Customizing Feedback for Introductory
Programming Courses using Semantic Clusters*

Victor J. Marin', Hadi Hosseini?, and Carlos R. Rivero!

! Rochester Institute of Technology
vxm4964@rit.edu, crr@cs.rit.edu
2 Pennsylvania State University
hadi@psu.edu

Abstract. The number of introductory programming learners is in-
creasing worldwide. Delivering feedback to these learners is important to
support their progress; however, traditional methods to deliver feedback
do not scale to thousands of programs. We identify several opportunities
to improve a recent data-driven technique to analyze individual program
statements. These statements are grouped based on their semantic in-
tent and usually differ on their actual implementation and syntax. The
existing technique groups statements that are semantically close, and
considers outliers those statements that reduce the cohesiveness of the
clusters. Unfortunately, this approach leads to many statements to be
considered outliers. We propose to reduce the number of outliers through
a new clustering algorithm that processes vertices based on density. Our
experiments over six real-world introductory programming assignments
show that we are able to reduce the number of outliers and, therefore,
increase the total coverage of the programs that are under evaluation.

Keywords: Graph clustering - Approximate graph alignment.

1 Introduction

The number of novice programming learners has been steadily increasing for
the last years in both traditional and online settings [1, 4]. Traditional methods
mainly rely on manual grading, and, as a result, are tedious, particularly for
providing effective feedback to many novice learners [1]. There is also a need
to assist instructors with the current “boom” in computing courses while con-
tinuing to provide a quality educational experience [9]. Current techniques to
analyze learner programs mainly focus on automating feedback delivery, and
they usually do not support an active role of the instructor [6]. Such an active
role can be reflected in many forms, e.g., by enabling a flexible grading scheme
that is refined during the actual grading [3]. Additionally, the delivered feed-
back is internally decided by the tools and the instructor, which can provide
very useful information regarding an assignment, has almost no opportunity to

* This material is based upon work supported by the National Science Foundation
under Grant No. 1915404.

2 Marin, Hosseini, Rivero

customize their feedback and attune it according to each learner’s particular
needs [6, 7]. These tools perform several tasks over the set of available programs,
for example, automated analysis and repairing [10]. These tasks can help an in-
structor to gain insights regarding learners’ strengths and weaknesses; however,
these opportunities have not been fully exploited by existing tools.

To address these issues, Marin and Rivero [8] presented a technique to an-
alyze correct programs that pass a set of test cases. The individual statements
of these programs are clustered according to their semantic intent, e.g., check-
ing whether an integer i is greater than another integer m (to keep track of
the maximum number) can be accomplished in several ways: if (i > m), if
(m < i),if (' (1 <= m)),or if (al[j] > m). These individual statements can
be clustered together as “Check whether current number is greater than maxi-
mum.” Statement clusters are promising to enable customized, automated feed-
back delivery [5, 8]. The existing technique relies on a structural graph clustering
algorithm that imposes strong graph connectivity restrictions to form clusters.
When individual program statements do not clearly belong to a cluster, they are
categorized as outliers. As a result, this technique discovers a small number of
statement clusters in real-world programs that are very cohesive, but misses to
classify many other individual statements. In the reported experiments, outliers
are between 30% and 70% of the total number of program statements.

In this paper, we identify opportunities to cluster additional statements un-
der the same semantic intents without compromising the cohesiveness of the
discovered clusters. We assume that a graph that connects all individual pro-
gram statements of all the programs that are under evaluation is created [§].
Then, we discard edges in such a graph between individual program statements
whose similarities are below a certain threshold and, therefore, are noisy. To
discover statement clusters, we process vertices in the graph based on their den-
sity, which serves to resolve “clear cuts” first, i.e., clusters of individual program
statements that are homogenous in their semantic intent, leaving the difficult
cases for latter stages. Finally, we avoid clusters that may contain different pro-
gram statements belonging to the same program. The assumption is that each
individual program statement has a semantic intent, and that semantic intent
must be different within a certain program. Taking all of these into account,
we propose a new statement clustering algorithm that, according to our exper-
iments, is more efficient than the previous technique, and is able to cluster, in
the worst case, more than 93% of the individual program statements.

The rest is as follows: preliminaries (Section 2), our proposed algorithm (Sec-
tion 3), experimental results (Section 4), and conclusions (Section 5).

2 Preliminaries

We wish to analyze programs solving introductory programming assignments.
Assume three programs presented in Figure 1 that solve the following assign-
ment: Read the total number of test cases. Each test case contains the number of
cars and a list of space-separated integers, each of which denotes the maximum

Customizing Feedback using Semantic Clusters 3

1| Scanner sc = new Scanner sc = new

Scanner (System.in) ; Scanner (System.in) ; 1| Scanner sc = new

2| int t = sc.nextInt(); 2| int t = sc.nextInt(); Scanner (System.in) ;
3| while (t-- > 0) { 3| while (t-- > 0) { 2| int t = sc.nextInt();
4 int n = sc.nextInt(); 4 int n = sc.nextInt(); 3| while (t-- > 0) {

int[] mx = new int[n]; 5 int[] ar = new int[n]; 1 int n = sc.nextInt();
€ for (int i = 0; i < n; i++) 6 for (int i = 0; i < n; i++) 5 int[] a = new int[n];
7 mx[i] = sc.nextInt(); 7 ar[i] = sc.nextInt(); for (int i = 0; i < nj; i++)
8 int x = mx[0]; 8 int ¢ = 1;

x
7 a[i] = sc.nextInt();
9 int s = 1; 9 int small = ar[0]; 8 int count = 1;
0 for (int i = 1; i < nj; i++) {) for (int i = 1; i < n; i++) 9 for (int i = 1; i < n; i++)
x = Math.min(mx[i], x);)

1 if (ali - 1] >= alil)
2 if (x == mx[i])

1 count++;

1 if (ar[i] <= small) { 1

2 cHt; 1

small = ar[i]; 12 else
1

1

1

1

1

1 R

15| System.out.println(s); 15| System.out.println(c); 14| System.out.println(count);
1 50}

1oy T 1 alil = ali - 11;
6l ¥ 16 15
(a) ;1 (b) p2 (c) ps

Fig. 1: Three programs solving CARVANS (codechef.com/problems/CARVANS)

speed of a car in the order they enter a straight segment. For each test case,
output the number of cars which are moving at their maximum speed.

First, we model programs as program dependence graphs to be analyzed. A
program is represented by a program dependence graph G = (V, E, Ly, Lg) such
that V is a set of vertices, each of which is a program statement, £ : V — V is a
bag of directed edges (there can be multiple edges connecting the same vertices),
Ly : V — P(V) is a vertex labeling function from each vertex to the power set of
possible vertex labels V, and Lg : E — {Ctrl, Data} is an edge labeling function
that determines whether an edge is control (Ctrl) or data (Data).

The program dependence graph representing p; contains a vertex for each
program statement, for instance, a vertex associated to line 7 where a position
of a previously declared array is updated with the speed of a car. As a result
of these operations, Ly of this specific vertex contains several labels, such as
array access, assignment and nextInt. All these labels form V that help identify
the semantics of the statements. Additionally, edges between vertices indicate
the relationships between the statements in the code. For example, there is a
Ctrl edge between the statement in line 6 (for loop) and the vertex previously
discussed. This edge indicates that the statement is executed only if the condition
of the loop is true. There is a Data edge between the statement that declares
variable i and the statement that uses i to access the array.

A statement cluster C is a set of vertices (statements) that have the same
semantic intent but can be implemented in different ways. Programs in Figure 1
initialize console using Scanner, which form a statement cluster. They read the
total number of test cases using nextInt, which form another statement cluster.

The technique by Marin and Rivero [8] discovers statement clusters using
a distance d(v;,v;) between vertices v; and v;, which considers both Ly (v;)
and Ly (v;) as well as their context. Having two program dependence graphs
Gi; = (Vi,Ei, Ly,,Lg,) and G; = (V;,E;, Ly, Lg,), it finds a correspondence
between their vertices, a.k.a. alignment, A : V; — V; (V; C V;). To find A, a
weighted bipartite graph B = (V;,V;, Ep, Wpg) is used, where Eg : V; = V;
and Wg : V; x V; — R is an edge weight function such that Wg((v;,v;)) =

4 Marin, Hosseini, Rivero

1—d(v;,v;). B is complete: every vertex in V; is related to every vertex in V; by
an edge in Fp. An alignment A is a maximum weighted matching in B.

The next step consists of finding alignments between all programs under eval-
uation (for n programs, the total number of alignments is 1/2(n — 1)n). The
union of the alignments form the pairwise alignment graph P = (Vp, Ep, Wp),
where Vp is the union of all vertices in the program dependence graphs, Ep :
Vp x Vp is the set of edges such that each edge belongs to a specific alignment A
(maximum weighted matching), and Wp : V; x V; — R is an edge weight func-
tion such that Wp((v;,v;)) corresponds to Wg((v;,v;)) in the bipartite graph
B from which A is computed. Statement clusters are discovered by exploiting
structural graph clustering over P, discerning between statement clusters, hubs
and outliers. Hubs and outliers are vertices that are connected to other vertices
in different statement clusters, but they do not belong themselves to any cluster.
A hub is connected to vertices that belong to more than one statement cluster;
an outlier is connected to vertices that belong to the same statement cluster.

In Figure 1a, the statement in line 11 in p; is a hub since it relates statements
in the cluster formed by statements checking the current speed (lines 11 and 10
in py and ps, respectively), and statements in the cluster formed by statements
updating the current minimum speed (lines 13 in both py and ps).

3 A new clustering algorithm

Low weights in alignments introduce noise [8]. These weights are the distance
between two statements in an alignment graph. The algorithm to compute max-
imum weighted matchings focuses on large weights first, i.e., statements that are
very related and, therefore, it is desirable to have correspondences between them.
Unfortunately, since the algorithm aims to compute a maximum matching, there
are certain vertices (the “leftovers”) that are forced to match, even though their
weight is low, i.e., they are probably not semantically related. We propose a
user-defined threshold ¢ to avoid low weights in alignments as follows: let v; and
v; be two vertices, (v;,v;) is discarded from an alignment A if Wg((v;,v;)) <.
By introducing 0, we expect to mitigate such noisy correspondences.

The processing order of the vertices may have an impact in the clustering
process. Depending on which vertex is selected first for processing, statement
clusters may contain a different set of statements. We propose to rely on the
concept of the core number to determine such processing order. A k-core is a
maximal subgraph of a graph in which all vertices have at least k neighbors [2].
The core number of v is the largest k such that v belongs to the k-core but not
to the (k4 1)-core. We thus process first vertices that are expected to be dense,
i.e., they are semantically cohesive. These vertices should be “clear cuts” and
the unraveling of posterior vertices should benefit from these early decisions.

A duplicated statement cluster contains at least two vertices that belong to
the same program [8]. Since our goal is to detect statements across programs that
have the same semantic intent, duplicated statement clusters are thus harmful.
For instance, lines 11 and 12 in p; can be part of the same statement cluster. As

Customizing Feedback using Semantic Clusters 5

Algorithm 1: Mine statement clusters

Input: P = (Vp,Ep,Wp), d B, ¢
Output: A statement cluster function X : Vp — N

1 Ep :=Ep \{(vi,v;) | (vi,v;) € Ep AWp((vi,v;)) < 6}
2 clnumber :=0
3 foreach v € Vp sorted by core number do
4 N::N(U,P),N/ =10
5 foreach v € N do
6 | N':=N'UN(n,P)
7 if overlap(N,N’) > 3 then
8 X (v) := clnumber
9 foreach n € NN N’ do
10 ‘ X (n) := clnumber
11 clnumber := clnumber + 1
12 else
13 | X(v):=-1
14 foreach i € ran X do
15 Vi={v|XWw) =i}
16 if |V| < ¢ then
17 foreach v € V do
18 | X(v):=-1

a result, we avoid duplicated statement clusters by defining a N (v, @) function
that receives a vertex v and a graph G as input, and outputs all the neighbors of
v in G such that every neighbor belongs to a different program than v. Forming
clusters based on N (v, G) prevents duplicated statement clusters.

Algorithm 1 uses all of these ingredients to discover statement clusters.

4 Experiments

We evaluate our technique over six different introductory programming assign-
ments. Five of them are from CodeChef (BUYING2, CARVANS, CONFLIP,
LAPIN and STONES), which were also studied by Marin and Rivero [8]. The
sixth assignment corresponds to P327A from Codeforces®. Table 1 presents
our results, where |P| represents the total number of correct programs avail-
able, |Vp| is the total number of statements in the pairwise alignment graph,
|Ep| is the total number of edges that meet the weight threshold criterion
(Wp((vi,vj)) < 0 = .5) in the pairwise alignment graph, |C| is the number
of statement clusters discovered that meet both overlap and pervasiveness crite-
ria based on 8 = .8, |U| is the number of vertices that are non-clustered, Cov is
the mean coverage of the program statements under evaluation, py is the mean
(and standard deviation) number of program statements that are contained in
each statement cluster, and T is the total time in seconds to discover statement

3 https://codeforces.com/problemset /status/327/problem/A

6 Marin, Hosseini, Rivero

Table 1: Statement clusters and program coverage obtained for six different
introductory programming assignments using § = .5, 5 = .8 and ¢ = .05 |P)|
[Pl | Vel [Ep| [[CI| U] | Cov pv T (s)
BUYING2 || 861 |24,566 | 8,350,147 | 80 | 2,700 |95.10% | 273.33 4+ 249.05| 44
CARVANS || 719 |17,487| 4,855,564 | 62 |2,270 | 94.32% | 245.44 + 222.60| 22
CONFLIP (| 1,203 |26,685 (12,155,327 | 68 | 3,555 | 93.77% | 340.15 + 340.27| 75
LAPIN 561 |18,126 | 3,856,061 | 107 |1,890 |94.77% | 151.74 + 135.09 | 21
P327A 750 |22,384 | 6,948,266 | 93 | 1,116 | 96.26% | 228.69 + 201.79| 34
STONES 152 | 4,312 | 252,174 | 98 | 405 |96.67% | 39.87 £ 40.03 1

clusters. We set ¢ to 5% of the total number of programs (¢ = .05|P|). The
timings presented in Table 1 were obtained using commodity hardware.

Comparing our results with those obtained by Marin and Rivero [8], we ob-
serve that the coverage we obtain with the statement clusters computed by our
technique significantly outperforms the previous coverage. For instance, in the
LAPIN assignment, the previous coverage was above 30% based on 20 statement
clusters. In our experiments, we obtain a coverage of 94% using 107 statement
clusters. LAPIN has a fewer number of programs that have more implementa-
tion variability than other assignments. This can be determine by measuring
the number of statement clusters as well as the average number of program
statements per cluster. Because of this variability, the technique by Marin and
Rivero [8] marks many program statements as outliers or hubs since there is no
enough evidence to include them in a specific cluster. In our technique, these
program statements are “forced” to belong to a given cluster, which will result
in more diverse program statements clustered together.

5 Conclusions

Introductory programming learners need to receive constant feedback to improve
their computational problem solving skills. It is currently a challenge to deliver
feedback to the large number of learners in both traditional and online settings.
Existing techniques focus on the automated analysis and delivery of feedback,
and do not generally support an active role of the instructor neither in the
feedback nor in its delivery. A promising direction to enable instructor-on-the-
loop feedback delivery is to group program statements into clusters with a similar
semantic intent. A previous technique focused on guaranteeing the semantic
cohesiveness of the clusters rather than covering a large number of individual
program statements. As a result, many program statements in the long tail are
not clustered and, therefore, do not receive feedback. In this paper, we analyze
several opportunities to increase the coverage of individual program statements
with the goal of delivering feedback to the long tail. Our experiments show that
we are able to cover, in the worst case, more than 93% of the program statements
available for the assignments under evaluation. This increasing coverage comes
with the penalty of less semantically-cohesive statement clusters.

Customizing Feedback using Semantic Clusters 7

References

10.

. Camp, T., Zweben, S.H., Buell, D.A., Stout, J.: Booming enrollments: Survey data.

In: ACM Technical Symposium on Computing Science Education, SIGCSE 2016.
pp- 398-399 (2016)

Cheng, J., Ke, Y., Chu, S., Ozsu, M.T.: Efficient core decomposition in massive
networks. In: IEEE International Conference on Data Engineering, ICDE 2011. pp.
51-62 (2011)

Fitzgerald, S., Hanks, B., Lister, R., McCauley, R., Murphy, L.: What are we
thinking when we grade programs? In: ACM Technical Symposium on Computer
Science Education, SIGCSE 2013. pp. 471-476 (2013)

Huang, J., Piech, C., Nguyen, A., Guibas, L.J.: Syntactic and functional variability
of a million code submissions in a machine learning MOOC. In: Workshops at the
International Conference on Artificial Intelligence in Education, AIED Workshops
2013 (2013)

Jawalkar, M.S., Hosseini, H., Rivero, C.R.: Learning to recognize semantically sim-
ilar program statements in introductory programming assignments. In: ACM Tech-
nical Symposium on Computer Science Education, SIGCSE 2021. p. 1264 (2021)
Keuning, H., Jeuring, J., Heeren, B.: A systematic literature review of automated
feedback generation for programming exercises. ACM Transactions on Computing
Education (TOCE) 19(1), 3:1-3:43 (2019)

Marin, V.J., Pereira, T., Sridharan, S., Rivero, C.R.: Automated personalized feed-
back in introductory Java programming MOOCs. In: IEEE International Confer-
ence on Data Engineering, ICDE 2017. pp. 1259-1270 (2017)

Marin, V.J., Rivero, C.R.: Clustering recurrent and semantically cohesive program
statements in introductory programming assignments. In: ACM International Con-
ference on Information and Knowledge Management, CIKM 2019. pp. 911-920
(2019)

Singh, R., Gulwani, S., Solar-Lezama, A.: Automated feedback generation for intro-
ductory programming assignments. In: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI 2013. pp. 15-26 (2013)

Wang, K., Singh, R., Su, Z.: Search, align, and repair: data-driven feedback gen-
eration for introductory programming exercises. In: ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2018. pp. 481-495
(2018)

