero

traces to find the minimal repairs to transform from incorrect to correct. Sarf-
gen [18] searches for similar correct programs that share the same control flow
structure as the incorrect program. To identify the best correct program to re-
pair an incorrect program, it summarizes variable traces into vectors that are
compared using Euclidean distance, so the correct program with the smallest
distance is selected. Incorrect and correct programs are fragmented based on
their control flows, and, for each fragment pair that is matched, potential re-
pairs are computed using abstract syntax tree edits. CLARA and Sarfgen only
consider pairs of programs whose control flow match, which is a hard constraint
since such a pair may not currently be present in the set of correct programs, or
such a control flow may not even be possible.

Refazer [15] proposes “if-then” rules to match and transform abstract syntax
subtrees of a program. Such rules are synthesized from sample pairs of correc-
t/incorrect programs, in which tree edit distance comparisons between correct
and incorrect programs help identify individual transformations. A clustering
algorithm finds transformations that can be abstracted away into the same rule.
sk_p [13] relies on neural networks to repair incorrect programs. First, all vari-
ables in each program are renamed to tokens, and sk_p constructs partial frag-
ments of three consecutive statements using these renamed tokens. The middle
statements in fragments are removed and fed to the repairer for training, i.e.,
each training pair consists of the partial fragment without the middle statement
and the full fragment. Given an incorrect program, sk_p computes all candidate
statements to be fixed, which form a search space that needs to be explored
to find all the necessary repairs. The order of statements is one of the main
drawbacks of Refazer, Sarfgen, and sk_p: Refazer and Sarfgen rely on edit dis-
tances of abstract syntax trees, while sk_p treats programs as documents. Our
approximate alignment allows to account for more implementation variability
and flexible comparison of programs.

7 Conclusions

Nowadays, programming is perceived as a must-have skill. It is thus not sur-
prising that the number of learners have scaled to millions, especially in online
settings. Delivering feedback is addressed by repairing learners’ incorrect pro-
grams. The trend in data-driven approaches is to perform a rigid matching be-
tween correct and incorrect programs to discover snippets of code with mending
capabilities. The downside is that potential repairs that could be captured by
looser alignments may be missed. This paper explores using a flexible alignment
between statements in pairs of programs to discover potential repairs. We com-
pare flexible with respect to rigid program comparisons. The former is capable
of repairing more programs than rigid schemes, which supports our hypothesis
that rigid approaches might be missing valuable code snippets for reparation that
could be discovered by an approximate method otherwise. As a result, we claim
that “search, align and repair” approaches should rely on flexible alignments to
improve their repair capabilities.

Flexible Alignment to Deliver Data-Driven Feedback 11

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Coetzee, D., Fox, A., Hearst, M.A., Hartmann, B.: Should your MOOC forum use
a reputation system? In: CSCW. pp. 1176-1187 (2014)

. Garcia, D.D.; Campbell, J., DeNero, J., Dorf, M.L., Reges, S.: CS10K teachers by

20177: Try CS1K+ students now! coping with the largest CS1 courses in history.
In: SIGCSE. pp. 396-397 (2016)

Gulwani, S., Radicek, I., Zuleger, F.: Automated clustering and program repair for
introductory programming assignments. In: PLDI. pp. 465-480 (2018)

Horwitz, S., Reps, T.W.: The use of program dependence graphs in software engi-
neering. In: ICSE. pp. 392-411 (1992)

Jawalkar, M.S., Hosseini, H., Rivero, C.R.: Learning to recognize semantically sim-
ilar program statements in introductory programming assignments. In: SIGCSE.
p. 1264 (2021)

Khan, A., Wu, Y., Aggarwal, C.C., Yan, X.: NeMa: Fast graph search with label
similarity. PVLDB 6(3), 181-192 (2013)

Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction
does not work: An analysis of the failure of constructivist, discovery, problem-
based, experiential, and inquiry-based teaching. Educational Psychologist 41(2),
75-86 (2006)

Kuchaiev, O., Milenkovié¢, T., Memisevié¢, V., Hayes, W., Przulj, N.: Topological
network alignment uncovers biological function and phylogeny. RSIF 7(50), 1341—
1354 (2010)

. Marin, V.J., Pereira, T., Sridharan, S., Rivero, C.R.: Automated personalized feed-

back in introductory Java programming MOOCs. In: ICDE. pp. 1259-1270 (2017)
Marin, V.J., Rivero, C.R.: Clustering recurrent and semantically cohesive pro-
gram statements in introductory programming assignments. In: CIKM. pp. 911-
920 (2019)

Monperrus, M.: Automatic software repair: A bibliography. CSUR 51(1), 17:1-
17:24 (2018)

Piech, C., Huang, J., Nguyen, A., Phulsuksombati, M., Sahami, M., Guibas, L.J.:
Learning program embeddings to propagate feedback on student code. In: ICML.
pp. 1093-1102 (2015)

Pu, Y., Narasimhan, K., Solar-Lezama, A., Barzilay, R.: sk_p: A neural program
corrector for MOOCs. In: SPLASH. pp. 39-40 (2016)

Rodriguez, C.0.: MOOCs and the Al-Stanford like courses: Two successful and
distinct course formats for massive open online courses. EURODL 15(2) (2012)
Rolim, R., Soares, G., D’Antoni, L., Polozov, O., Gulwani, S., Gheyi, R., Suzuki,
R., Hartmann, B.: Learning syntactic program transformations from examples. In:
ICSE. pp. 404-415 (2017)

Sankowski, P.: Maximum weight bipartite matching in matrix multiplication time.
TCS 410(44), 4480-4488 (2009)

Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for in-
troductory programming assignments. In: PLDI. pp. 15-26 (2013)

Wang, K., Singh, R., Su, Z.: Search, align, and repair: data-driven feedback gen-
eration for introductory programming exercises. In: PLDI. pp. 481-495 (2018)
Xin, Q., Reiss, S.P.: Leveraging syntax-related code for automated program repair.
In: ASE. pp. 660-670 (2017)

Zhang, S., Tong, H.: FINAL: Fast attributed network alignment. In: KDD. pp.
1345-1354 (2016)

12 Marin, Contractor and Rivero

21. Zweben, S., Bizot, B.: 2015 Taulbee Survey. Tech. rep., Computing Research As-
sociation (2016)

