
© 2021 Vivak Patel

SIAM J. MATRIX ANAL. APPL. © 2021 Vivak Patel
Vol. 42, No. 2, pp. 800–831

AN IMPLICIT REPRESENTATION AND ITERATIVE SOLUTION
OF RANDOMLY SKETCHED LINEAR SYSTEMS∗

VIVAK PATEL† , MOHAMMAD JAHANGOSHAHI‡ , AND DANIEL A. MALDONADO§

Abstract. Randomized linear system solvers have become popular as they have the potential to
reduce floating point complexity while still achieving desirable convergence rates. One particularly
promising class of methods, random sketching solvers, has achieved the best known computational
complexity bounds in theory, but is blunted by two practical considerations: there is no clear way of
choosing the size of the sketching matrix a priori; and there is a nontrivial storage cost of the sketched
system. In this work, we make progress towards addressing these issues by implicitly generating
the sketched system and solving it simultaneously through an iterative procedure. As a result,
we replace the question of the size of the sketching matrix with determining appropriate stopping
criteria; we also avoid the costs of explicitly representing the sketched linear system; and our implicit
representation also solves the system at the same time, which controls the per-iteration computational
costs. Additionally, our approach allows us to generate a connection between random sketching
methods and randomized iterative solvers (e.g., the randomized Kaczmarz method and randomized
Gauss–Seidel). As a consequence, we exploit this connection to (1) produce a stronger, more precise
convergence theory for such randomized iterative solvers under arbitrary sampling schemes (i.i.d.,
adaptive, permutation, dependent, etc.), and (2) improve the rates of convergence of randomized
iterative solvers at the expense of a user-determined increase in per-iteration computational and
storage costs. We demonstrate these concepts on numerical examples on 49 distinct linear systems.

Key words. random matrix sketching, orthogonalization, random iterative methods, linear
systems

AMS subject classifications. 15A06, 15B52, 65F10, 65F25, 65N75, 65Y05, 68W20, 68W40

DOI. 10.1137/19M1259481

1. Introduction. Over the past few decades, randomized linear system solvers
have become popular as they have the potential to reduce floating point complex-
ity or maintain limited memory footprints while still achieving desirable convergence
rates (e.g., [35, 38]). In particular, the noniterative class of randomized linear system
solvers, based on random matrix sketching (see [38]), has exceptionally low computa-
tional complexities, at least in theory. Unfortunately, the theoretical promise of these
random matrix sketching solvers is blunted by their practical limitations: there is no
clear way of choosing the size of the sketching matrix, and there is a nontrivial storage
cost of the sketched system [27]. In fact, the practical challenges of random matrix
sketching solvers have prevented them from being fully embraced by the numerical
optimization community (e.g., [29]).

In this work, we begin to address these two primary practical issues of random
matrix sketching, which we recall are the challenge of choosing the size of the sketch-
ing matrix, and the challenge of storing the sketched system. Our main insight is
to recast the separate sketch-then-solve core of random sketching methods into an

∗Received by the editors May 2, 2019; accepted for publication (in revised form) by P. Drineas
March 9, 2021; published electronically June 8, 2021.

https://doi.org/10.1137/19M1259481
Funding: The work of the authors was supported by the UW-Madison WARF award AAD5914

and the DOE grant DE-AC02-06CH11347.
†Statistics, University of Wisconsin – Madison, Madison, WI 53706 USA (vivak.patel@wisc.edu).
‡Susquehanna International Group, Bala Cynwyd, PA 19004 USA (mjahangoshahi@uchicago.

edu).
§Mathematics and Computer Science, Argonne National Laboratories, Lemont, IL 60439 USA

(maldonadod@anl.gov).

800

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1259481
mailto:vivak.patel@wisc.edu
mailto:mjahangoshahi@uchicago.edu
mailto:mjahangoshahi@uchicago.edu
mailto:maldonadod@anl.gov

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 801

equivalent, iterative sketch-and -solve, in which the sketching matrix is generated in-
crementally without being explicitly stored, and the system is incrementally solved
from the implicitly derived sketched matrix.1 As a result of our approach, (1) we
can implicitly grow the size of the sketching matrix until a user-determined stopping
criterion is reached without having to determine the size of the sketching matrix a
priori; (2) we implicitly represent the sketched system without having to explicitly
store the sketched system, which allows us to avoid the cost of storing the sketched
system; and (3) we can naturally implement random sketching solvers within distrib-
uted and parallel computing paradigms. Thus, our approach of converting the usual
sketch-then-solve procedure to a sketch-and -solve procedure begins to address the
aforementioned practical challenges of random matrix sketching.

Moreover, our approach provides a bridge between random sketching methods
and (what we will call) base randomized iterative methods2 on a single spectrum of
procedures, which has several immediate consequences. First, the number of rows
of the sketching matrix that results in the solution (this number is a random quan-
tity) connects to an alternative rate-of-convergence result for general base randomized
iterative methods that guarantees a rate of convergence less than one for arbitrary
sampling schemes—even for underdetermined systems (Theorem 4.2). Consequently,
our results complement and improve on previous results in several ways. In partic-
ular, we allow for arbitrary sampling schemes—not just sampling schemes that are
independent and identically distributed (i.i.d.) as in [16, Lemma 4.2], [32, Theorem
4.8], [41, Theorem 3.4], and [26, equation (3.10)]. Moreover, our results do away with
the exactness assumption of [32, Assumption 2] and precisely characterize the inex-
actness that can occur for arbitrary sampling schemes (Theorems SM3.1 and 4.2).
Additionally, our results define convergence on a maximal subset—effectively, a set
occurring with probability one for sampling schemes of interest—which builds on the
work of [5]. As example applications of our results, we supply rates of convergence
with probability one for random permutation sampling methods (Proposition 4.5) and
i.i.d. sampling schemes (asymptotically, see Proposition 4.6). As a more interesting
application of our results, we specify generic conditions for the convergence of a broad
class of adaptive schemes (see subsection 4.3), which can account for the maximum
residual scheme, the maximum distance scheme, schemes that randomize over a greedy
subset, and schemes that are greedy over randomized subsets [28, 17, 24, 4, 31, 3, 18].
We note that the rates that we provide as examples are rather loose in comparison
to results that are specialized to each case, yet our results often supply information
that is not available in these other results as discussed above.

Second, we can generate a series of “intermediate” procedures between sketch-
ing methods and base methods that trade off between computational resources (e.g.,
floating point operations, storage) and rates of convergence. Thus, we can take a
sketching method and reduce its computational footprint in exchange for a slower
rate of convergence, or increase the computational footprint of base methods to im-
prove their rate of convergence (Algorithm SM1.1). Moreover, these “intermediate”
procedures can be readily parallelized as we discuss in section 2.

Finally, by shifting our perspective from improving the sketch-then-solve proce-
dure to improving the performance of base methods, we find that our approach is a

1Random sketching solvers have been used iteratively in a different sense (e.g., see [16]); the
noniterative scheme is simply repeated to improve convergence.

2We will be more precise about what we refer to as base methods. For now, such methods are
exemplified by randomized Kaczmarz [35] and randomized Gauss–Seidel [25].

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

802 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

randomized orthogonalization procedure in the row space of the coefficient matrix of
the linear system. Thus, by presenting our approach from this latter perspective, we
will simplify the introduction and the related theory of our approach. Now, before
pursuing this further, we reiterate our main contributions.

1. First, we turn the typical sketch-then-solve noniterative random sketching
solver into an iterative, sketch-and -solve method, which lays a foundation for ad-
dressing the previously enumerated practical challenges of random sketching solvers:
there is no clear way of choosing the size of the sketching matrix a priori; and there
is a nontrivial storage cost of the sketched system.

2. Second, through our approach, we place random sketching methods (e.g., [38,
36]) and base randomized iterative methods (e.g., randomized Kaczmarz, randomized
Gauss–Seidel, Sketch-and-Project [16]) on a single spectrum of methods.

3. Third, owing to this connection, we are able to generate “intermediate” meth-
ods between random sketching and base methods, which can trade off between com-
putational resources and rates of convergence.

4. Fourth, owing to this connection, we use the geometric implications of ran-
dom sketching methods to develop an alternative rate-of-convergence result for gen-
eral base methods for arbitrarily determined systems and arbitrary sampling schemes,
which advances the with-probability-one results of [5], generalizes the deterministic
cyclic results in [2, 11, 37], complements the mean-squared error results of [32], and
accounts for a litany of adaptive methods considered in [28, 17, 24, 4, 31, 3, 18].

5. Finally, we provide a generic set of conditions for characterizing a broad
class of adaptive methods and, from these conditions, prove convergence and rate-of-
convergence results for a number of classical and emerging adaptive methods in the
literature under a unified framework (see subsection 4.3).

The remainder of this paper is organized as follows. In section 2, we introduce
our procedure; we state the connection between our procedure and random sketching
methods, which allows us to convert the less practical sketch-then-solve approach
to our sketch-and -solve approach; and, finally, we introduce our general algorithm
and variants for low-memory environments, shared memory environments, distributed
memory environments, and large, sparse, structured linear systems. In sections 3
and 4, we develop the convergence theory for the two methodological extremes—
sketching and base methods—leaving the intermediate, more complex cases to future
work, and discuss particular examples. In section 5, we test our algorithms on 49
distinct linear systems. In section 6, we conclude this work and preview future efforts.

2. Our procedure. Our approach is best introduced from the perspective of
base randomized iterative methods. Here, we overview these methods and introduce
our procedure (subsection 2.1), leaving a heuristic derivation and detailed examples
to section SM1. We then refine our procedure for the case of rank-one methods,
which allows us to restate random sketching from a sketch-then-solve procedure to a
sketch-and -solve procedure (subsection 2.2). We conclude this section with comments
on algorithmic refinements for parallel platforms (subsection 2.3.1), reduced memory
platforms (subsection 2.3.2), and communication-focused platforms (subsection 2.3.3).

2.1. Overview. Let A ∈ Rn×d and b ∈ Rn be the coefficient matrix and constant
vector, respectively. Assuming consistency, our goal is to determine an x∗ ∈ Rd, not
necessarily unique, such that Ax∗ = b. In a base randomized iterative approach,
a sequence of iterates {xk : k + 1 ∈ N} is generated that has the form xk+1 =
xk+Vk(b−Axk), where Vk ∈ Rd×n are possibly dependent random variables, which we

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 803

call residual projection matrices (RPMs).3 The RPM defines the base technique which
is being used, and a number of such examples as randomized Kaczmarz, randomized
Gauss–Seidel, randomized block coordinate descent, and the sketch-and-project of
[16, 32] are detailed in subsection SM1.1.

Our procedure modifies the base randomized method by augmenting Vk with
a matrix Mk, specifically by xk+1 = xk + MkVk(b − Axk). The choice of {Mk} is
intuitively derived in subsection SM1.2. Here, we state our procedure and briefly
interpret the less obvious quantities. Let S0 ∈ Rd×d be the identity matrix, Id.

4

Given {Vk : k + 1 ∈ N}, let x0 ∈ Rd, and define

xk+1 = xk +MkVk(b−Axk),(2.1a)

Mk = SkA
′V ′k(VkASkA

′V ′k)†,(2.1b)

Sk+1 = Sk − SkA′V ′k(VkASkA
′V ′k)†VkASk.(2.1c)

To interpret the terms in the above procedure, we begin by ignoring Sk (i.e., set
it to the identity). In this case, Mk and its role in updating xk to xk+1 is familiar:
Mk serves to map the residual onto the row space of VkA, thereby ensuring that xk+1

satisfies VkAxk+1 = Vkb. If we now consider the role of Sk, we see that it is an
orthogonal projector that “weights” the behavior of Mk to ensure that xk+1 satisfy
ViAxk+1 = Vib for i ≤ k. We will see these interpretations clearly and formally when
we focus on the case of rank-one Vk next.

We pause here momentarily to discuss the relationship between our procedure,
as specified by (2.1a)–(2.1c), and the sketch-and-project method in [16, 32]. At first
glance, it may seem that our procedure is a special case of sketch-and-project with
adaptive choices of the inner product at each iteration of the sketch-and-project up-
date. Unfortunately, an effort to recast our approach as a special case of sketch-and-
project breaks down at two fundamental points. First, the adaptive choices of the
sketch-and-project inner product would have to be the inverse of Sk, which is orthog-
onal projection matrices. As a result, the inverse is ill-defined and the inner product
is ill-defined. Of course, this can be rectified by allowing for a pseudo-metric, but this
then results in the second major point of difficulty: the theory presented in [16, 32]
relies on the determinism and invertibility of the matrix defining the metric space to
prove convergence. Thus, sketch-and-project, without a substantial investment, can-
not readily include our approach. On the other hand, we can state sketch-and-project
as a base randomized iterative approach, as shown in subsection SM1.1, and then
improve on it with our procedure via (2.1a)–(2.1c).

2.2. Rank-one refinements and random sketching. We will now focus on
a particular refinement of (2.1a)–(2.1c) that occurs when {Vk} are rank-one matrices,
that is, when there exist pairs of vectors {(vk, wk)} such that Vk = vkw

′
k for each

k. Our focus on this refinement is motivated by the simplifications of form (compare
(2.1a)–(2.1c) to (2.2b) and (2.3)) and the resulting straightforward connection that
such rank-one matrices will have with matrix sketching, which we discuss further
below.

3Despite having the word “projection” in the name, Vk may not be actually be a projection.
4The choice of S0 = Id may seem peculiar until we get to Lemma 3.1. As a brief preview, we will

need S0 to be a projection matrix. While other projection matrices can be used, they would need to
be designed to ensure that the initial error is in the range of the projection.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

804 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

In the case of {Vk = vkw
′
k}, (2.1b) and (2.1c) become

Mk =
1

w′kASkA
′wk ‖vk‖22

SkA
′wkv

′
k1 [SkA

′wk 6= 0] ,(2.2a)

Sk+1 = Sk −
1

w′kASkA
′wk

SkA
′wkw

′
kASk1 [SkA

′wk 6= 0] .(2.2b)

Moreover, if we substitute (2.2a) into (2.1a), we recover

(2.3) xk+1 = xk +
1

w′kASkA
′wk

SkA
′wkw

′
k(b−Axk)1 [SkA

′wk 6= 0] .

It follows from (2.2b) and (2.3) that in the case of a rank-one RPM, the left
singular vector of the RPM is not important.5 As we now explain, this observation
is critical for converting the impractical noniterative randomized sketch-then -solve
methods into iterative randomized sketch-and -solve methods.

Recall that the fundamental sketch-then-solve procedure is to construct a spe-
cialized matrix N sketch ∈ Rk×n and then generate and solve the smaller, sketched
problem (N sketchA)x = N sketchb (see [38, Ch. 1]).6 The special matrix N sketch, called
the sketching matrix, can be generated in a variety of ways such as making each
entry an i.i.d. Gaussian random variable [20], or by setting the columns of N sketch

as uniformly sampled columns (with replacement) of the appropriately dimensioned
identity matrix [7].

In order to convert the usual sketch-then-solve procedure into our sketch-and -
solve procedure, we simply set {wk : k + 1 ∈ N} ⊂ Rn to the transposed rows of
N sketch, which we will rigorously demonstrate in section 3. Of course, this requires
that we have a streaming procedure for generating arbitrarily many rows of N sketch.
For the Gaussian strategy [20] and the sparse Count-Sketch strategy [7, 6], this is a
straightforward task, and details are supplied in subsection SM1.4. Thus, if we let
RPMStrategy() define a generic user-defined procedure for choosing {wk : k+1 ∈ N},
then this observation gives us Algorithm 2.1 for (1) converting the sketch-then-solve
procedure into a sketch-and -solve procedure, and (2) adding orthogonalization to such
base methods as randomized Kaczmarz and randomized Gauss–Seidel.

2.3. Algorithmic refinements considering the computing platform. Al-
gorithm 2.1 implicitly assumes the traditional sequential programming paradigm.
However, the performance of the algorithm can be improved by taking advantage
of parallel computing architectures. Here, we will consider a handful of important
computing architecture abstractions and how our procedure can adapt to different
configurations. In subsection 2.3.1, we will consider the case of a parallel computing
architecture for which the communication overhead, which is proportional to the di-
mension d, is not a limiting factor. In subsection 2.3.2, we consider a similar class
of problems where the communication of O [d]-sized vectors is acceptable and n� d,
but that d is so large that storing and manipulating a matrix in Rd×d is burdensome.
Finally, in subsection 2.3.3 we will consider problems in which computational over-
head becomes a bottleneck for scalability but for which we have structured systems
that can be exploited to manage such overheads (e.g., [9]).

5Explicit examples for modifying randomized Kaczmarz and Gauss–Seidel are presented in sub-
section SM1.3.

6We note that the typical formulation considers linear regression rather than a linear system.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 805

Algorithm 2.1 Rank-One RPM Method

1: INPUT: Initialization x0; RPMStrategy() for {wl}; TerminationCriteria()
2: k ← 0
3: S ← Id
4: while TerminationCriteria() == false do
5: # Compute search direction
6: wk ← RPMStrategy()
7: qk ← A′wk # Row of the sketched system, used later to update xk and Sk
8: uk ← Skqk # Search direction from SkA

′wk in (2.3)

9: # Check if SkA
′wk = 0

10: if uk == 0 then
11: k ← k + 1
12: continue to next iteration
13: end if

14: # Update Iterate
15: rk ← b′wk − q′kxk # Component of sketched residual; w′k(b−Axk) in (2.3)
16: γk ← u′kqk # Calculation of w′kASkA

′wk in (2.3)
17: xk+1 ← xk + uk (rk/γk)

18: # Update Projection Matrix
19: Sk+1 ← (I − 1

γk
ukq
′
k)Sk

20: # Update Iteration Counter
21: k ← k + 1
22: end while
23: RETURN: xk+1

2.3.1. Asynchronous parallelization on shared and distributed mem-
ory platforms. First, when we are using a matrix sketch for RPMStrategy(), one

of the expensive components of the computation is determining
[
A b

]′
wk. Fortu-

nately, in our sketch-and-solve procedure, this expensive computation can be trivially
asynchronously parallelized on a shared memory platform when

1. the data within the rows
[
A b

]
are stored together, and

2. the RPMStrategy() generates {wk : k + 1 ∈ N} that are either independent
(e.g., the Gaussian strategy) or can be grouped into independent subsets (e.g., the
Count-Sketch strategy).
When these two requirements are met, each processor can generate its own {wk :

k + 1 ∈ N} independently of the other processors and evaluate
[
A b

]′
wk. It can

then simply write the resulting row to an address reserved for performing the iterate
and Sk matrix updates by the master processor. Importantly, this procedure does
not require locking any of the rows of

[
A b

]
, and the reserved addresses can use fine

grained locks to prevent any wasted calculations.
Similarly, in our sketch-and-solve procedure, computing

[
A b

]′
wk can be triv-

ially asynchronously parallelized on a distributed memory platform using a Fork-join
model, when

1. the rows of
[
A b

]
are distributed across the different storages, and

2. the RPMStrategy() generates {wk : k+1 ∈ N} such that wk have independent
groups of components (e.g., the Gaussian strategy and the Count-Sketch strategy).

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

806 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

When these two requirements are met, each processor can generate its own {wk :
k + 1 ∈ N} and operate on the local rows of

[
A b

]
. It can then simply pass the

resulting row to the master processor, which performs the iterate and Sk matrix
updates. For each iteration, a scattering and gathering of the data is performed, but
no other data exchange is required.

Table 1 summarizes the time and total computational costs of computing xk and
Sk from x0 and S0 in the following context: (1) the sequential platform refers to
the case where there is a single processor with a sufficiently large memory to store
the system and perform the necessary operations in Algorithm 2.1; (2) the shared
memory platform assumes that there are p + 1 processors that share a sufficiently
large memory. One of the processors is dedicated to performing the iterate and matrix
updates, while the remaining p processors compute

[
A b

]′
wk; (3) the distributed

memory architecture assumes that there are p + 1 processors each with a sufficient
memory capacity. The rows of

[
A b

]
are split evenly or nearly evenly amongst p of

the processors, and each process only manipulates its local information about A and
b. Finally, the master processor is dedicated to performing the iterate and matrix
updates.

Table 1
A summary of the time and total computational cost (effort) incurred by Algorithm 2.1 and

its parallelized variants. We do not report any advantages that should be exploited when A or w
is sparse. In the shared and distributed memory platforms, we assume that there are p processors
dedicated to computing A′w and b′w, and one processor dedicated to computing the updates. The
“Network” column refers to whether communication costs over a network are incurred.

Total Time and Effort Costs to Iteration k

Platform Computing
[
A b

]′
w Update costs Network

Time Total effort Iterate Matrix

Sequential O [knd] O [knd] O
[
kd2
]

O
[
kd3
]

No

Shared memory O [knd/p] O [knd] O
[
kd2
]

O
[
kd3
]

No

Distributed memory O
[
knd/p2

]
O [knd/p] O

[
kd2
]

O
[
kd3
]

Yes

2.3.2. Memory-reduced procedure. A notable aspect of Algorithm 2.1 (and
its aforementioned parallel variants described above) is that it must store and manip-
ulate the matrix Sk at each iteration, which is clearly expensive when d is large or
is excessive when d3 is comparable to n or greater than n. This difficulty motivates
a partial orthogonalization approach, as described in Algorithm SM1.1. In this ap-
proach, a user-defined parameter m < d specifies the number of d-dimensional vectors
needed to implicitly store an approximate representation of Sk (based on Lemma 3.1).
We denote this set of m d-dimensional vectors by S. With this implicit representation,
the cost of computing uk reduces to O [md],7 which, consequently, reduces the overall
cost of updating xk to xk+1 to O [md]. Moreover, because Sk is implicitly represented
by a set of m d-dimensional vectors, S, there is no notable additional computational
cost incurred for updating Sk to Sk+1. Thus, an entire iteration incurs a compu-

tational cost O [md] plus the cost of computing
[
A b

]′
wk, which can be mollified

under the strategies above in shared memory or distributed memory platforms.

7If qk replaces uk in the calculation of zk, then the cost of computing uk is O
[
dm2

]
(see [13,

Ch. 5.2]).

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 807

2.3.3. Optimizing communication overhead. Structured systems. In the
above approaches, we take for granted that d is not so large that communicating O [d]
vectors is acceptable during the procedure. However, for many problems coming from
the solution of differential equations (e.g., see [9]), d and n are of the same order and
are so large that communicating O [d] vectors at arbitrary points during the procedure
is impossible. Fortunately, linear system problems in this class are highly sparse and
structured [34, Ch. 2]. A simple example is the case where A is a square, banded
system with nonzero bandwidth Q̃ + 1 for some Q̃ � n = d; that is, Aij = 0 if

|i− j| > Q̃ and the remaining Aij can take arbitrary values.
For such sparse and structured problems, our methodology can be efficiently im-

plemented across a distributed memory platform with p processors under some addi-
tional qualifications. However, to understand these qualifications, let us first intro-
duce some notation and concepts that define the communication pattern across the
p nodes. Suppose somehow that we distribute the equations of our linear system of
interest across p nodes. Figure 1 shows how the coefficient matrix of a 20×20 banded
system with bandwidth 5 can be distributed across five nodes. Note that, in this
example, the entries of the constant vector would be stored on the same processor as
the corresponding rows of the coefficient matrix. Moreover, we need a way of tracking
which components of x are manipulated by each node: let Xi be the set of indices of
the components of x with nonzero coefficients at node i in the distributed system for
i = 1, . . . , p. In our example, X1 = {1, . . . , 6}, X2 = {3, . . . , 10}, X3 = {7, . . . , 14},
X4 = {11, . . . , 18}, and X5 = {15, . . . , 20}. Finally, for any vector z and any set X
over the indices of z, let z[X] be the vector whose elements are the elements of z
indexed by X .

Node 1

Node 2

Node 3

Node 4

Node 5

Fig. 1. A representation of a 20× 20 banded matrix with bandwidth Q̃+ 1 = 5, whose rows are
split across five compute nodes (represented by the dashed line). Note that the empty grid points
represent zeros, while the filled grid points represent nonzero values.

From this example and from our discussion in subsection 2.3.1 of distributing the
RPMStrategy(), we can use the local rows of A at Node 1 and a Gaussian sketch to
generate a q1 ∈ Rd such that q1[{1, . . . , 6}] are arbitrarily valued and q1[{7, . . . , 20}] =
0. Thus, our vector qk is highly sparse and can be generated locally on the node.
However, following Algorithm 2.1, the next step of computing uk requires computing
the product between Sk and qk, which, in a naive implementation, would require
storing a dense d× d matrix Sk and computing a global matrix-vector product. Such
a required computation raises several concerns, which we detail and address in the
following enumeration.

1. Given that d is relatively large to the computing environment, is storing a
d× d matrix even feasible? Generally, the answer will be that storing such a matrix

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

808 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

is infeasible. However, by exploiting the properties of Sk (see Lemma 3.1), we will
approximately and implicitly store Sk as S, which is a collection of orthonormal
vectors.

2. Even if we use S in place of Sk, will the resulting implicit matrix-vector
product and update of S incur prohibitive communication costs? To answer these
questions completely, we will need to specify how the implicit matrix-vector product
will be computed and how S will be stored. Here, we will compute the implicit matrix-
vector product by using twice-iterated classical Gram–Schmidt (Algorithm SM1.3),
which was shown to be numerically stable in the seminal work of [12]. Owing to this
calculation pattern, we can store S in a distributed fashion across the p processors.
As derived in detail in subsection SM1.6, synchronization of S will require Q(F −1)+
m(p2−1) floating point numbers to be communicated per iteration, where Q represents
the number of shared indices between two processors; F represents the maximum
number of nodes that overlap; and m represents the memory storage parameter.

This procedure is detailed in Algorithm SM1.4.

3. Convergence theory for orthogonalization. Here, we will prove that the
complete orthogonalization approach (i.e., Algorithm 2.1) converges to the solution
under a variety of sampling RPM strategies. We anticipate that a similar argument
would demonstrate the convergence of the general procedure described in (2.1).

3.1. Core results. We establish two key results. First, we establish that our
procedure is an orthogonalization procedure: that is, the matrices {Sk} project the
current search direction onto a subspace that is orthogonal to previous search direc-
tions. Second, we characterize the limit point of our iterates, {xk}, in terms of a
true solution of the linear system and the subspace generated by the rank-one RPMs,
{Vk}.

Lemma 3.1. Let {w` : ` + 1 ∈ N} ⊂ Rn be an arbitrary sequence in Rn, and let
R0 = {0} ⊂ Rd and R` = span [A′w0, . . . , A

′w`−1] for ` ∈ N. Now, let S0 = Id and
{S` : ` ∈ N} be defined recursively as in (2.2b). Then, for ` ≥ 0, S` is an orthogonal
projection matrix onto R⊥` .

Proof. We will prove the result by induction. For the base case, ` = 0, S0 = Id.
It follows that S0 is an orthogonal projection onto R⊥0 = Rd since S2

0 = I2d = Id = S0

and range (Id) = Rd. Now suppose that the result holds for ` > 0. If S`A
′w` = 0,

then there is nothing to show. Therefore, for the remainder of this proof, suppose
S`A

′w` 6= 0.
First, we show that S`+1 is a projection matrix by verifying that S2

`+1 = S`+1 by
direct calculation. Making use of the recursive definition of S`+1 and the induction
hypothesis that S2

` = S` (since S` is a projection),

(3.1)

S2
`+1 =

(
S` −

S`A
′w`w

′
`AS`

w′`AS`A
′w`

)(
S` −

S`A
′w`w

′
`AS`

w′`AS`A
′w`

)
=

(
S` −

S`A
′w`w

′
`AS`

w′`AS`A
′w`

)(
Id −

A′w`w
′
`AS`

w′`AS`A
′w`

)
= S` − 2

S`A
′w`w

′
`AS`

w′`AS`A
′w`

+
S`A

′w`w
′
`AS`

w′`AS`A
′w`

= S`+1.

Second, we use the fact that a projection is orthogonal if and only if it is self-
adjoint to show that S`+1 is an orthogonal projection. By induction, because S` is an

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 809

orthogonal projection, S′` = S`, and so

(3.2) S′`+1 = S′` −
S`A

′w`w
′
`AS`

w′`AS`A
′w`

= S`+1.

Finally, let v be in the range of S`+1, and we can decompose v into the components
u and y such that v = u+ y, 0 = u′y, and y ∈ R`+1. We will show that y = 0, which
characterizes the range of S`+1 as being all vectors orthogonal to R`+1. To show this
note that because S`+1 is a projection matrix, we have that

(3.3) u+ y = v = S`+1v = S`+1u+ S`+1y.

By construction R` ⊂ R`+1 and so u ∈ R⊥` . Using the induction hypothesis, we then
have that S`u = u. Moreover, because u ∈ R⊥`+1 by construction, u′A′w` = 0. Then,
using the recursive definition of S`+1, we have that

(3.4) S`+1u = S`u−
S`A

′w`w
′
`AS`u

w′`AS`A
′w`

= u− S`A
′w`w

′
`Au

w′`AS`A
′w`

= u.

Therefore, u = S`+1u and, by (3.3), y = S`+1y. We now decompose y into y1 and
y2, where y1 ∈ R` and y2 ∈ R⊥` ∩ R`+1. By the induction hypothesis, R⊥` ∩ R`+1 =
span [S`A

′w`]. Therefore, S`y = y2 and ∃α ∈ R such that y2 = αS`A
′w`. Finally,

using the recursive formulation of S`+1 and S`y = y = αS`A
′w`,

(3.5) y = S`+1y = S`y −
S`A

′w`w
′
`AS`y

w′`AS`A
′w`

= αS`A
′w` − αS`A′w` = 0.

Thus, we have shown that the range of S`+1 is orthogonal to R`+1.

From Lemma 3.1, we see that our procedure is an orthogonalization procedure
just like quasi-Newton methods [30, Ch. 8] and conjugated direction methods [19].
In light of this relationship, we could follow the common strategy used in the proof
of such procedures: demonstrate that the iterates are in a subspace generated by the
initial iterate and the search directions, and then demonstrate that the iterates are
the closest points to the true solutions within the given subspace. For our procedure,
we effectively follow the same strategy. We see that the first part of the proof strategy
is true since

(3.6) x`+1 ∈ span [x0, S0A
′w0, . . . , S`A

′w`] = span [x0, A
′w0, . . . , A

′w`] ,

where the latter equality holds by Lemma 3.1. We will prove the second part in the
following lemma.

Lemma 3.2. Suppose Ax = b admits a solution x∗ (not necessarily unique). Let
w0, w1, . . . ∈ Rn be random variables. Let x0 ∈ Rd be arbitrary and S0 = Id, and let
{x` : ` ∈ N} and {S` : ` ∈ N} be defined as in (2.2b) and (2.3). Then, for all ` ≥ 0,
x` − x∗ = S`(x0 − x∗).

Proof. We will prove this by induction. For ` = 0, the statement holds since
S0 = Id. Now suppose that this relationship holds for some ` > 0. Using (2.3),

(3.7)

x`+1 − x∗ = x` − x∗ +
S`A

′w`w
′
`

w′`AS`Aw`
(Ax∗ −Ax`)

=

(
Id −

S`A
′w`w

′
`A

w′`AS`Aw`

)
(x` − x∗).

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

810 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Using the induction hypothesis, x` − x∗ = S`(x0 − x∗), and (2.2b),

(3.8) x`+1 − x∗ =

(
Id −

S`A
′w`w

′
`A

w′`AS`Aw`

)
S`(x0 − x∗) = S`+1(x0 − x∗).

While x` may be the closest point to the solution set in the generated subspaces,
the subspaces may not account for the entire row space of A. In other words, we must
account for the possibility that span [A′w0, . . . , A

′w`] may not eventually converge to
the row space of A and, thus, fail to capture the entire solution. Moreover, since {wk}
are random variables, we need a way of accounting for the space that is generated by
{A′wk}. This is the content of the following definitions.

First, we begin by defining the maximal possible subspace that can be generated
by a random quantity A′w. Let w ∈ Rn be a random variable defined on a space Ω,
and let

(3.9)

N (w) = span
[
z ∈ Rd : P [z′A′w = 0] = 1

]
,

R(w) = N (w)⊥, and

V(w) = R(w)⊥row(A),

where ⊥ row(A) indicates that V(w) is the orthogonal complement of R(w) with
respect to row(A) (i.e., V(w) ⊕ R(w) = row(A)). The following result characterizes
R(w).

Lemma 3.3. For R(w) as defined in (3.9), R(w) is the smallest subspace of Rd
such that P [A′w ∈ R(w)] = 1.

Proof. First, we verify that P [A′w ∈ R(w)] = 1. Suppose that P [A′w ∈ R(w)] <
1. Then,

(3.10) P [∃z ⊥ R(w) : z′A′w 6= 0] > 0.

However, we know that for any z such that z ⊥ R(w), z ∈ N (w) and z′A′w = 0 with
probability one, which is a contradiction. Hence, P [A′w ∈ R(w)] = 1.

Now suppose there is a proper subspace of R(w), U , such that P [A′w ∈ U] = 1.
Let U⊥R(w) denote the subspace orthogonal to U relative to R(w). Then, for any
z ∈ U⊥R(w), P [z′A′w = 0] = 1, which implies that U⊥R(w) ⊂ N (w). However, since
U⊥R(w) ⊂ R(w) ⊥ N (w), U⊥R(w) = {0}. Thus, R(w) is the smallest subspace such
that P [A′w ∈ R(w)] = 1.

Second, we must define when the maximal possible subspace of A′w can be
achieved by a sequence of random variables {A′w0, . . . , A

′w`}, which may or may not
be related to A′w. Note that, by not requiring a relationship between {A′w0, . . . , A

′w`}
and A′w, our next result is particularly general and applies to a variety of situations,
from the case in which {w`} are independent copies of w to the case where {w`} have
complex dependencies. Now, let {w` : ` + 1 ∈ N} ⊂ Rn be random variables defined
on Ω, and let T be a stopping time defined by

(3.11) T = min{` ≥ 0 : span [A′w0, . . . , A
′w`] ⊃ R(w)}.8

Finally, let PW denote the orthogonal projection matrix onto a subspace W ⊂ Rd.
Using this notation, we have the following fundamental characterization result of the
limit points of {x`}.

8Below we will assume that A′w ∈ R(w) with probability one. If we relax this, this will change
the results in a predictable manner but will require additional notation. To avoid such notation, we
will leave this more general case to future work if there is a sampling case that merits it.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 811

Theorem 3.4. Let w be a random variable, and let R(w) and N (w) be as de-
fined above (see (3.9)). Moreover, let w0, w1, . . . ∈ Rn be random variables such that
P [A′w` ∈ R(w)] = 1 for all `+ 1 ∈ N, and let T be as defined in (3.11). Let x0 ∈ Rd
be arbitrary and S0 = Id, and let {x` : ` ∈ N} and {S` : ` ∈ N} be defined as in (2.2b)
and (2.3). On the event {T <∞}, the following hold:

1. For any s ≥ T + 1, ST+1 = Ss and xT+1 = xs.
2. If Ax = b admits a solution x∗ (not necessarily unique), then

(3.12) xT+1 = PN (w)x0 + PR(w)x
∗.

Proof. Recall that R`+1 = span [A′w0, . . . , A
′w`] . Therefore, by the definition of

T , RT+1 = R(w) on the event that {T <∞}. Therefore, by Lemma 3.1, ST+1 is an
orthogonal projection onto N (w), and its null space is R(w).

We now proceed by induction. Because ker (ST+1) = R(w) and A′wT+1 ∈ R(w)
with probability one (by hypothesis), ST+1A

′wT+1 = 0. Therefore, by the recursion
equations, (2.2b) and (2.3), ST+2 = ST+1 and xT+2 = xT+1. Suppose now that
ST+` = ST+1 and xT+` = xT+1 for ` > 1. Again, by hypothesis, A′wT+` ∈ R(w) =
ker (ST+`). Therefore, ST+`A

′wT+` = 0. By the recursion equations, (2.2b) and (2.3),
ST+`+1 = ST+` = ST+1 and xT+`+1 = xT+` = xT+1.

For the second part of the result, note that ST+1 is a projection onto N (w) (i.e.,
PN (w) = ST+1). Therefore, on the event {T <∞}, by Lemma 3.2,

(3.13)

xT+1 = x∗ + ST+1(x0 − x∗)
=
(
PN (w) + PR(w)

)
x∗ + PN (w)x0 − PN (w)x

∗

= PR(w)x
∗ + PN (w)x0.

With Theorem 3.4 in hand, the natural subsequent question is when the limit
point of the iterates is actually a solution to the original system. This question is
addressed in the following corollary.

Corollary 3.5. Under the setting of Theorem 3.4, on the event {T < ∞},
AxT+1 = b if and only if PV(w)x0 = PV(w)x

∗.

Proof. Recall that row(A) ⊥ ker (A). Because R(w) ⊂ row(A), N (w) = V(w) +
ker (A). Moreover, by the definition of V(w) ⊂ row(A), V(w) ⊥ ker (A). Therefore,
PN (w) = Pker(A) + PV(w). Now, using the characterization in Theorem 3.4,

(3.14) AxT+1 = APker(A)x0 +APV(w)x0 +APR(w)x
∗ = APV(w)x0 +APR(w)x

∗.

Similarly, because Id = Pker(A) + PV(w) + PR(w),

(3.15) b = Ax∗ = APker(A)x
∗ +APV(w)x

∗ +APR(w)x
∗ = APV(w)x

∗ +APR(w)x
∗.

Setting these two quantities equal to each other, we conclude that AxT+1 = b if and
only if APV(w)x

∗ = APV(w)x0. Clearly, if PV(w)x0 = PV(w)x
∗, then AxT+1 = b. So,

what we have left to show is that APV(w)x
∗ = APV(w)x0 implies PV(w)x0 = PV(w)x

∗.

Let A† denote the Moore–Penrose pseudo-inverse of A, and recall that A†A is a
projection onto row(A). Moreover, range(PV) ⊂ row(A). Therefore, since if AxT+1 =
b then APV(w)x0 = APV(w)x

∗, if AxT+1 = b then

(3.16) PV(w)x0 = (A†A)PV(w)x0 = A†(APV(w)x0) = A†APV(w)x
∗ = PV(w)x

∗.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

812 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Corollary 3.5 provides criteria on the initial condition and on V(w) to determine
when our procedure will solve the linear system. However, we would rarely have a way
of choosing the initial condition a priori such that the requirement of Corollary 3.5
holds. Thus, the alternative is to design w so that V(w) = {0}, which would guarantee
that AxT+1 = b on the event {T < ∞}. It is worth reiterating that we have made
very limited assumptions about the relationships between w and {w`} and amongst
{w`}. This is important because it allows us to apply the preceding results to a
variety of common relationship patterns between w and {w`}. In the next subsection,
we explore some specific relationships and whether these relationships will result in
V(w) = {0}.

3.2. Common sampling patterns. Theorem 3.4 supplies a general result about
the behavior of any sampling methodology on the solution of the system using (2.2b)
and (2.3), yet it does not suggest a precise sampling methodology. Generally, the
sampling methodology choice will depend on both the hardware environment and the
nature of the problem. For example, a random permutation sampling methodology
will limit the parallelism achievable in Algorithm SM1.4. On the other hand, a ran-
dom permutation sampling methodology might be well advised in a sequential setting
where very little is known about the coefficient matrix A. Thus, the precise sampling
scheme should depend on the hardware environment and should exploit the structure
of the problem.

Despite this, in practice, there are two general sampling schemes that form a
basis for more problem and hardware specific sampling schemes: random permutation
sampling and i.i.d. sampling. The former sampling pattern is exemplified by randomly
permuting the equations of the linear system. More concretely, let e1, . . . , en ∈ Rn
be the standard basis; let w be a random variable with nonzero probability on each
element of the basis; let {w`} be random variables sampled from {e1, . . . , en} without
replacement (until the set is exhausted; then we repopulate the set with its original
elements and repeat the sampling without replacement). The following statement
provides a simple characterization of this sampling scheme.

Proposition 3.6. Let {W1, . . . ,WN} ⊂ Rn. Let w be a random variable such
that

(3.17) P [w = Wj] > 0, j = 1, . . . , N, and
N∑
j=1

P [w = Wj] = 1.

Moreover, let {w` : `+ 1 ∈ N} be random variables sampled from {W1, . . . ,WN} with-
out replacement (and once the set is exhausted, we repopulate the set with its original
elements and repeat sampling without replacement). Then T ≤ N − 1. Moreover,
AxT+1 = b for every initialization if span [A′W1, . . . , A

′WN] = row(A), which holds
if span [W1, . . . ,WN] = Rn.

Proof. First, note that N (w) = {z ∈ Rd : z′A′Wj = 0 ∀j = 1, . . . , N}. Therefore,

(3.18) R(w) = N (w)⊥ = span [A′W1, . . . , A
′WN] .

In turn, because {w0, . . . , wN−1} = {W1, . . . ,WN}, T is at most N − 1.
By Corollary 3.5, AxT+1 = b if and only if PV(w)x0 = PV(w)x

∗ where x∗ satisfies
Ax∗ = b. Given that R(w) + V(w) = row(A) and R(w) = span [A′W1, . . . , A

′WN], if
span [A′W1, . . . , A

′WN] = row(A), then V(w) = {0}. Therefore, AxT+1 = b for any
initialization. The final claim is straightforward.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 813

The second sampling scheme, i.i.d. sampling, is exemplified by randomly sampling
equations from the system with uniform discrete probability. However, we do not need
to limit ourselves to sampling from a finite population of elements. As the next result
shows, we can do much more.

Proposition 3.7. Suppose that w,w0, w1, . . . are i.i.d. random variables. There
exists a π ∈ (0, 1) such that

(3.19) inf
z∈R(w)

‖z‖2=1

P [z′A′w 6= 0] ≥ π.

Moreover, T < ∞ and P [T = `] ≤ (` − r)r−1(1 − π)`−r, where r = dim(R(w)) and
` ≥ r.

Proof. First, we show that there exists π > 0 such that for any nontrivial proper
subspace V (R(w), P[A′w 6∈ V] ≥ π, which implies (3.19) when we take V to be the
relative orthogonal compliment to the span of a unit vector v ∈ R(w). Suppose there
is no such π. Then, for every p ∈ (0, 1), there is a nontrivial subspace V (R(w) such
that P [A′w ∈ V] ≥ 1 − p. Let r be the smallest integer between 0 and dim(R(w))
such that

(3.20) sup
V(R(w)

dim[V]=r

P[A′w ∈ V] = 1.

For ε > 0, let V1 (R(w) be an r-dimensional subspace with P[A′w ∈ V1] ≥ 1−ε/2.
Note that, by Lemma 3.3, P[A′w ∈ V1] < 1. Therefore, let V2 (R(w) be an r-
dimensional subspace with P[A′w ∈ V2] > P[A′w ∈ V1] ≥ 1− ε/2. Given that V1 and
V2 are distinct and the inclusion-exclusion principle,

(3.21) P[A′w ∈ V1 ∩ V2] ≥ P[A′w ∈ V1] + P[A′w ∈ V2]− 1 ≥ 1− ε.

However, this contradicts the minimality of r since ε > 0 is arbitrary and dim(V1 ∩
V2) < r. Thus, we conclude that such a π exists.

It follow from (3.19) that for any `,

(3.22) P [dim(span [A′w0, . . . , A
′w`]) > dim(span [A′w0, . . . , A

′w`−1])] ≥ π.

Therefore, we can bound P[T = `] by a negative binomial distribution. In particular,

(3.23) P[T = `] ≤
(
`− 1

r − 1

)
(1− π)`−r ≤ (`− r)r−1(1− π)`−r.

In light of the two preceding results, we may be convinced that there is a gap
between the convergence properties between random permutation sampling and the
i.i.d. sampling. However, by modifying the structure of the rank-one RPM, we can
find more intermediate cases. The next result demonstrates this behavior with a
somewhat contrived example, and we will leave more complex cases to future work.

Theorem 3.8. Suppose w,w0, w1, . . . are i.i.d. random variables such that the
entries of A′w are i.i.d. sub-Gaussian random variables with mean zero and unit
variance. Then, there exists a π ∈ (0, 1) depending only on the distribution of the
entries of A′w, such that P [T = `] ≥ 1− π` for ` ≥ d.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

814 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Proof. Let H` denote an ` × d (` ≥ d) random matrix whose entries are i.i.d.
sub-Gaussian random variables with zero mean and unit variance. As a consequence
of [33, Theorem 1.1], there exists a π that depends on the distribution of the entries
such that for all ` ≥ d, P [σmin(H`) > 0] ≥ 1 − π`. At iteration `, let N` denote the
matrix whose rows are given by w0, w1, Then, by hypothesis, N`A has entries that
are i.i.d. sub-Gaussian random with zero mean and unit variance. Therefore, there
exists a π ∈ (0, 1) depending only on the distribution of the entries in A′w such that
P [T = `] = P [σmin(N`A) > 0] ≥ 1− π` for ` ≥ d.

4. Convergence theory for base methods. In the previous section, we proved
convergence for the complete orthogonalization method (i.e., Algorithm 2.1) and ex-
plored some specific sampling patterns. Here, we will consider the extreme opposite
of the complete orthogonalization method: the “base” randomized iterative approach
(e.g., randomized Kaczmarz). That is, we consider when Vk is a rank-one matrix of
one of two general classes.

In the first class, we consider Algorithm SM1.1 in the case m = 0. In this case,
(2.3) supplies the simplified iteration scheme,

(4.1) xk+1 = xk +
A′wkw

′
k(b−Axk)

‖A′wk‖22
,

which encompasses randomized Kaczmarz if we choose wk to be independent, random
draws of the basis vectors in Rn with the probabilities proportional to the squared
row norms as specified in subsection SM1.1.

Unfortunately, (4.1) would not include randomized Gauss–Seidel. This motivates
the second class, which has the closely related iteration

(4.2) xk+1 = xk +
wkw

′
kA
′(b−Axk)

‖Awk‖22
.

In this class, we recover randomized Gauss–Seidel if we choose wk to be a random
draw of the basis vector in Rd with the probabilities proportional to the squared
column norms as specified in subsection SM1.1.

While these two classes are distinct, we will see that their analyses are nearly
identical. Specifically, when we move from the analysis of row-action methods to that
of column-action methods, we will see that the errors, xk − x∗, in the analysis of
row-action methods will be replaced by the residuals, rk = Axk − b, in the analysis
of column-action methods; moreover, we will have to replace A′wk in the analysis of
row-action methods with Awk for the analysis of column-action methods. Otherwise,
the analyses will proceed almost identically. Owing to this, we will leave the analysis
of column-action methods to section SM3.

Our analysis offers two highlights: (1) we can prove convergence with probability
one for arbitrary sampling schemes—only the i.i.d. case is considered in [41, 16, 32];
and (2) we can provide rates of convergence with probability one, which complements
the mean-squared error results of [41, 16, 32].

Our main approach is an extension of Meany’s inequality combined with stopping
time arguments. We will first state the extension and then describe how it will be
used. Note that, owing to the extension’s similarity to Meany’s original proof, the
proof is left to section SM2.

Theorem 4.1. Let z1, . . . , zk be unit vectors in Rn for some k ∈ N. Let S =
span [z1, . . . , zk]. Let F denote all matrices F where the columns of F are the vectors

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 815

{f1, . . . , fr} ⊂ {z1, . . . , zk} that are a maximal linearly independent subset. Then

(4.3) sup
y∈S,‖y‖2=1

‖Qy‖2 ≤
√

1− min
F∈F

det(F ′F),

where Q = (I − zkz′k)(I − zk−1z′k−1) · · · (I − z1z′1).

To preview how we will use this extension of Meany’s inequality, we focus on the
case (4.1). Suppose, further, that x0−x∗ ∈ row(A), where x∗ is a solution to Ax = b.
By (4.1), we see that xk − x∗ is related to x0 − x∗ by rank-one perturbations of the
form in Theorem 4.1 with zj = A′wj for j ≤ k. Thus, if x0 − x∗ is in the subspace
spanned by {A′w0, . . . , A

′wk}, then Theorem 4.1 guarantees that ‖xk − x∗‖2 is less
than ‖x0 − x∗‖2 by a factor less than one. Roughly, x0 − x∗ may not fall into this
subspace, but a relevant portion of it might, and the iterates at which this relevant
portion lies in the desired subspace will be stopping times. Thus, at these stopping
times, we will be guaranteed improvements in the error.

In subsection 4.1, we will begin by proving the convergence of methods in the
family of row-action methods specified in (4.1). We then explore some common non-
adaptive sampling patterns in subsection 4.2. In subsection 4.3, we develop a general
framework for the analysis of a broad class of adaptive sampling schemes and provide
concrete examples from the literature.

4.1. Main convergence result for row-action methods. Recall that w ∈ Rn
is a random variable, and {w` : ` + 1 ∈ N} is a sequence of random variables taking
value in Rn chosen such that A′w` ∈ R(w).9 We will now define a sequence of stopping
times {τ` : `+ 1 ∈ N} where τ0 = 0,

(4.4) τ1 = min{k ≥ 0 : span [A′w0, . . . , A
′wk] = R(w)},

and, if τ`−1 <∞, we define

(4.5) τ` = min{k > τ`−1 : span
[
A′wτ`−1+1, . . . , A

′wk
]

= R(w)};

else τ` = ∞. As an aside, it is worthwhile to note the commonalities between the
definition of {τ`} and the stopping time T from (3.11).

Moreover, whenever the stopping times are finite, we will define the collection,
F`, for ` ∈ N, that contains all matrices F whose columns are well defined (i.e., ignore
zero vectors), maximal linearly independent subsets of

(4.6)

{
A′wτ`−1+1∥∥A′wτ`−1+1

∥∥
2

, . . . ,
A′wτ`
‖A′wτ`‖2

}
.

Moreover, define

(4.7) γ` = 1− min
F∈Fl

det(F ′F).

Note that it follows by Hadamard’s inequality that γ` ∈ [0, 1).

9Again, we can avoid this requirement and consider set inclusions below. However, this general-
ization will require additional, cumbersome notation, and there is no practical reason for considering
this case.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

816 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Theorem 4.2. Suppose Ax = b admits a solution x∗ (not necessarily unique).
Let w be a random variable valued in Rn, and let R(w), N (w), and V(w) be defined
as above (see (3.9)). Moreover, let {w` : ` + 1 ∈ N} be random variables such that
P [A′w` ∈ R(w)] = 1 for all `+ 1 ∈ N. Let x0 ∈ Rd be arbitrary, and let {xk : k ∈ N}
be defined as in (4.1). Then, for any `, on the event {τ` <∞},

(4.8)
∥∥xτ`+1 − x∗ − PN (w)(x0 − x∗)

∥∥2
2
≤

∏̀
j=1

γj

∥∥PR(w)(x0 − x∗)
∥∥2
2
,

where γj are defined in (4.7) and γj ∈ [0, 1). Therefore, for any k,

(4.9)
∥∥xk − x∗ − PN (w)(x0 − x∗)

∥∥2
2
≤

L(k)∏
j=1

γj

∥∥PR(w)(x0 − x∗)
∥∥2
2
,

where L(k) = max{` : k ≥ τ` + 1}; and where we are on the event {τL(k) <∞}.
Proof. From the basic iteration stated in (4.1), we have

(4.10) xk+1 − x∗ = xk − x∗ −
A′wkw

′
kA

‖A′wk‖22
(xk − x∗) =

(
I − A′wkw

′
kA

‖A′wk‖22

)
(xk − x∗).

Iterating on this relationship, we conclude that

(4.11) xk+1 − x∗ =

(
I − A′wkw

′
kA

‖A′wk‖22

)
· · ·

(
I − A′w0w

′
0A

‖A′w0‖22

)
(x0 − x∗).

Moreover, by assumption, A′w` ∈ R(w) with probability one, which implies that
A′w` ⊥ N (w). Therefore,
(4.12)

xk+1−x∗ = PN (w)(x0−x∗) +

(
I − A′wkw

′
kA

‖A′wk‖22

)
· · ·

(
I − A′w0w

′
0A

‖A′w0‖22

)
PR(w)(x0−x∗),

and PN (w)(xk − x∗) = PN (w)(x0 − x∗).
Note that, when τ1 is finite, the span of {A′w0, . . . , A

′wτ1} is R(w). Therefore,
on the event τ1 <∞, Theorem 4.1 implies that

(4.13)
∥∥xτ1+1 − x∗ − PN (w)(x0 − x∗)

∥∥2
2
≤ γ1

∥∥PR(w)(x0 − x∗)
∥∥2
2
.

We now proceed by induction. Suppose (4.8) holds for some ` ∈ N. Using (4.12), for
k > τ`,

(4.14)

xk − x∗ − PN (w)(x0 − x∗)

=

(
I − A′wkw

′
kA

‖A′wk‖22

)
· · ·

(
I −

A′wτ`+1w
′
τ`+1A

‖A′wτ`+1‖22

)
PR(w)(xτ`+1 − x∗).

Now, when k = τ`+1 + 1, the conditions of Theorem 4.1 are satisfied. Therefore,

(4.15)

∥∥xτ`+1+1 − x∗ − PN (w)(x0 − x∗)
∥∥2
2
≤ γ`+1

∥∥PR(w)(xτ`+1 − x∗)
∥∥2
2

= γ`+1

∥∥xτ`+1 − x∗ − PN (w)(x0 − x∗)
∥∥2
2
.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 817

By applying the induction hypothesis, we conclude that (4.8) holds on the event
{τ`+1 <∞}.

Now, for an orthogonal projection matrix, I− vv′, ‖I − vv′‖2 = 1. The bound on
xk − x∗ − PN (x0 − x∗) follows by applying this fact and the definition of L(k).

As an analogue of Corollary 3.5, we have the following characterization of whether
limk→∞ xk solves the system Ax = b.

Corollary 4.3. Under the setting of Theorem 4.2, on the events
⋂∞
`=0{τ` <∞}

and {lim`→∞
∏`
j=0 γj = 0}, limk→∞Axk = b if and only if PV(w)x0 = PV(w)x

∗.

Proof. By Theorem 4.2, and on the events
⋂∞
`=0{τ` <∞} and {lim`→∞

∏`
j=1 γj =

0},

(4.16) lim
k→∞

xk = x∗ + PN (w)(x0 − x∗) = x∗ + Pker(A)(x0 − x∗) + PV(w)(x0 − x∗).

Therefore, limk→∞Axk = b + APV(w)(x0 − x∗), which implies limk→∞Axk = b if
and only if APV(w)x0 = APV(w)x

∗. Clearly, if PV(w)x0 = PV(w)x
∗, then APV(w)x0 =

APV(w)x
∗. Now, since V(w) ⊂ row(A), if APV(w)x0 = APV(w)x

∗, then PV(w)x0 =
PV(w)x

∗ follows from (3.16).

Remark 4.4. We have not explicitly accounted for finite termination in the above
discussion. Given the generality of {w`}, it is possible that the procedure terminates
at a nonsolution (i.e., w′jA(xk − x∗) = 0 for all j ≥ k, but PR(w)(x` − x∗) 6= 0),
or it is possible that the procedure terminates at a solution. We can preclude the
former case by the assumptions prescribed in subsection 4.3. In the latter case, if we
denote the termination point as τ , we can account for finite termination by redefining
τL(τ)+1 = τ and γL(τ)+1 = 0.

4.2. Common nonadaptive sampling patterns. Just as for Theorem 3.4,
Theorems SM3.1 and 4.2 are general results that characterize convergence for any
sampling scheme. Following the discussion in subsection 3.2, the sampling scheme
should depend on the hardware environment and the problem setting. Despite this,
the two sampling patterns studied in subsection 3.2 form a foundation for most sam-
pling schemes in practice and warrant a precise analysis. After this analysis, certain
adaptive schemes have become popular and are also analyzed in a generic manner.
We will focus on the case of row-action methods (corresponding to Theorem 4.2) as
the column-action results (corresponding to Theorem SM3.1) are nearly identical.

The first result provides a proof of convergence when we sample without replace-
ment from a finite population. We note that the result is quite general and does
not depend on the nature of the sampling without replacement or the dependency
of the samples whenever the finite population is exhausted. As a result, the bounds
are loose, which may be unsatisfying. Should particular sampling patterns become
sufficiently important to warrant a more detailed analysis, we will do so in future
work.

Proposition 4.5. Let w and {w` : ` + 1 ∈ N} be defined as in Proposition 3.6.
Then, under the setting of Theorem 4.2,

1. τ` − τ`−1 ≤ 2N for all ` ∈ N, and

2. lim`→∞
∏`
j=1 γj = 0.

Moreover, γj are uniformly bounded by γ ∈ [0, 1), where

(4.17) γ = 1− min
F∈F

det(F ′F),

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

818 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

and F is the set of all matrices whose columns are maximal linearly independent
subsets of

(4.18)

{
A′W1

‖A′W1‖2
, . . . ,

A′WN

‖A′WN‖2

}
.

Therefore, with probability one,

(4.19)
∥∥x2N` − x∗ − PN (w)(x0 − x∗)

∥∥2
2
≤ γ`

∥∥PR(w)(x0 − x∗)
∥∥2
2
.

Proof. By the definition of w in Proposition 3.6, R(w) = span [A′W1, . . . , A
′WN].

Moreover, by the definitions of {w`}, we are sampling from W1, . . . ,WN without
replacement. Then, we are guaranteed that {A′wτ`−1+1, . . . , A

′wτ`} spans R(w) if
{W1, . . . ,WN} ⊂ {wτ`−1+1, . . . , wτ`}. Now, suppose that at iteration τ`−1, W ⊂
{W1, . . . ,WN} are exhausted. Then, to ensure that {W1, . . . ,WN} is contained in
{wτ`−1+1, . . . , wτ`}, we need to exhaust Wc and then the entire set {W1, . . . ,WN}.
Since |Wc| ≤ N , we need at most 2N more iterations from τ`−1 to achieve τ`. There-
fore, τ` − τ`−1 ≤ 2N .

Note that F` ⊂ F . Therefore, γj ≤ γ. Moreover, by Hadamard’s inequality, γ ∈
[0, 1). Hence, lim`→∞

∏`
j=1 γj ≤ lim`→∞ γ` = 0. The result follows by Theorem 4.2.

It is worth pausing here to compare our approach in Proposition 4.5 to previous
results for cyclic row-action methods (e.g., cyclic Kaczmarz [21],10 algebraic recon-
struction technique [14], cyclic block Kaczmarz). Our use of Meany’s inequality to
analyze such methods is not novel: Meany’s inequality has been used previously to
analyze deterministic row-action methods [11, 2, 37] with even more sophisticated re-
finements of Meany’s inequality than what we have here, and a detailed comparison of
Meany’s inequality and other approaches to analyzing these deterministic variants can
be found in [8]. However, our use of Meany’s inequality generalizes these deterministic
approaches as it (1) allows for an arbitrary transformation (via {W1, . . . ,WN}) of the
original system, which has borne out to be a fruitful approach vis-à-vis matrix sketch-
ing [38]; and (2) allows for random cyclic sampling, which many have observed to
be the most productive route in practice, and there is mounting theoretical evidence
in adjacent fields that random cyclic sampling does indeed have practical benefits
[23, 39]. While our generalizations are valuable, further improvements are to be
found by marrying our randomization framework with the more nuanced refinements
of Meany’s inequality found in [11] and [2], which we leave to future efforts.

The next result revisits the case of i.i.d. sampling. The result makes intuitive
sense as, for such a situation, we should expect the difference in the stopping times
to be i.i.d., which results in the natural conclusion that γ` are also i.i.d. Moreover,
we show that eventually, the rate of convergence is almost controlled by E [γ1] with
probability one. We again stress here that the generality of the results naturally
makes them quite loose, and we discuss this further after the result.

Proposition 4.6. Let w and {w` : ` + 1 ∈ N} be defined as in Proposition 3.7.
Then, under the setting of Theorem 4.2, τ` < ∞ almost surely for all ` ∈ N, and
{γ` : ` ∈ N} are i.i.d. such that E [γ1] = 1−E [minF∈F1

det(F ′F)] < 1. Hence, for all

10This is a translated copy of Kaczmarz’s original article, which was published in German [22].

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 819

` ∈ N and δ > 1,
(4.20)

P

 ∞⋃
j=1

∞⋂
`=j

{∥∥xτ`+1 − x∗ − PN (w)(x0 − x∗)
∥∥2
2
≤ E [γ1]

`
δ
∥∥PR(w)(x0 − x∗)

∥∥2
2

} = 1,

where E [γ`] ∈ [0, 1). Moreover, lim`→∞ τ`/` = E [τ1].

Remark 4.7. In the proof below, we also compute the probability for each j for
which the conclusion of the preceding result holds. Thus, we can also make the usual
“high-probability” statements without any additional effort.

Proof. Again, our main workhorse will be [10, Theorem 4.1.3]. By this result,
conditioned on τ`−1, {A′wτ`−1+1, A

′wτ`−1+2, . . .} are i.i.d. By this property, condi-
tioned on τ`−1, τ` − τ`−1 is independent of τ`−1 and has the same distribution for
all ` ∈ N. We conclude then that since γ` is a function of {A′wτ`−1+1, . . . , A

′wτ`},
then γ` are i.i.d. We now conclude that (4.8) holds with probability one by applying
Theorem 4.2. For any δ > 1, by Markov’s inequality and independence,

(4.21) P

∏̀
j=1

γj > E [γ1]
k/δ

 ≤ (E [γ1]
1− 1

δ

)k
.

Since E [γ1]
1− 1

δ < 1, the Borel–Cantelli lemma implies that the probability that the

product of γj is eventually less than E [γ1]
k/δ

is one.

Here, we again take a moment to compare this result to the results of [32]. Namely,
we are interested in how the rate of convergence of Proposition 4.6 compares with the
rate-of-convergence result in [32]. To make this comparison, we numerically estimate
(via simulation) the theoretical rates of convergence proposed by our result and the
result of [32] on five matrices from the MatrixDepot (as described in section 5).
We show these comparisons in Table 2. As expected, the results of [32], which are
specialized to the i.i.d. case and apply on average, are much tighter than our general
results that apply to more than just i.i.d. case and hold with probability one.

Table 2
A comparison in the estimated theoretical bounds on the rates of convergence of Gaussian-

sketched base randomized methods in `2 between this work and the results in [32]. The estimates
are made by simulation of the theoretical rates. The comparison is made on five different matrices
available in the MatrixDepot, as described in section 5. The main message is that the results of [32]
are tighter than our result, as they apply to the average case. This is expected as our result applies
to more than just the i.i.d. sampling case and hold with probability one (asymptotically).

Comparison of Estimated Theoretical Rates of Convergence

Matrix name Estimated rates by result

Theorem 4.8 of [32] Proposition 4.6

deriv2 1−O
[
10−4

]
1−O

[
10−35

]
heat 1−O

[
10−15

]
1−O

[
10−34

]
randsvd 1−O

[
10−15

]
1−O

[
10−71

]
ursell 1−O

[
10−16

]
1−O

[
10−161

]
wing 1−O

[
10−16

]
1−O

[
10−163

]D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

820 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

4.3. Adaptive sampling schemes. To bookend this section, we discuss how
our results can be applied to a broad set of adaptive methods that make use of the
residual information at a given iterate whether deterministically (e.g., [28, 17, 24, 4])
or randomly (e.g., [31, 3, 18]). In [15], a mean-squared-error convergence analysis is
developed for some specific examples of the broad class of methods defined below.
We will begin with some formalism to establish a general class of adaptive methods;
we then prove convergence and a rate of convergence for such methods; finally, we
provide concrete examples at the end.

To be rigorous, let x0 ∈ Rd, and let ϕ : (A, b, {xj : j ≤ k}) 7→ wk be an adaptive
procedure for generating {wk} according to the following procedure: for k + 1 ∈ N,

(4.22)

wk = ϕ(A, b, {xj : j ≤ k}),

xk+1 = xk +
A′wkw

′
k(b−Axk)

‖A′wk‖22
.

Remark 4.8. While we will focus on the base methods of type (4.1), methods of
the type (4.2) can be handled analogously.

While (4.22) is quite general, the vast majority of adaptive schemes make further
restrictions that we abstract in the following definitions.

Definition 4.9 (Markovian). For a fixed integer η, an adaptive procedure, ϕ, is
η-Markovian if the conditional distribution of ϕ(A, b, {xj : j ≤ k}) given {xj : j ≤ k}
is equal to the conditional distribution of ϕ(A, b, {xj : j ≤ k}) given {xj : k− η < j ≤
k}. If a procedure is 1-Markovian, we will frequently call it Markovian.

A consequence of the η-Markovian property is that we can write ϕ(A, b, {xj : j ≤
k}) as ϕ(A, b, {xj : k−η < j ≤ k}). In the case of a 1-Markovian adaptive procedure,
we will simply write ϕ(A, b, xk). The 1-Markovian property is readily satisfied for
a number of common procedures analyzed in the literature (e.g., maximum residual,
maximum distance, etc.), which may suggest that the η-Markovian notion is irrelevant
for general η. We contend, though, that procedures that are memory-sensitive may
be more apt to make use of the η-Markovian property for η > 1. For example,
to demonstrate its potential value, consider a procedure that selects the equations
with the top η residuals, pulls them into memory, and simply cycles through them
deterministically or randomly. Then this simple procedure would be η-Markovian.
However, owing to the lack of such procedures in the literature, we will focus on the
1-Markovian case for which we can write ϕ(A, b, x), and note that the results and
definitions are readily extendable.

The next definition establishes another key property of these adaptive schemes
that rely on residuals.

Definition 4.10 (magnitude invariance). Let H represent the set of solutions
to Ax = b, and let PH : Rd → H represent the projection of a vector onto H.11 Then
an adaptive procedure, ϕ, is magnitude invariant if, for any x 6∈ H and any λ > 0,
the distribution of ϕ(A, b, x) is equal to the distribution of

(4.23) ϕ(A, b, PH(x) + λ[x− PH(x)]).

The magnitude invariance of a number of adaptive methods often follows from
the following simple calculation that we state as a lemma for future reference.

11Since H is an affine subspace, PH is not guaranteed to be a linear operator.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 821

Lemma 4.11. Let x ∈ Rd, and let v1, v2 ∈ Rn. Then, for any λ > 0, if |v′1(Ax−
b)| ≥ |v′2(Ax− b)|, then

(4.24) |v′1(A(PH(x) + λ[x− PH(x)])− b)| ≥ |v′2(A(PH(x) + λ[x− PH(x)])− b)|.

If the hypothesis holds with a strict inequality, then so does the conclusion.

Proof. Note that APH(x) = b. Therefore, A(PH(x)+λ[x−PH(x)])−b = λ(Ax−b).
From the hypothesis and λ > 0, λ|v′1(Ax− b)| ≥ λ|v′2(Ax− b)|. Also owing to λ > 0,
we can replace the inequalities with strict inequalities.

Furthermore, the magnitude invariance property has hidden within it an addi-
tional feature: the projection of x onto the null space is irrelevant (as we might
expect for a procedure depending on the residual). As a result, we can, without los-
ing generality, focus our discussion on x that are in the row space of A, which has a
unique intersection with H at a point that we denote x∗row. Furthermore, the magni-
tude invariance property allows us to focus specifically on the Euclidean unit sphere
around x∗row, to which end we define S as the unit ball around the zero vector. This
will be essential to the practicality of the next definition.

The final definition ensures that if (4.22) makes too much progress along one
particular subspace, then it must have a nonzero probability of exploring an orthog-
onal subspace relative to, roughly, the row space of A. Before stating this definition,
we need to be slightly careful here with using the row space of A: if the rows of A
can be partitioned into two sets that are mutually orthogonal and x0 is initialized in
the span of one of these subsets, then we will never need to visit the other set and,
consequently, we will never observe the entire row space of A. To account for this, we
can focus on the restricted row space,

(4.25) rrow(A) = span[Ai,· : A′i,·x0 6= bi].

This definition may seem unnecessary as we can account for this (more generally) via
R(w) by an appropriate choice of w. However, in our previous statements, we defined
w before specifying x0. Here, we would need to know x0 in order to define w and,
thus, R(w) appropriately. Fortunately, an examination of the preceding results shows
that this ordering is not important and the results hold even if w is defined given x0
or even future iterates. With this explanation in hand, we can now state the final
definition.

Definition 4.12 (exploratory). Let x0 ∈ Rd, and define rrow(A) accordingly.
An adaptive procedure, ϕ, is exploratory if for any proper subspace V (rrow(A),
there exists π ∈ (0, 1] such that

(4.26) sup
x∈x∗

row+S∩V
P [A′ϕ(A, b, x) ⊥ V] ≤ 1− π.

Remark 4.13. If magnitude invariance does not hold, then we could specify the
exploratory property to hold for any point in V that is distinct from x∗row. For
this modified definition of the exploratory property, the results below would still
hold. Then, why should we keep the magnitude invariance property? It is out of
practicality. The magnitude invariance property allows us to restrict the verification
of the exploratory property to the unit ball, and then we can apply it to any iterate
regardless of its distance to the solution.

For a Markovian, magnitude invariant, and exploratory adaptive scheme, ϕ, we
will need one assumption before stating the result.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

822 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Assumption 4.14. For k ∈ N, let Fk denote the set of matrices whose columns
are normalized, maximal linearly independent subsets of

(4.27) {A′ϕ(A, b, x̂1), . . . , A′ϕ(A, b, x̂k)} ,

where x̂1, . . . , x̂k ∈ Rd are arbitrary vectors. There exists γ ∈ [0, 1) such that

(4.28) inf
k∈N

P
[
1− inf

F∈Fk
det(F ′F) ≤ γ

]
= 1.

Remark 4.15. As we will see, Assumption 4.14 is sufficient for us to uniformly
treat the many examples in the literature that are selecting equations or, more gener-
ally, are of the form in Proposition 3.6, rather than generating linear combinations of
them. In the case of linear combinations, we could refine this assumption to account
for the nature of the linear combinations as we do in Proposition 4.6.

Theorem 4.16. Suppose Ax = b admits a solution x∗ (not necessarily unique);
let H denote the set of all solutions, and let PH be the projection onto this affine
subspace. Let x0 ∈ Rd, and let rrow(A) be defined as above (see (4.25)). Moreover,
let ϕ be a 1-Markovian, magnitude invariant, and exploratory adaptive procedure sat-
isfying Assumption 4.14 that generates {xk} and {wk} according to (4.22) and so that
P [A′wk ∈ rrow(A)] = 1 for all k + 1 ∈ N. Then, there exists an increasing sequence
of stopping times {τ` : ` ∈ N} such that P [E1 ∪ E2] = 1, where the following hold:

1. E1 is the event of iterates that terminate finitely to a solution of Ax = b;
that is,

(4.29) E1 =
⋃
`∈N
{xτ`+1 ∈ H} .

2. E2 is the event of iterates that infinitely converge to a solution of Ax = b;
that is,

(4.30) E2 =
⋂
`∈N

{
‖xτ`+1 − PH(x0)‖22 ≤ γ

` ‖x0 − PH(x0)‖22
}
.

Moreover, on E1, τ` has finite expectation for ` such that xτ`+1 ∈ H. Similarly, on
E2, τ` has finite expectation for all `.

Proof. Without loss of generality, we will assume x0 ∈ row(A). We will consider
the nontrivial case where x0 6= x∗row. Note that, by the construction of rrow(A), it
must hold then that x0 − x∗row ∈ rrow(A). To prove the result, we will make three
claims of the following rough nature and purpose, which we will make precise below.

1. Finite termination can only occur at a point xk+1 if and only if A′ϕ(A, b, xk)
is parallel to xk − x∗row. We will use this claim to specify the set E1.

2. For the first time the span of the iterate errors, span[{xk − x∗row}], fails
to (nontrivially) increase in dimension; the corresponding {A′wk} up to this iterate
span the subspace. As a result, with an appropriate definition of R(w), we will apply
Theorem 4.2 to prove a multiplicative decrease in the iterate errors by a factor of γ.

3. Finally, we show that the first time that the span of the iterate errors fails
to (nontrivially) increase in dimension must be finite with probability one and have
bounded expectation. By combining the first claim with this claim, we have the
property specified by the event E1. By combining this claim with the second claim,
we have the property specified by the event E2. By this claim alone, we have that
P [E1 ∪ E2] = 1.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 823

To establish our claims, we need some additional notation. Let ξ be an arbitrary
finite stopping time, and define

(4.31) Rk = span [xξ − x∗row, xξ+1 − x∗row, . . . , xξ+k − x∗row]

and R0
k = span [xξ+k − x∗row]. Furthermore, define

(4.32) ν = min {k ≥ 0 : xξ+k+1 − x∗row ∈ Rk, xξ+k+1 6= xξ+k} .

Note that ν corresponds to the first time that the span of the iterate errors, starting at
ξ, fails to nontrivially increase in dimension. It will often be more succinct to specify
the nontrivial cases by an indicator variable given by

(4.33) χξ+k = 1 [ϕ(A, b, xξ+k)′A(xξ+k − x∗row) 6= 0] .

By (4.22), we can readily replace xξ+k+1 6= xξ+k in the definition of ν with χξ+k = 1.
We now state and prove our claims precisely.

Claim 1. Suppose xξ − x∗row 6= 0. We claim that xξ+1 = x∗row if and only if
A′ϕ(A, b, xξ) ∈ R0 \ {0}.

Note that this claim readily follows from

(4.34) xξ+1 − x∗row = xξ − x∗row −
A′ϕ(A, b, xξ)ϕ(A, b, xξ)

′A

‖A′ϕ(A, b, xξ)‖22
(xξ − x∗row),

which, in turn, follows from (4.22).
Claim 2. Suppose ν is finite, and define Rν . We claim that

(4.35) span [A′ϕ(A, b, xξ)χξ, . . . , A
′ϕ(A, b, xξ+ν)χξ+ν] = Rν .

We first note that A′ϕ(A, b, xξ+k)χξ+k ∈ Rν for any k ∈ [0, ν] by (4.22). There-
fore, we see that the span of Φ = {A′ϕ(A, b, xξ)χξ, . . . , A

′ϕ(A, b, xξ+ν)χξ+ν} is con-
tained in Rν . To show that Rν is included in the span of Φ, note that, by the
definition of Rν and by (4.22),

(4.36) Rν = span [A′ϕ(A, b, xξ)χξ, . . . , A
′ϕ(A, b, xξ+ν−1)χξ+ν−1, xξ+ν − x∗row] .

Moreover, the nonzero terms on the generating set on the right-hand side of (4.36)
must be linearly independent, as anything else would contradict the minimality of ν.
We are left to show that xξ+ν − x∗row is in the span of Φ. To do this, we perform
Gram–Schmidt on the generating set in (4.36) starting with xξ+ν − x∗row. Denote the
remaining vectors in this set φ1, . . . , φr−1 where r = dim(Rν). Then, by the definition
of ν, xξ+ν+1 − x∗row ∈ Rν . Therefore, there exist constants c0, . . . , cr−1 such that

(4.37)

c0(xξ+ν − x∗row) +

r−1∑
j=1

cjφj

= xξ+ν − x∗row −
A′ϕ(A, b, xξ+ν)ϕ(A, b, xξ+ν)′A

‖A′ϕ(A, b, xξ+ν)‖22
(xξ+ν − x∗row).

If c0 6= 1, we see that the claim follows. For a contradiction, suppose that c0 = 1. Then
A′ϕ(A, b, xξ+ν) can be written as a linear combination of vectors that are orthogonal
to xξ+ν−x∗row. This would imply then that χξ+ν = 0, which contradicts the definition
of ν. Hence, we see that the claim holds.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

824 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Claim 3. For any finite stopping time ξ, ν is finite with probability one and has
bounded expectation.

To show this, we define a sequence of stopping times. Define

(4.38) s1 = min {k : χξ+k 6= 0}

and

(4.39) sj = min
{
k : χξ+s1+···+sj−1+k 6= 0

}
.

By the definition of ν, ν can only take values in {
∑j
i=1 si : j ∈ N}. Moreover, at

each sj , we must observe that either {dim(Rξ+s1+···+sj+1) = dim(Rξ+s1+···+sj) + 1}
or {ν ≤

∑j
i=1 si}. Hence, at most, we see that ν can only take values in {

∑j
i=1 si :

j = 1, . . . , r} where r = dim(rrow(A)). Thus, if we show that each sj is finite and has
bounded expectation, then ν must be finite and have bounded expectation. By the
magnitude invariance, Markovian, and exploratory properties, we conclude that

(4.40)
P
[
sj = k| ξ, s1, . . . , sj−1, xξ, . . . , xξ+s1+···+sj−1+1

]
≤ (1− π(Rs1+···+sj−1+1))k−1π(Rs1+···+sj−1+1).

Therefore, we see that sj is finite and has bounded expectation.
Conclusion. From these three claims we can now prove the result by induction.
Base case. Define Ec0 = {x0 6= x∗row}. On this event, we take ξ = 0 and define τ1

to be the corresponding ν. On Ec0, τ1 is finite and has finite expectation by Claim 3.
Then, we can define, as a subset of Ec0,

(4.41) E1 = {A′ϕ(A, b, xτ1) ∈ R0
τ1 \ {0}},

and Ec1 to be its relative complement on E0.
Note the following:

1. By Claim 1, E1 is equivalent to the event xτ1+1 = x∗row up to a measure
zero set.

2. By Claim 2, Theorem 4.2 with R(w) = Rτ1 , and Assumption 4.14, Ec1 is
contained in the event on which

(4.42) ‖xτ1+1 − x∗row‖
2
2 ≤ γ ‖x0 − x

∗
row‖

2
2

up to a measure zero set.
Induction hypothesis. Let ` ∈ N. On the event Ec`−1, we let ξ = τ`−1 + 1, and,

for the correspondingly defined ν, we can define τ` = τ`−1 + 1 + ν. Furthermore, on
Ec`−1, τ` is finite and has finite expectation. We can define, as a subset of Ec`−1,

(4.43) E` = {A′ϕ(A, b, xτ`) ∈ R0
τ`
\ {0}},

and Ec` to be its relative complement on Ec`−1.
Further,

1. E` is equivalent to the event xτ`+1 = x∗row up to a measure zero set;
2. Ec` is contained in the event on which

(4.44) ‖xτ`+1 − x∗row‖
2
2 ≤ γ ‖x` − x

∗
row‖

2
2

up to a measure zero set.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 825

Generalization. On the event Ec`, we let ξ = τ` + 1, and, for the correspondingly
defined ν, we can define τ`+1 = τ` + 1 + ν. On Ec`, τ`+1 is finite and has finite
expectation by Claim 3. Then, we can define, as a subset of Ec`,

(4.45) E`+1 = {A′ϕ(A, b, xτ`+1
) ∈ R0

τ`+1
\ {0}}

and Ec`+1 to be its relative complement on Ec`.
1. By Claim 1, E`+1 is equivalent to the event xτ`+1+1 = x∗row up to a measure

zero set.
2. By Claim 2, Theorem 4.2 with R(w) = Rτ`+1

, and Assumption 4.14, Ec`+1

is contained in the event on which

(4.46)
∥∥xτ`+1+1 − x∗row

∥∥2
2
≤ γ ‖xτ` − x∗row‖

2
2

up to a measure zero set.
Therefore, by the induction claims,

(4.47) E1 =
⋃
`∈N

E`

and

(4.48) E2 =
⋂
`∈N

Ec`,

and P [E1 ∪ E2] = 1.

To demonstrate the utility of Theorem 4.16, we show that a number of classical
and recent methods satisfy Definitions 4.9, 4.10, and 4.12 and Assumption 4.14. In
fact, we will show that a stronger version of Definition 4.12 holds for these methods,
which allows us to explicitly upper bound the elements of {E [τ`] : ` ∈ N} (when they
are defined). The following proposition states these examples formally, and the proof
is found in section SM4.

Proposition 4.17. Suppose Ax = b admits a solution x∗. Let x0 ∈ Rd, and
let rrow(A) be defined as above (see (4.25)). Suppose that we define {xk} and {wk}
according to (4.22) for the following adaptive methods:

1. the maximum residual method (see [1, Section 4]);
2. the maximum distance method (see [1, Section 3] and [28]);
3. the Greedy Randomized Kaczmarz method (see [3, Method 2]);
4. the Sampling Kaczmarz–Motzkin method (see [18, Page 4]).

Then, for each of the above methods, there exists a γ ∈ [0, 1) such that the conclusions
of Theorem 4.16 hold. Moreover, there exists a constant κ such that for any finite τ`
(as specified in Theorem 4.16), E [τ`] ≤ `κ.

Remark 4.18. Greedy Randomized Kaczmarz is an example of methods that de-
terministically determine a threshold over residuals; select the equations whose resid-
uals surpass this threshold; and then randomly select from this set. For this more
general class, so long as the threshold satisfies the magnitude invariance property and
the random selection does not give any equation less than zero probability, then the
result applies to this more general class. Similarly, Sampling Kaczmarz–Motzkin is an
example of methods that randomly determine a set of equations and then determin-
istically select from this subset of equations based on the residual values. So long as
the random subset of equations does not give any equation less than zero probability
(that is not already satisfied), then the result will apply to this more general class as
well.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

826 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Remark 4.19. Our partial orthogonalization methods (see Algorithm SM1.1) do
not satisfy the η-Markovian property, as the partial orthogonalizations have a depen-
dence on every preceding iterate.

5. Numerical experiments. Here, we present a variety of numerical experi-
ments to study the practicality of our approach in a sequential computing environ-
ment. Specifically, we test 49 systems with 500 equations and 500 unknowns. The
coefficients are generated from 49 built-in matrices found in the MatrixDepot pack-
age for the Julia programming language [40]. The solution to the equation is then
generated using a standard multivariate normal vector. The constant vector is gen-
erated by the product of the two. Then, using the generated coefficient matrix and
the generated constant vector, we solve the systems by varying the sample generation
method (i.e., the generation of w and {w`}) and the solver. The sample generation
method is either produced by the Count-Sketch approach, by the Gaussian approach,
by uniformly sampling the equations of the matrix with replacement, or by uniformly
sampling the equations of the matrix without replacement. The solver is either a base
method, the complete method, an intermediate method with m = 5, or an intermedi-
ate method with m = 10. Finally, we initialize x0 = 0.

We recorded the wall clock time and number of iterations to improve the initial
residual norm by a factor of ten with an upper bound of three seconds. If the temporal
upper bound is reached before a tenfold improvement in the initial residual norm is
observed, the wall clock time is reported as “Inf.” Inherently, this metric results in a
disadvantage for complete orthogonalization methods as such methods pay more for
marginal improvements but generate precise solutions with fewer iterations. However,
with an eye towards solving much larger systems that require using a parallel or dis-
tributed environment, this metric of time-to-tenfold improvement is the appropriate
choice as the complete method would not be appropriate in such environments owing
to the high communication costs that would be incurred. For the Count-Sketch sam-
pling method, the wall clock times and iterations are reported in Tables 3 and 4. For
the remaining sampling approaches, the wall clock times and iterations are reported
in the appendix.

While further analysis of each system would be necessary to understand the be-
havior of the solvers on each system, there are several important messages within
Table 3. First, the base method often fails to achieve a tenfold improvement despite
the substantial number of iterations that the base solver is allowed (again, on the
order of 106). Unfortunately, the base method’s poor behavior is observed even for
the other sampling methods. Based on Theorem 4.2, this would imply that either
the stopping times {τ`} are large and/or the rates of convergence (determined by
{γ`}) are too small. Given that this behavior is observed even for the random cyclic
sampling case (which, by Proposition 4.5, implies that the differences between the
stopping times are bounded by a thousand), it is likely that the rate of convergence
for such systems is close to unity.

However, we see a tremendous benefit even from a small amount of partial orthog-
onalization. That is, the intermediate solvers with m = 5 and m = 10 perform quite
well. In particular, whenever complete orthogonalization achieves a tenfold improve-
ment within the allotted time, the partial orthogonalization methods also achieve the
tenfold improvement within the allotted time and often orders of magnitude faster.
Thus, for cases when the base method performs poorly, a small amount of partial
orthogonalization is able to remedy this poor behavior. One final observation is that
the m = 5 method often outperforms the m = 10 method. This seems to be because

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 827

Table 3
Wall clock time for 10× improvement of all solvers under Count-Sketch sampling.

System Base Partial, m = 5 Partial, m = 10 Complete

baart Inf 6.0386× 10−5 1.1500× 10−4 6.7174× 10−3

cauchy Inf 1.1437× 10−4 1.4446× 10−4 6.8039× 10−3

chebspec Inf 2.0174× 10−3 3.4821× 10−3 1.8816× 10−1

chow Inf 8.9687× 10−3 1.1738× 10−2 1.6859× 10−1

circul Inf 2.2109× 10−1 1.7215× 10−1 7.0601× 10−1

clement Inf 8.4406× 10−2 1.2590× 10−1 2.0954
companion Inf 3.2478× 10−5 4.6921× 10−5 3.8471× 10−3

deriv2 3.7514× 10−1 8.6084× 10−5 2.3455× 10−4 2.4547× 10−2

dingdong Inf 6.3064× 10−2 1.0183× 10−1 1.9053
erdrey Inf 9.8817× 10−2 1.8960× 10−1 1.6046
fiedler Inf 8.3640× 10−5 1.4840× 10−4 1.5384× 10−2

forsythe Inf 7.0330× 10−2 1.1496× 10−1 1.8313
foxgood Inf 3.1248× 10−5 4.4997× 10−5 3.7755× 10−3

frank Inf 6.7833× 10−2 6.1152× 10−2 4.1107× 10−1

gilbert Inf 1.4819× 10−1 2.1992× 10−1 1.7001
golub Inf 9.7789× 10−2 1.2317× 10−1 1.2163
gravity Inf 1.3287× 10−4 2.6159× 10−4 2.8156× 10−2

grcar Inf 8.4665× 10−2 1.3493× 10−1 1.8459
hankel Inf 2.3273× 10−2 1.4042× 10−2 1.9699× 10−1

heat 5.1398× 10−2 7.6801× 10−4 3.3231× 10−4 4.6707× 10−2

hilb Inf 7.8676× 10−5 1.1786× 10−4 6.9384× 10−3

invol Inf Inf Inf Inf
kahan Inf 9.6697× 10−3 4.0889× 10−3 1.4554× 10−1

kms Inf 1.6637× 10−1 2.5975× 10−1 2.1075
lehmer Inf 3.2529× 10−5 5.2778× 10−5 3.9027× 10−3

lotkin Inf 1.4320× 10−4 1.1696× 10−4 2.9118× 10−2

magic Inf 6.1573× 10−5 9.3895× 10−5 6.9376× 10−3

minij Inf 1.2467× 10−4 1.8361× 10−4 6.8205× 10−3

moler Inf 7.8435× 10−5 1.1515× 10−4 1.4089× 10−2

oscillate Inf 1.1374× 10−1 1.9724× 10−1 1.7071
parter Inf 6.2843× 10−2 9.6532× 10−2 1.8702
pei Inf 1.5601× 10−3 1.7956× 10−3 1.5381× 10−1

phillips Inf 3.8386× 10−4 2.2911× 10−4 2.3050× 10−2

prolate Inf 1.7878× 10−4 3.0497× 10−4 2.8550× 10−2

randcorr Inf 1.0372× 10−1 1.6375× 10−1 1.7069
rando Inf 3.1795× 10−1 2.9357× 10−1 1.6219
randsvd 1.8895× 10−2 5.0995× 10−2 7.4617× 10−2 3.8380× 10−1

rohess Inf 6.8904× 10−2 9.2650× 10−2 1.7814
sampling Inf 1.8389× 10−1 3.0695× 10−1 1.6911
shaw Inf 1.2868× 10−4 1.5171× 10−4 1.6849× 10−2

smallworld Inf 1.1797× 10−1 1.6365× 10−1 1.6696
spikes Inf 1.4840× 10−4 2.0070× 10−4 2.0368× 10−2

toeplitz Inf 1.2258× 10−4 2.2206× 10−4 2.1445× 10−2

tridiag Inf 9.5842× 10−2 1.8465× 10−1 1.5066
triw Inf 4.0887× 10−1 1.8399× 10−1 1.0456
ursell 3.2883× 10−5 3.5417× 10−5 5.3220× 10−5 3.4169× 10−3

vand Inf Inf Inf Inf
wilkinson Inf 1.0985× 10−1 2.0894× 10−1 1.7395
wing 2.0477× 10−5 2.9370× 10−5 5.3801× 10−5 3.4583× 10−3

of the memory-management and garbage collection time related to modifying the set
S, which we did not optimize in these experiments. Thus, a more complete study
would require a detailed optimization of how S is handled.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

828 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

Table 4
Number of iterations for 10× improvement of all solvers under Count-Sketch sampling. For

those runs that failed to achieve the improvement threshold, the number of iterations within the time
limit is listed.

System Base Partial, m = 5 Partial, m = 10 Complete

baart 4× 105 3 4 3
cauchy 4× 105 5 4 3
chebspec 4× 105 9× 101 9× 101 5× 101

chow 4× 105 4× 102 3× 102 4× 101

circul 4× 105 8× 103 4× 103 2× 102

clement 4× 105 3× 103 3× 103 5× 102

companion 4× 105 2 2 2
deriv2 5× 104 4 7 7
dingdong 4× 105 3× 103 2× 103 5× 102

erdrey 4× 105 4× 103 4× 103 5× 102

fiedler 4× 105 4 5 4
forsythe 4× 105 3× 103 3× 103 5× 102

foxgood 4× 105 2 2 2
frank 4× 105 3× 103 2× 103 1× 102

gilbert 4× 105 6× 103 5× 103 5× 102

golub 4× 105 4× 103 3× 103 3× 102

gravity 4× 105 6 8 7
grcar 4× 105 3× 103 3× 103 5× 102

hankel 4× 105 8× 102 3× 102 5× 101

heat 8× 103 3× 101 1× 101 1× 101

hilb 4× 105 4 4 3
invol 1 1 1 1
kahan 4× 105 4× 102 1× 102 4× 101

kms 4× 105 7× 103 6× 103 5× 102

lehmer 4× 105 2 2 2
lotkin 4× 105 7 4 7
magic 4× 105 3 3 3
minij 4× 105 6 6 3
moler 4× 105 4 4 4
oscillate 4× 105 4× 103 5× 103 5× 102

parter 4× 105 2× 103 2× 103 5× 102

pei 4× 105 7× 101 5× 101 3× 101

phillips 4× 105 2× 101 7 6
prolate 4× 105 8 9 8
randcorr 4× 105 4× 103 4× 103 5× 102

rando 4× 105 1× 104 8× 103 5× 102

randsvd 3× 103 2× 103 2× 103 1× 102

rohess 4× 105 3× 103 2× 103 5× 102

sampling 4× 105 7× 103 7× 103 5× 102

shaw 4× 105 5 5 5
smallworld 4× 105 5× 103 4× 103 5× 102

spikes 4× 105 7 6 6
toeplitz 4× 105 6 7 5
tridiag 4× 105 4× 103 4× 103 4× 102

triw 4× 105 2× 104 5× 103 3× 102

ursell 4 2 2 2
vand 1 1 1 1
wilkinson 4× 105 5× 103 5× 103 5× 102

wing 3 2 2 2

6. Conclusion. To reiterate, our motivation was to address the two practical
challenges of the typical sketch-then-solve approach for solving linear systems. These
practical challenges are as follows: there is no clear way of choosing the size of the

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 829

sketching matrix a priori; and there is a nontrivial storage costs of the sketched system.
We made progress towards addressing these challenges by reformulating the sketch-
then-solve approach as a sketch-and -solve approach in which the sketched system is
implicitly constructed and solved simultaneously. The main idea of the reformulation
is to construct the equations of the sketched system one at a time and then use an or-
thogonalization scheme to solve the system as each sketched equation is observed. As
a result, we addressed the concern of determining the sketching matrix’s dimensions
because, under our reformulation, the sketching matrix could be grown to an arbi-
trary size during the calculation up to a user-defined stopping criterion, which may
be based on closeness to a solution or based on a computational budget. Moreover,
we addressed the cost of storing the sketched system because we do not need to ex-
plicitly form the entire sketched system under our reformulation. However, we traded
this storage problem with another one—albeit less onerous—of storing the matrix S.
Finally, we address the overlooked practical challenge of solving the sketched system
by using our orthogonalization scheme to solve the implicitly sketched system under
our reformulation.

When d becomes very large, storing and manipulating S becomes prohibitive.
Because of the challenges introduced by S, we proposed intermediate methods that
implicitly stored S using only a handful of vectors. The result was a collection of par-
tial orthogonalization schemes, and, in the limit of not storing any vectors for S (i.e.,
S becomes the identity), we recovered what we called “base methods,” which included
the important special cases of randomized Kaczmarz and randomized Gauss–Seidel.
As a result, we were able to make a conceptual connection between random sketch-
ing methods (i.e., complete orthogonalization methods under our formulation) and
the usual randomized iterative methods (i.e., base methods under our formulation).
Importantly, we were able to leverage this conceptual relationship between the two
to connect the convergence theory of the complete orthogonalization method to the
convergence theory of the base methods. The key ingredient here is that the stopping
time that was defined for the complete orthogonalization method encoded information
about exploration of a subspace that contained the solution of the sketched system.
This stopping time was then used (in a repeated fashion) to guarantee that a certain
amount of progress for the base methods is achieved. As a result, we were able to
produce a convergence theory for these base methods that both was quite general
and complemented and improved on previous results. In fact, we were able to use
this theory to prove convergence for a broad class of adaptive sampling methods, and
supply rates of convergence.

The predominant missing component of this work is the rigorous analysis of the so-
called intermediate methods that reside between the base methods and the complete
methods. Such an analysis is certainly warranted owing to the impressive numerical
performance of these intermediate methods as demonstrated in our experiments. Ow-
ing, primarily, to the additional complexity of analyzing such intermediate methods
and, secondarily, of space limitations, a rigorous analysis of these methods will be the
focus of future work. Additionally, an efficient implementation at scale for challeng-
ing problems arising in partial differential equations with a detailed comparison to
existing state-of-the-art methods will be included in future work.

Acknowledgment. We would like to thank the reviewers for their valuable com-
ments, which have tremendously improved the content and quality of this paper.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

© 2021 Vivak Patel

830 V. PATEL, M. JAHANGOSHAHI, AND D. A. MALDONADO

REFERENCES

[1] S. Agmon, The relaxation method for linear inequalities, Canad. J. Math., 6 (1954), pp. 382–
392.

[2] Z.-Z. Bai and X.-G. Liu, On the Meany inequality with applications to convergence analysis
of several row-action iteration methods, Numer. Math., 124 (2013), pp. 215–236.

[3] Z.-Z. Bai and W.-T. Wu, On greedy randomized Kaczmarz method for solving large sparse
linear systems, SIAM J. Sci. Comput., 40 (2018), pp. A592–A606, https://doi.org/10.1137/
17M1137747.

[4] Y. Censor, Row-action methods for huge and sparse systems and their applications, SIAM
Rev., 23 (1981), pp. 444–466, https://doi.org/10.1137/1023097.

[5] X. Chen and A. M. Powell, Almost sure convergence of the Kaczmarz algorithm with random
measurements, J. Fourier Anal. Appl., 18 (2012), pp. 1195–1214.

[6] K. L. Clarkson and D. P. Woodruff, Low-rank approximation and regression in input
sparsity time, J. ACM, 63 (2017), pp. 1–45.

[7] G. Cormode and S. Muthukrishnan, An improved data stream summary: The count-min
sketch and its applications, J. Algorithms, 55 (2005), pp. 58–75.

[8] L. Dai and T. B. Schön, On the exponential convergence of the Kaczmarz algorithm, IEEE
Signal Process. Lett., 22 (2015), pp. 1571–1574.

[9] J. J. Dongarra and D. Sørensen, Linear algebra on high-performance computers, Appl.
Math. Comput., 20 (1986), pp. 57–88.

[10] R. Durrett, Probability: Theory and Examples, Cambridge University Press, Cambridge, UK,
2010.

[11] A. Galántai, On the rate of convergence of the alternating projection method in finite dimen-
sional spaces, J. Math. Anal. Appl., 310 (2005), pp. 30–44.

[12] L. Giraud, J. Langou, M. Rozložńık, and J. van den Eshof, Rounding error analysis of the
classical Gram-Schmidt orthogonalization process, Numer. Math., 101 (2005), pp. 87–100.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed., Johns Hopkins University
Press, Baltimore, MD, 2013.

[14] R. Gordon, R. Bender, and G. T. Herman, Algebraic reconstruction techniques (ART) for
three-dimensional electron microscopy and X-ray photography, J. Theoret. Biol., 29 (1970),
pp. 471–481.

[15] R. Gower, D. Molitor, J. Moorman, and D. Needell, Adaptive Sketch-and-Project Meth-
ods for Solving Linear Systems, preprint, https://arxiv.org/abs/1909.03604, 2019.

[16] R. M. Gower and P. Richtárik, Randomized iterative methods for linear systems, SIAM J.
Matrix Anal. Appl., 36 (2015), pp. 1660–1690, https://doi.org/10.1137/15M1025487.

[17] L. Gubin, B. T. Polyak, and E. Raik, The method of projections for finding the common
point of convex sets, USSR Comput. Math. Math. Phys., 7 (1967), pp. 1–24.

[18] J. Haddock and A. Ma, Greed Works: An Improved Analysis of Sampling Kaczmarz-Motkzin,
preprint, https://arxiv.org/abs/1912.03544, 2019.

[19] M. R. Hestenes, Conjugate Direction Methods in Optimization, Appl. Math. 12, Springer-
Verlag, New York, Berlin, 1980.

[20] P. Indyk and R. Motwani, Approximate nearest neighbors: Towards removing the curse
of dimensionality, in Proceedings of the 30th Annual ACM Symposium on Theory of
Computing, ACM, New York, 1998, pp. 604–613.

[21] S. Kaczmarz, Approximate solution of systems of linear equations, Internat. J. Control, 57
(1993), pp. 1269–1271.

[22] S. Kaczmarz, Angenäherte Auflösung von Systemen linearer Gleichungen, Bull. Internat.
Acad. Polon. Sci. A, 35 (1937), pp. 355–357.

[23] C.-P. Lee and S. J. Wright, Random permutations fix a worst case for cyclic coordinate
descent, IMA J. Numer. Anal., 39 (2019), pp. 1246–1275.

[24] A. Lent, Maximum entropy and multiplicative art, in Proceedings of the Conference on Image
Analysis and Evaluation, SPSE, Toronto, 1976, pp. 249–257.

[25] D. Leventhal and A. S. Lewis, Randomized methods for linear constraints: Convergence
rates and conditioning, Math. Oper. Res., 35 (2010), pp. 641–654.

[26] A. Ma, D. Needell, and A. Ramdas, Convergence properties of the randomized extended
Gauss–Seidel and Kaczmarz methods, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 1590–
1604, https://doi.org/10.1137/15M1014425.

[27] M. W. Mahoney, Lecture Notes on Randomized Linear Algebra, preprint, https://arxiv.org/
abs/1608.04481, 2016.

[28] T. S. Motzkin and I. J. Schoenberg, The relaxation method for linear inequalities, Canad.
J. Math., 6 (1954), pp. 393–404.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/17M1137747
https://doi.org/10.1137/17M1137747
https://doi.org/10.1137/1023097
https://arxiv.org/abs/1909.03604
https://doi.org/10.1137/15M1025487
https://arxiv.org/abs/1912.03544
https://doi.org/10.1137/15M1014425
https://arxiv.org/abs/1608.04481
https://arxiv.org/abs/1608.04481

© 2021 Vivak Patel

PRACTICAL RANDOM SKETCHING 831

[29] J. Nocedal, Optimization methods for training neural networks, in Proceedings of the 23rd
International Symposium on Mathematical Programming, Bordeaux, France, 2018, https:
//ismp2018.sciencesconf.org/data/bookFullProgram.pdf.

[30] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed., Springer, New York, 2006.
[31] J. Nutini, B. Sepehry, I. Laradji, M. Schmidt, H. Koepke, and A. Virani, Convergence

Rates for Greedy Kaczmarz Algorithms, and Faster Randomized Kaczmarz Rules Using
the Orthogonality Graph, preprint, https://arxiv.org/abs/1612.07838, 2016.

[32] P. Richtárik and M. Takác, Stochastic reformulations of linear systems: Algorithms and
convergence theory, SIAM J. Matrix Anal. Appl., 41 (2020), pp. 487–524.

[33] M. Rudelson and R. Vershynin, Smallest singular value of a random rectangular matrix,
Comm. Pure Appl. Math., 62 (2009), pp. 1707–1739.

[34] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003, https://doi.
org/10.1137/1.9780898718003.

[35] T. Strohmer and R. Vershynin, A randomized Kaczmarz algorithm with exponential con-
vergence, J. Fourier Anal. Appl., 15 (2009), pp. 262–278.

[36] J. A. Tropp, A. Yurtsever, M. Udell, and V. Cevher, Practical sketching algorithms for
low-rank matrix approximation, SIAM J. Matrix Anal. Appl., 38 (2017), pp. 1454–1485,
https://doi.org/10.1137/17M1111590.

[37] T. Wallace and A. Sekmen, Deterministic versus Randomized Kaczmarz Iterative Projection,
preprint, https://arxiv.org/abs/1407.5593, 2014.

[38] D. P. Woodruff, Sketching as a tool for numerical linear algebra, Found. Trends Theor.
Comput. Sci., 10 (2014), pp. 1–157.

[39] S. Wright and C.-p. Lee, Analyzing random permutations for cyclic coordinate descent, Math.
Comp., 89 (2020), pp. 2217–2248.

[40] W. Zhang and N. J. Higham, Matrix Depot: An extensible test matrix collection for Julia,
PeerJ Comput. Sci., 2 (2016), e58.

[41] A. Zouzias and N. M. Freris, Randomized extended Kaczmarz for solving least squares, SIAM
J. Matrix Anal. Appl., 34 (2013), pp. 773–793, https://doi.org/10.1137/120889897.

D
ow

nl
oa

de
d

07
/2

5/
21

 to
 1

28
.1

04
.4

6.
19

6.
 R

ed
is

tri
bu

tio
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/p
ag

e/
te

rm
s

https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
https://ismp2018.sciencesconf.org/data/bookFullProgram.pdf
https://arxiv.org/abs/1612.07838
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/1.9780898718003
https://doi.org/10.1137/17M1111590
https://arxiv.org/abs/1407.5593
https://doi.org/10.1137/120889897

	Introduction
	Our procedure
	Overview
	Rank-one refinements and random sketching
	Algorithmic refinements considering the computing platform
	Asynchronous parallelization on shared and distributed memory platforms
	Memory-reduced procedure
	Optimizing communication overhead. Structured systems

	Convergence theory for orthogonalization
	Core results
	Common sampling patterns

	Convergence theory for base methods
	Main convergence result for row-action methods
	Common nonadaptive sampling patterns
	Adaptive sampling schemes

	Numerical experiments
	Conclusion
	References

