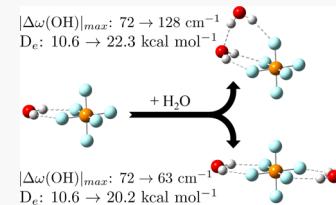


1 Competition between Solvent–Solvent and Solvent–Solute 2 Interactions in the Microhydration of the Hexafluorophosphate 3 Anion, $\text{PF}_6^- (\text{H}_2\text{O})_{n=1,2}$

4 Yasmeen A. Abdo and Gregory S. Tschumper*

Cite This: <https://dx.doi.org/10.1021/acs.jpca.0c06466>

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

5 ABSTRACT: This study systematically examines the interactions of the hexafluorophosphate
6 anion (PF_6^-) with one or two solvent water molecules ($\text{PF}_6^- (\text{H}_2\text{O})_n$, where $n = 1, 2$). Full
7 geometry optimizations and subsequent harmonic vibrational frequency computations are
8 performed on each stationary point using a variety of common density functional theory methods
9 (B3LYP, B3LYP-D3, M06-2X, and ω B97XD) and MP2 and CCSD(T) *ab initio* methods with a
10 triple- ζ correlation consistent basis set augmented with diffuse functions on all non-hydrogen
11 atoms (cc-pVTZ for H and aug-cc-pVTZ for P, O, and F; denoted as haTZ). Five new stationary
12 points of $\text{PF}_6^- (\text{H}_2\text{O})_2$ have been identified, one of which has an electronic energy of
13 approximately 2 kcal mol⁻¹, lower than the only other dihydrate structure reported for this system. The CCSD(T) computations also
14 reveal that the detailed interactions between PF_6^- and H_2O can be quite difficult to model reliably, with some methods struggling to
15 correctly characterize stationary points for $n = 1$ or accurately reproduce the vibrational frequency shifts induced by the formation of
16 the hydrated complex. Although the interactions between the solvent and ionic solute are quite strong (CCSD(T) electronic
17 dissociation energy ≈ 10 kcal mol⁻¹ for the monohydrate minimum), the solvent–solvent interactions in the lowest-energy
18 $\text{PF}_6^- (\text{H}_2\text{O})_2$ minimum give rise to appreciable cooperative effects not observed in the other dihydrate minima. In addition, this
19 newly identified structure exhibits the largest frequency shifts in the OH stretching vibrations for the waters of hydration (with $\Delta\omega$
20 exceeding -100 cm⁻¹ relative to the values for an isolated H_2O molecule).

1. INTRODUCTION

21 The hexafluorophosphate anion (PF_6^-) is frequently used as a
22 component in room temperature ionic liquids (RTILs)¹ and
23 aprotic electrolytes for lithium-based batteries.² In the former
24 context, the presence of water as an impurity or as a cosolvent
25 can appreciably alter the physical properties of a given RTIL
26 (e.g., conductivity, density, solubility, and viscosity).^{3–6}
27 Compared to other common RTILs, those based on PF_6^-
28 have been shown to exhibit some of the weakest associations
29 with water⁷ and some of the lowest miscibilities with
30 water.^{8–11} PF_6^- is one of the least hygroscopic anions for
31 RTILs and is generally used to make “hydrophobic” ionic
32 liquids.¹² As such, the interactions between water with the
33 ionic components of RTILs containing the hexafluorophos-
34 phate anion have been the focus of a number of experimental
35 and computational studies.^{6,7,9,13}


36 The PF_6^- ion has also played an important role in
37 fundamental studies of ion solvation in aqueous solutions.^{14–21}
38 Singly deuterated water (HOD) can provide a sensitive
39 spectroscopic probe of ion hydration. Both Raman and
40 infrared (IR) measurements have shown that PF_6^- shifts the
41 OD stretching frequency of bulk water (2509 cm⁻¹)²² to
42 higher energy by more than +150 cm⁻¹ (ca. 2667 cm⁻¹).^{14,17}
43 Recent *ab initio* molecular dynamics (AIMD) simulations by
44 Smiechowski qualitatively reproduced this result with a
45 predicted shift of more than +300 cm⁻¹ for the corresponding

OH stretch.²¹ More importantly, the subsequent distance-
46 dependent analysis of the simulated IR spectrum provided
47 much needed molecular-level insight into the solute–solvent
48 interactions that are the source of these unusual perturbations
49 to the IR spectrum of liquid water.⁵⁰

51 At the smaller end of the size scale for hydration
phenomena, relatively few microsolvation studies of PF_6^-
52 have been carried out with quantum mechanical electronic
53 structure methods based on wave function theory (WFT) or
54 density functional theory (DFT). The authors are not aware of
55 any analogous experimental investigations of small clusters
56 composed of PF_6^- interacting with one or more water
57 molecules. Two computational studies have examined PF_6^-
58 explicitly solvated with one or two water molecules (i.e.,
59 $\text{PF}_6^- (\text{H}_2\text{O})_{n=1,2}$ clusters) to better understand the water–anion
60 interaction in RTILs.^{12,23} Wang et al. identified a monohydrate
61 structure (denoted as configuration C_{2v} edge in Figure 1 of the
62 present study) and a dihydrate configuration (denoted as
63 configuration D_{2h} edge–edge at the top of Figure 2 of the
64 f2

Received: July 15, 2020

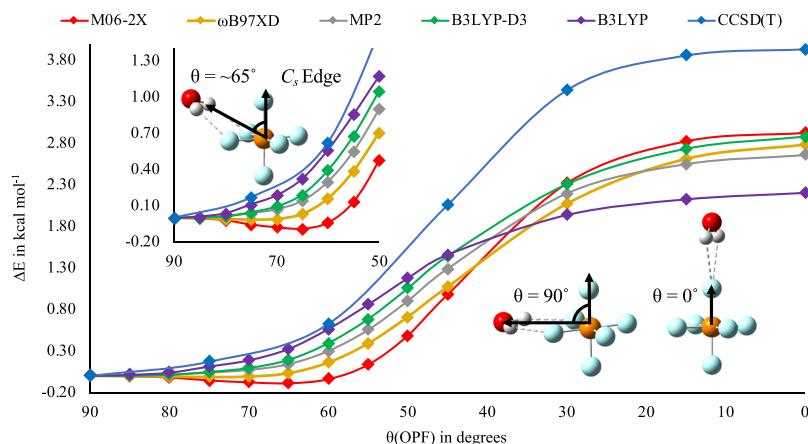
Revised: September 9, 2020

Figure 1. CCSD(T)/haTZ-optimized stationary points of $\text{PF}_6^-(\text{H}_2\text{O})_1$ with select intermolecular $\text{R}(\text{H}\cdots\text{F})$ distances in Å.

present study).¹² These structures were previously identified as minima on the HF/6-31G* potential energy surfaces but not with the B3LYP or MP2 methods when using the same 6-31G* basis set. Rodriguez-Otero et al. published a follow-up study that was able to identify the corresponding minima with both the B3LYP and MP2 methods when using the 6-31+G** basis set.²³ In addition, Rodriguez-Otero et al. identified another monohydrate water structure (denoted herein as configuration C_s edge and shown in the inset of Figure 3) but only when diffuse functions were not included in the basis set.

In the broader context of ion hydration, the C_{2v} edge structure (Figure 1) reported for the solvation of PF_6^- with a single water molecule is consistent with the double ionic hydrogen bond (DIHB) motif typically observed for molecular anions in the size regime of three or more atoms with the hydrogen bond acceptors separated by at least 2.2 Å.^{24–30} The single ionic hydrogen bond (SIHB) pattern is normally reserved for monohydrated atomic and diatomic anions.^{30–39}

The progression to dihydrate systems immediately manifests a competition between anion–water and water–water interactions. In the sequence of halide ion dihydrates ($\text{X}^-(\text{H}_2\text{O})_2$, where $\text{X} = \text{F, Cl, Br, and I}$), for example, there is essentially no evidence of hydrogen bonding between the two water molecules for F^- .^{39–44} In contrast, the water–water hydrogen bond is clearly present for the other halide ions, growing in strength from Cl^- to Br^- and I^- ,^{39,44–49} but the corresponding spectral signatures can vanish with increasing temperature.^{50,51} This competition also extends to other atomic and polyatomic anions.^{34,52–56} Interestingly, the D_{2h} edge–edge structure (Figure 2) identified for the PF_6^- dihydrate does not display any sort of solvent–solvent interactions. Instead, the two water molecules independently engage in identical DIHB contacts on opposite edges of the hexafluorophosphate octahedron.¹²


It is worth noting that the closely related sulfur hexafluoride anion (SF_6^-) has been reported to deviate from the aforementioned trends for mono- and dihydrated anions.⁵⁷ Although SIHB and DIHB SF_6^- monohydrate structures were computed to be nearly isoenergetic (within 0.1 kcal mol⁻¹), for this somewhat challenging open-shell system, the IR spectra are more consistent with the former. Similarly, there is no spectroscopic evidence of water–water hydrogen bonding in the dihydrate even though *ab initio* computations suggest that such a structure lies within 0.2 kcal mol⁻¹ of the lowest-energy $\text{SF}_6^-(\text{H}_2\text{O})_2$ minimum identified in that study.

The present study builds upon the earlier WFT and DFT results for the $\text{PF}_6^-(\text{H}_2\text{O})_{n=1,2}$ systems by performing a more extensive exploration of the possible hydration configurations, particularly those exhibiting water–water interactions for $n = 2$, utilizing robust *ab initio* methods and correlation consistent basis sets. This investigation also provides a vibrational analysis that complements that of Śmiechowski.²¹ Rather than probing spectroscopic perturbations to bulk water, this work examines

Figure 2. CCSD(T)/haTZ-optimized stationary points of $\text{PF}_6^-(\text{H}_2\text{O})_2$ with select intermolecular $\text{R}(\text{H}\cdots\text{F})$ and $\text{R}(\text{H}\cdots\text{O})$ distances in Å.

the shifts in the OH stretching vibrations of an individual H_2O molecule when it interacts with PF_6^- (as well as a second H_2O molecule when it interacts to form $\text{PF}_6^-(\text{H}_2\text{O})_2$). In other words, we use an isolated H_2O molecule devoid of intermolecular contacts as the reference for probing the effects of this ionic solute on the (micro)solvent instead of liquid water, which has an extensive network of hydrogen bonds.¹²⁴

Figure 3. Relaxed C_s scans (with the haTZ basis set) of an H_2O molecule along a face of PF_6^- where the scan angle, $\theta(OPF)$, is 90° for the C_{2v} edge configuration (Figure 1) and approximately 65° for the C_s edge configuration (inset).

Table 1. Relative Electronic Energies (ΔE in $kcal\ mol^{-1}$) and Number of Imaginary Modes (n_i) of the $PF_6^-(H_2O)_{n=1,2}$ configurations Optimized with Various Methods and the haTZ Basis Set and CCSD(T)/haQZ Relative Energies Computed Using the CCSD(T)/haTZ -Optimized Geometries

structure	n_i	CCSD(T)		MP2	B3LYP	B3LYP-D3	ω B97XD	M06-2X
		haQZ	haTZ					
C_{2v} Edge	0^a	+0.00	+0.00	+0.00	+0.00	+0.00	+0.00	+0.00
C_s Face	1^b	+0.38	+0.30	+0.34	+0.53	+0.47	+0.15	+0.06
D_{2h} Edge–Edge	0^c	+0.00	+0.00	+0.00	+0.00	+0.00	+0.00	+0.00
C_2 Edge–Edge	0	+0.08	+0.08	+0.01	+0.01	+0.01	+0.00	-0.18
C_{2v} Edge–Edge	1^d	+0.30	+0.29	+0.28	+0.27	+0.27	+0.30	+0.36
C_s Edge–Edge	0	+0.38	+0.33	+0.35	+0.50	+0.37	+0.22	+0.04
C_s Edge–Face	1	+0.37	+0.31	+0.32	+0.47	+0.41	+0.16	-0.04
C_s WW–Edge–Face	0	-2.09	-2.09	-2.11	-1.95	-2.36	-2.48	-2.29

^a $n_i = 1$ for ω B97XD and M06-2X. ^b $n_i = 0$ for ω B97XD. ^c $n_i = 3$ for ω B97XD and $n_i = 2$ for M06-2X. ^d $n_i = 0$ for B3LYP and M06-2X.

125 Consequently, the OH vibrational frequency shifts reported
126 here are in the opposite direction (to lower energy or red-
127 shifted) from those associated with bulk phase measurements
128 and simulations (to higher energy or blue-shifted).

2. COMPUTATIONAL DETAILS

129 Preliminary relaxed angular scans are performed over several
130 coordinates of $PF_6^-(H_2O)_1$ and $PF_6^-(H_2O)_2$ using various
131 DFT methods (B3LYP,⁵⁸ B3LYP-D3,^{58,59} M06-2X,⁶⁰ and
132 ω B97XD⁶¹) with Dunning's correlation consistent triple- ζ
133 basis set augmented with diffuse functions on all nonhydrogen
134 atoms (cc-pVTZ for H and aug-cc-pVTZ for P, O, and F;
135 denoted haTZ).^{62,63} The resulting low-energy configurations
136 are then fully optimized with the haTZ basis set and all four
137 functionals and the MP2⁶⁴ and CCSD(T)⁶⁵ *ab initio* methods.
138 All optimizations are computed using analytical gradients. DFT
139 harmonic vibrational frequencies are computed analytically for
140 each stationary point, whereas the CCSD(T) Hessians are
141 obtained from the finite difference of analytical gradients. To
142 validate the finite difference procedure, MP2 frequencies are
143 computed both analytically and from the finite difference of
144 analytical gradients, and the results never differed by more than
145 0.1 cm^{-1} . Single-point energy computations with the CCSD-
146 (T) method and the corresponding haQZ basis set are
147 performed on the CCSD(T)/haTZ geometries using Molpro.
148 All DFT computations are performed with the Gaussian09⁶⁶
149 software package with a dense pruned numerical integration
150 grid composed of 175 radial shells and 974 angular points per

151 shell for H, O, and F and 250 radial shells with 974 angular
152 points per shell for P corresponding to the superfine keyword
153 in Gaussian09. MP2 computations are performed using both
154 Gaussian09 and CFOUR, whereas the CCSD(T) computa-
155 tions are performed with CFOUR.⁶⁷

156 Analogous optimizations and single-point energy computa-
157 tions were also performed on the isolated fragments (PF_6^- and
158 H_2O) in order to evaluate the electronic dissociation energies
159 of the complexes ($D_e = E[PF_6^-] + nE[H_2O] - E[PF_6^-(H_2O)_n]$).¹⁶⁰ This scheme for computing the dissociation
161 energy and related quantities introduces an inconsistency from
162 the use of finite basis sets that was identified as early as 1968
163 by Kestner⁶⁸ and later dubbed basis set superposition error
164 (BSSE).⁶⁹ To help assess the impact of this inconsistency on
165 the D_e values reported in this work, we apply the popular
166 counterpoise (CP) procedure developed independently by
167 Jansen and Ros in 1969⁷⁰ and Boys and Bernardi in 1970⁷¹ to
168 the lowest-energy minima identified for $n = 1$ and 2. The
169 extension of the procedure to systems with ≥ 3 fragments is not
170 uniquely defined. For the $PF_6^-(H_2O)_2$ system, we follow the
171 protocol described in detail elsewhere⁷² for flexible (not rigid)
172 fragments.

3. RESULTS AND DISCUSSION

173 When a water molecule interacts with PF_6^- , two common
174 structural motifs are observed for the mono- and dihydrate
175 stationary points shown in Figures 1 and 2. The “edge” label
176 for the structures indicates that water has formed two (often
177

177 symmetric) OH···F contacts with a pair of fluorine atoms along
178 an edge of the PF_6^- octahedron. The “face” label denotes that
179 water is effectively interacting with the three fluorine atoms at
180 the vertices of a face on the PF_6^- octahedron via one short and
181 two significantly longer bifurcated OH···F contacts.

182 When two water molecules are present, OH···O contacts
183 between the water molecules can also occur, which is indicated
184 by the “WW” designation. This paper will also use the term
185 hydrogen bonding when referring to these OH···F and OH···O
186 contacts even though the associated geometrical parameters
187 might sometimes fall outside the typical ranges associated with
188 hydrogen bonds involving ions.

189 3.1. Monohydrate Structures and Relative Energies.

190 In addition to the C_{2v} edge minimum reported by Wang, Li,
191 and Han¹² (left side of Figure 1), a second stationary point has
192 been identified in the current work for the monohydrated PF_6^-
193 system (right side of Figure 1). The C_s face configuration is a
194 transition state lying approximately 0.3 kcal mol⁻¹ above the
195 C_{2v} structure according to the MP2 and CCSD(T) electronic
196 energies (ΔE values in Table 1).

197 Geometry optimizations with the M06-2X functional and
198 haTZ basis set readily identify a C_s edge structure that was
199 reported in an earlier study when the basis set was not
200 augmented with diffuse functions²³ (shown in the inset of
201 Figure 3). However, all subsequent haTZ geometry optimi-
202 zations with the other methods employed in this study
203 collapse to the C_{2v} edge configuration. The relaxed angular
204 scans shown in Figure 3 along the coordinate connecting the
205 C_{2v} and C_s edge structures conclusively demonstrate that the C_s
206 edge structure does not correspond to a stationary point on the
207 MP2, CCSD(T), B3LYP, B3LYP-D3, and ω B97XD potential
208 energy surfaces computed with the haTZ basis set.
209 Consequently, the C_s edge configuration is not discussed
210 elsewhere in this report.

211 The scans presented in Figure 3 clearly indicate that some
212 methods struggle to reliably describe the nature of the
213 interaction as H_2O adopts different orientations around the
214 hexafluorophosphate anion. Prior observations^{12,23} indicate
215 that the computational results can also be sensitive to the
216 quality of the basis set, particularly the presence or absence of
217 diffuse functions in small double-zeta quality basis sets. In this
218 work, minor discrepancies are also observed in the number of
219 imaginary vibrational frequencies (n_i) computed for the two
220 stationary points of this simple monohydrated ion (see
221 footnotes *a* and *b* in Table 1). The Cartesian coordinates
222 and harmonic vibrational frequencies for both stationary points
223 are reported in the Supporting Information for readers
224 interested in more details.

225 The distance between the F atoms interacting with H_2O in
226 the C_{2v} edge structure of $\text{PF}_6^-(\text{H}_2\text{O})_1$ (≈ 2.3 Å in Figure 1) is
227 compatible with the distance-based guidelines, suggesting a
228 propensity for DIHB monohydrate motifs when the atoms
229 accepting the hydrogen bonds in a polyatomic anion are
230 separated by at least 2.2 Å.²⁴ In contrast, SF_6^- seems to violate
231 this relationship because the IR spectrum of its monohydrate is
232 more consistent with a SIHB structure even though SF_6^- is
233 structurally similar to PF_6^- and even has a slightly larger
234 distance between adjacent F atoms (≈ 2.7 Å).⁵⁷ It is also
235 interesting to note that the F···HO angle about the hydrogen
236 bond in the C_{2v} edge structure of $\text{PF}_6^-(\text{H}_2\text{O})_1$ ($\approx 142^\circ$ in
237 Figure 1) is quite similar to a collection of analogous angles for
238 other DIHB monohydrates ($146 \pm 2^\circ$ degrees from ref 24)

239 despite being optimized with rather different methods and
240 basis sets.

241 **3.2. Dihydrate Structures and Relative Energies.** In
242 addition to the D_{2h} edge–edge minimum characterized in prior
243 studies,^{12,23} five new stationary points have been identified for
244 the $\text{PF}_6^-(\text{H}_2\text{O})_2$ system that have not been reported elsewhere
245 to the best of our knowledge. All six configurations are shown
246 in Figure 2. In four of the six structures, both waters bridge an
247 edge of the PF_6^- octahedron. This group includes the D_{2h}
248 edge–edge minimum, and the other three edge–edge
249 permutations of the two water molecules along the different
250 edges of PF_6^- . Another dihydrate structure (C_s edge–face in
251 Figure 2) was generated from the D_{2h} edge–edge configuration
252 by moving one of the water molecules from the edge to an
253 adjacent face. Other permutations of this hydrogen bonding
254 motif may exist, but our preliminary optimizations of other
255 edge–face structures collapsed to one of the aforementioned
256 edge–edge configurations or to the C_s WW–edge–face
257 structure. This new C_s WW–edge–face configuration exhibits
258 a completely different hydrogen bonding topology with one
259 OH···O hydrogen bond between the water molecules along
260 with three relatively short OH···F hydrogen bonds between the
261 water molecules and the hexafluorophosphate anion.

262 The D_{2h} edge–edge structure is adopted as the reference for
263 the dihydrate relative energies in Table 1 because it has been
264 previously identified as a minimum for $\text{PF}_6^-(\text{H}_2\text{O})_2$.^{12,23} The
265 MP2 and CCSD(T) relative electronic energies in Table 1
266 indicate that the one edge–face and five edge–edge stationary
267 points are separated by less than 0.4 kcal mol⁻¹. The D_{2h}
268 edge–edge structure consistently has the lowest electronic
269 energy, but the nearly isoenergetic C_2 edge–edge lies within
270 0.1 kcal mol⁻¹. However, the electronic energy of the newly
271 identified C_s WW–edge–face dihydrate structure is signifi-
272 cantly lower than that of the D_{2h} edge–edge by 2.1 kcal mol⁻¹
273 according to the results of the MP2 and CCSD(T) data
274 reported in the last row of Table 1. These results suggests that
275 the OH···O (solvent–solvent) interactions between water
276 molecules may be just as important as the OH···F (solvent–
277 solute) interactions between water and PF_6^- when character-
278 izing the hydration of this ion.

279 MP2 and CCSD(T) harmonic vibrational frequencies
280 indicate that all of the edge–edge stationary points are minima
281 except the C_s edge–edge structure for which $n_i = 1$. The C_s
282 edge–face configuration is also a transition state, whereas the
283 C_s WW–edge–face structure appears to be a strong candidate
284 for the global minimum of the $\text{PF}_6^-(\text{H}_2\text{O})_2$ system. As with
285 the monohydrated ion structures, there are some discrepancies
286 in the number of imaginary vibrational frequencies computed
287 for the high-symmetry D_{2h} and C_{2v} edge–edge dihydrate
288 stationary points. (See footnotes *c* and *d* in Table 1.) The
289 Cartesian coordinates and harmonic vibrational frequencies for
290 all six dihydrate structures are provided in the Supporting
291 Information.

292 As with the hydration of other molecular anions, water–
293 water interactions become significant as soon as a second water
294 molecule is introduced.^{34,52,53,55,56} For $\text{PF}_6^-(\text{H}_2\text{O})_2$, the
295 configuration exhibiting water–water hydrogen bonding (C_s
296 WW–edge–face) lies ≈ 2 kcal mol⁻¹ below that involving only
297 water–ion interactions. Despite the structural similarities
298 between PF_6^- and SF_6^- , the energetics of the dihydrate
299 systems are quite different. With $\text{SF}_6^-(\text{H}_2\text{O})_2$, the IR spectrum
300 is not consistent with water–water hydrogen bonding, and a
301

Table 2. Dissociation Energies (D_e in kcal mol⁻¹) of the PF_6^- Monohydrate and Dihydrate Minima Computed with Various Methods and the haTZ Basis Set and the CCSD(T)/haQZ D_e Computed Using the CCSD(T)/haTZ-Optimized Geometries

structure	CCSD(T)		MP2	B3LYP	B3LYP-D3	ω B97XD	M06-2X
	haQZ	haTZ					
C_{2v} Edge	10.55	10.67	10.44	9.16	10.68	10.22	11.00
D_{2h} Edge–Edge	20.17	20.43	19.96	17.43	20.41	19.53	21.00
C_2 Edge–Edge	20.09	20.35	19.95	17.41	20.40	19.53	21.18
C_s Edge–Edge	19.80	20.10	19.61	16.92	20.04	19.31	20.96
C_s WW–Edge–Face	22.26	22.52	22.07	19.38	22.78	22.02	23.29

Table 3. Shifts in the Harmonic OH Stretching Frequencies ($\Delta\omega$ in cm⁻¹) Induced by Hydrogen Bonding in the PF_6^- Monohydrate and Dihydrate Minima Relative to the Symmetric (a_1) and Antisymmetric (b_2) OH Stretches for an Isolated Water Molecule (ω in cm⁻¹) Computed with the haTZ Basis Set

irreps ^a	CCSD(T)	MP2	B3LYP	B3LYP-D3	ω B97XD	M06-2X	H ₂ O Frequencies (ω)	
							a_1	b_2
	3814	3825	3801	3801	3882	3872		
	3924	3952	3904	3904	3989	3976		
		C_{2v} Edge Frequency Shifts ($\Delta\omega$)						
a_1	a_1	-17	-27	-27	-32	-28		
b_2	b_2	-72	-86	-83	-90	-87		
		D_{2h} Edge–Edge Frequency Shifts ($\Delta\omega$)						
b_{3u}	a_1	-13	-22	-22	-26	-24		
a_g	a_1	-12	-22	-21	-26	-23		
b_{1g}	b_2	-63	-76	-73	-80	-77		
b_{2u}	b_2	-62	-75	-72	-79	-76		
		C_2 Edge–Edge Frequency Shifts ($\Delta\omega$)						
b	a_1	-15	-23	-22	-27	-25		
a	a_1	-14	-22	-22	-26	-24		
a	b_2	-61	-76	-72	-79	-76		
b	b_2	-61	-75	-71	-78	-75		
		C_s Edge–Edge Frequency Shifts ($\Delta\omega$)						
a''	a_1	-26	-26	-37	-32	-25		
a'	a_1	-25	-24	-35	-31	-24		
a''	b_2	-89	-72	-61	-72	-75		
a'	b_2	-86	-69	-58	-69	-72		
		C_s WW–Edge–Face Frequency Shifts ($\Delta\omega$)						
a'	a_1	-104	-118	-140	-138	-94		
a'	a_1	-46	-48	-47	-128	-49		
a'	b_2	-128	-118	-105	-114	-117		
a''	b_2	-121	-110	-106	-109	-107		

^aIrreducible representations⁷⁶ of the OH stretching mode in the complex (left) and reference mode in H₂O (right).

dihydrate structure without solvent–solvent interactions was computed to lie \approx 0.2 kcal mol⁻¹ lower than any configuration with water–water hydrogen bonding.⁵⁷ This study did, however, see spectroscopic evidence emerge for water–water hydrogen bonding in $\text{SF}_6^-(\text{H}_2\text{O})_3$.

3.3. Dissociation Energies. Table 2 reports the dissociation energies (D_e) for the minimum configurations of both the mono- and dihydrate systems (i.e., the relative energy of the isolated, optimized fragments: one PF_6^- ion and n H₂O molecules). The MP2 and CCSD(T) computations reported here and in ref 23 indicate that the monohydrate minimum (C_{2v} edge) has a dissociation energy exceeding 10 kcal mol⁻¹. For comparison, the D_e of the water dimer^{73,74} is approximately 5 kcal mol⁻¹ when computed with similar methods and basis sets. Together, these results suggest that the interaction between water and the hexafluorophosphate anion is significantly stronger than the interaction between two neutral water molecules.

The MP2 and CCSD(T) data in Table 2 show that when two edge contacts form in the C_s , C_{2v} , and D_{2h} edge–edge dihydrate minima, the D_e increases by a factor of \approx 1.9 relative to the corresponding value for the monohydrate minimum. As such, the interactions are close to being perfectly additive, but they fall about 5% short of doubling the D_e of the C_{2v} edge structure. In contrast, the C_s WW–edge–face minimum displays cooperative effects that enhance D_e by roughly 5% to a value slightly larger than 22 kcal mol⁻¹.

When the CP procedure is applied to the lowest-energy structures identified for the monohydrate and dihydrate systems (C_{2v} edge and C_s WW–edge–face, respectively), the CCSD(T)/haQZ dissociation energies decrease by less than 3% for both. The dissociation energies computed with the CP procedure for these two minima can be found in the Supporting Information, and when they are combined with the CCSD(T) data reported in Table 2, the results indicate that the D_e of the C_{2v} edge minimum for $\text{PF}_6^-(\text{H}_2\text{O})_1$ will be near 10.4 kcal mol⁻¹ at the CCSD(T) complete basis set limit

339 (where the BSSE must vanish by definition) and that of the C_s
340 WW-edge-face minimum for $\text{PF}_6^-(\text{H}_2\text{O})_2$ will be near 22.0
341 kcal mol⁻¹.

342 **3.4. Vibrational Frequencies.** The harmonic symmetric
343 (a_1) and antisymmetric (b_2) OH stretching frequencies (ω)
344 computed for an isolated water molecule are listed in the first
345 two rows of data at the top of **Table 3**. When a water molecule
346 binds to an edge of the PF_6^- octahedron, the formation of the
347 OH···F hydrogen bonds perturbs the OH stretching vibrations
348 of the water molecule, inducing a shift in the corresponding
349 frequency ($\Delta\omega$). In the C_{2v} edge monohydrate structure, for
350 example, the energy of the symmetric a_1 stretching mode
351 decreases by 17 cm⁻¹ and that of the antisymmetric b_2 mode
352 decreases by 72 cm⁻¹, according to the CCSD(T)/haTZ
353 results reported in the first column of numbers in **Table 3**. All
354 of the other methods predict larger shifts with the haTZ basis
355 set (by approximately 10 cm⁻¹). The tabulated MP2 and DFT
356 $\Delta\omega$ values for the C_{2v} edge minimum range from -27 to -32
357 cm⁻¹ for the a_1 mode and from -83 to -90 for the b_2 mode.
358 DIHB structures tend to induce less-pronounced OH
359 stretching frequency shifts in H_2O than their SIHB counter-
360 parts,^{24,25} and the data presented here suggest that the C_{2v}
361 edge minimum for $n = 1$ is no exception. In fact, the
362 magnitudes of the computed harmonic shifts for $\text{PF}_6^-(\text{H}_2\text{O})_1$
363 in **Table 3** are appreciably smaller than the readily assignable
364 shifts from the DIHB series analyzed by Robertson et al. by
365 more than a factor of two.²⁴ This result is, however, consistent
366 with a proton affinity of only 280 kcal mol⁻¹ for the
367 hexafluorophosphate anion⁷⁵ based on the qualitative relation-
368 ship between this quantity and the OH frequency shifts (see
369 **Figure 2** of ref 24, e.g.).

370 For the dihydrate systems, the irreducible representations
371 associated with the coupled OH stretching vibrations of the
372 two water molecules are listed in the first column of **Table 3**.⁷⁶
373 Even when they do not necessarily directly correlate to the a_1
374 and b_2 irreducible representations of the C_{2v} point group, each
375 mode is dominated by a synchronous or asynchronous OH
376 stretching motion that can be used to assign the H_2O reference
377 mode for calculating $\Delta\omega$ (indicated by the a_1 or b_2 entries
378 tabulated in the second column of **Table 3**).

379 When two water molecules bind to different edges of the
380 anion octahedron in the dihydrate edge-edge minima (D_{2h} ,
381 C_2 , and C_s), the magnitudes of the vibrational frequency shifts
382 are quite similar to those observed for the monohydrate. In the
383 three edge-edge minima, the symmetric OH stretch shifts to
384 slightly lower energy by -19 ± 7 cm⁻¹ according to the
385 CCSD(T)/haTZ harmonic vibrational frequencies. The
386 corresponding shifts for the antisymmetric OH stretch also
387 fall into a fairly narrow range of $\Delta\omega$ values of -75 ± 14 cm⁻¹.
388 The similarity of the frequency shifts for the monohydrate
389 minimum and edge-edge dihydrate minima is consistent with
390 the lack of cooperative effects observed for the corresponding
391 D_e values in **Table 2**.

392 With a qualitatively different hydrogen bond topology, the
393 C_s WW-edge-face structure exhibits much larger OH
394 stretching frequency shifts than the three Edge-Edge minima.
395 According to the CCSD(T)/haTZ harmonic vibrational
396 frequencies, only one OH stretching mode shifts by less than
397 100 cm⁻¹; $\Delta\omega$ is only -46 cm⁻¹ for the mode predominated
398 by the synchronous OH stretching motion in the water
399 molecule that accepts the OH···O hydrogen bond. In contrast,
400 the corresponding shift in the donor of the OH···O hydrogen
401 bond is -104 cm⁻¹ (both relative to the a_1 stretch of an

402 isolated H_2O molecule). The CCSD(T)/haTZ $\Delta\omega$ values are 402
403 -128 and -121 cm⁻¹ for the asynchronous stretching modes 403
404 primarily associated with the donor and acceptor of the OH··· 404
405 O hydrogen bond, respectively.

406 The solvent-solute interactions also induce vibrational 406
407 frequency shifts in the PF stretching modes of the 407
408 hexafluorophosphate anion, but they tend to be much smaller 408
409 (Table S13 in the *Supporting Information*). When a single 409
410 water molecule interacts with PF_6^- to form the C_{2v} edge 410
411 monohydrate structure, the CCSD(T)/haTZ harmonic vibra- 411
412 tional frequencies indicate that one PF stretching frequency 412
413 shifts by -12 cm⁻¹ to lower energy, while another shifts by 413
414 +16 cm⁻¹ to higher energy, while the four other PF stretching 414
415 modes shift by no more than ± 7 cm⁻¹. The latter nearly 415
416 doubles in magnitude to +30 cm⁻¹ in the D_{2h} edge-edge local 416
417 minimum when a second water molecule is added to the 417
418 opposite side of the PF_6^- octahedron. However, the CCSD- 418
419 (T)/haTZ frequency shifts do not exceed ± 6 cm⁻¹ for the 419
420 lowest-energy structure identified for $\text{PF}_6^-(\text{H}_2\text{O})_2$ (the C_s 420
421 WW-edge-face minimum). The vibrational frequency shifts 421
422 for the PF stretches are tabulated in the *Supporting* 422
423 *Information* along with all of the computed harmonic 423
424 vibrational frequencies and corresponding IR intensities. 424

4. CONCLUSIONS

425 Low-energy configurations of the $\text{PF}_6^-(\text{H}_2\text{O})_{n=1,2}$ system have 425
426 been identified via a set of relaxed angular scans across the 426
427 edges and faces of the PF_6^- octahedron. Two low-lying 427
428 stationary points have been found for the $\text{PF}_6^-(\text{H}_2\text{O})_1$ system 428
429 with the CCSD(T) *ab initio* method, the C_{2v} Edge minimum 429
430 and the C_s transition state. For the $\text{PF}_6^-(\text{H}_2\text{O})_2$ system, four 430
431 minima and two transition states have been identified, with the 431
432 lowest energy minimum being approximately 2 kcal mol⁻¹ 432
433 lower than that of any other structure yet identified. 433

434 The CCSD(T) electronic dissociation energy is slightly 434
435 larger than 10 kcal mol⁻¹ for the C_{2v} edge minimum of the 435
436 monohydrate, and this interaction is almost perfectly additive 436
437 in the D_{2h} , C_2 , and C_s edge-edge minima of $\text{PF}_6^-(\text{H}_2\text{O})_2$. 437
438 However, appreciable cooperative effects are observed when 438
439 the two hydrating water molecules are able to interact with 439
440 each other, and the CCSD(T) D_e increases to approximately 440
441 22 kcal mol⁻¹ for the C_s WW-edge-face structure. In 441
442 comparison, the corresponding D_e is approximately 5 kcal 442
443 mol⁻¹ for $(\text{H}_2\text{O})_2$,^{73,74} and it approaches 16 kcal mol⁻¹ for 443
444 $(\text{H}_2\text{O})_3$.⁷⁷

445 These solvent-solute interactions also induce significant 445
446 shifts in the OH stretching vibrational frequencies of the 446
447 hydrating water molecule(s) relative to the corresponding a_1 447
448 and b_2 values for an isolated H_2O molecule. The CCSD(T)/ 448
449 haTZ symmetric and antisymmetric OH stretching frequency 449
450 shifts by -17 and -72 cm⁻¹, respectively, in the C_{2v} edge 450
451 monohydrate minimum, and very similar $\Delta\omega$ values are 451
452 observed in the D_{2h} , C_2 , and C_s edge-edge minima of 452
453 $\text{PF}_6^-(\text{H}_2\text{O})_2$. However, the most significant vibrational 453
454 perturbations occur when the solvent molecules are able to 454
455 interact with each other and the ion. In the C_s WW-edge-face 455
456 structure, the CCSD(T)/haTZ frequencies shift by as much as 456
457 -104 cm⁻¹ for the synchronous and -128 cm⁻¹ for the 457
458 asynchronous OH stretching modes. The lowest-energy 458
459 harmonic OH stretching frequency for the C_s WW-edge- 459
460 face minimum of $\text{PF}_6^-(\text{H}_2\text{O})_2$ is computed to be 3721 and 460
461 3661 cm⁻¹ at the CCSD(T)/haTZ and B3LYP/haTZ levels of 461
462 theory, respectively. The latter harmonic value is only 36 cm⁻¹ 462

463 larger than the results from recent DFT AIMD simulations that
464 predicted a shift of more than $+300\text{ cm}^{-1}$ relative to bulk
465 water.²¹ The present work demonstrates that solvent–solute
466 interactions alone do not provide a complete picture of PF_6^-
467 hydration, and it highlights the importance of the solvent–
468 solvent interactions that must also be considered to identify
469 the lowest-energy structures and to capture the associated
470 spectroscopic perturbations.

471 ■ ASSOCIATED CONTENT

472 ■ Supporting Information

473 The Supporting Information is available free of charge at
474 <https://pubs.acs.org/doi/10.1021/acs.jpca.0c06466>.

475 Cartesian coordinates, electronic dissociation energies
476 computed with the CP procedure, harmonic vibrational
477 frequencies, and IR intensities ([PDF](#))

478 ■ AUTHOR INFORMATION

479 Corresponding Author

480 **Gregory S. Tschumper** — *Department of Chemistry and*
481 *Biochemistry, University of Mississippi, University, Mississippi*
482 *38677-1848, United States; orcid.org/0000-0002-3933-2200; Phone: +1 662 915 7301; Email: tschumper@olemiss.edu; Fax: +1 662 915 7300*

485 Author

486 **Yasmeen A. Abdo** — *Department of Chemistry and*
487 *Biochemistry, University of Mississippi, University, Mississippi*
488 *38677-1848, United States*

489 Complete contact information is available at:

490 <https://pubs.acs.org/10.1021/acs.jpca.0c06466>

491 Notes

492 The authors declare no competing financial interest.

493 ■ ACKNOWLEDGMENTS

494 This work was supported in part by the National Science
495 Foundation (CHE-1338056 and CHE-1664998). The Mis-
496 sissippi Center for Supercomputing Research (MCSR) is also
497 thanked for a generous allocation of time on their computa-
498 tional resources.

499 ■ REFERENCES

- (1) Wang, Y.-L.; Li, B.; Sarman, S.; Mocci, F.; Lu, Z.-Y.; Yuan, J.; Laaksonen, A.; Fayer, M. D. Microstructural and Dynamical Heterogeneities in Ionic Liquids. *Chem. Rev.* **2020**, *120*, 5798–5877.
- (2) Xu, K. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. *Chem. Rev.* **2004**, *104*, 4303–4418.
- (3) Seddon, K. R.; Stark, A.; Torres, M.-J. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. *Pure Appl. Chem.* **2000**, *72*, 2275–2287.
- (4) Blanchard, L. A.; Gu, Z.; Brennecke, J. F. High-Pressure Phase Behavior of Ionic Liquid/CO₂ Systems. *J. Phys. Chem. B* **2001**, *105*, 2437–2444.
- (5) Rogers, R. D.; Seddon, K. R. CHEMISTRY: Ionic Liquids—Solvents of the Future? *Science* **2003**, *302*, 792–793.
- (6) Danten, Y.; Cabalo, M. I.; Besnard, M. Interaction of Water Highly Diluted in 1-Alkyl-3-methyl Imidazolium Ionic Liquids with the PF_6^- and BF_4^- Anions. *J. Phys. Chem. A* **2009**, *113*, 2873–2889.
- (7) Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Molecular States of Water in Room Temperature Ionic Liquids. *Phys. Chem. Chem. Phys.* **2001**, *3*, 5192–5200.
- (8) Ghatee, M. H.; Zolghadr, A. R. Local Depolarization in Hydrophobic and Hydrophilic Ionic Liquids/Water Mixtures: Car-

Parrinello and Classical Molecular Dynamics Simulation. *J. Phys. Chem. C* **2013**, *117*, 2066–2077.

- (9) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker, G. A.; Rogers, R. D. Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. *Green Chem.* **2001**, *3*, 156–164.
- (10) Swatloski, R. P.; Visser, A. E.; Reichert, W. M.; Broker, G. A.; Farina, L. M.; Holbrey, J. D.; Rogers, R. D. On the solubilization of water with ethanol in hydrophobic hexafluorophosphate ionic liquids. *Green Chem.* **2002**, *4*, 81–87.
- (11) Hanke, C. G.; Lynden-Bell, R. M. A Simulation Study of Water-Dialkylimidazolium Ionic Liquid Mixtures. *J. Phys. Chem. B* **2003**, *107*, 10873–10878.
- (12) Wang, Y.; Li, H.; Han, S. A Theoretical Investigation of the Interactions between Water Molecules and Ionic Liquids. *J. Phys. Chem. B* **2006**, *110*, 24646–24651.
- (13) Schenck, J.; Panne, U.; Albrecht, M. Interaction of Levitated Ionic Liquid Droplets with Water. *J. Phys. Chem. B* **2012**, *116*, 14171–14177.
- (14) Walrafen, G. E. Raman Spectral Studies of the Effects of Solutes and Pressure on Water Structure. *J. Chem. Phys.* **1971**, *55*, 768–792.
- (15) Paquette, J.; Jolicoeur, C. A near-infrared study of the hydration of various ions and nonelectrolytes. *J. Solution Chem.* **1977**, *6*, 403–428.
- (16) Kristiansson, O.; Lindgren, J.; de Villepin, J. A Quantitative Infrared Spectroscopic Method for the Study of the Hydration of Ions in Aqueous Solutions. *J. Chem. Phys.* **1988**, *92*, 2680–2685.
- (17) Śmiechowski, M.; Gojlo, E.; Stangret, J. Ionic Hydration in LiPF₆, NaPF₆, and KPF₆ Aqueous Solutions Derived from Infrared HDO Spectra. *J. Phys. Chem. B* **2004**, *108*, 15938–15943.
- (18) Son, H.; Nam, D.; Park, S. Real-Time Probing of Hydrogen-Bond Exchange Dynamics in Aqueous NaPF₆ Solutions by Two-Dimensional Infrared Spectroscopy. *J. Phys. Chem. B* **2013**, *117*, 13604–13613.
- (19) Nam, D.; Lee, C.; Park, S. A Quantitative Infrared Spectroscopic Method for the Study of the Hydration of Ions in Aqueous Solutions. *Phys. Chem. Chem. Phys.* **2014**, *16*, 21747–21754.
- (20) Śmiechowski, M. Anion-water interactions of weakly hydrated anions: molecular dynamics simulations of aqueous NaBF₄ and NaPF₆. *Mol. Phys.* **2016**, *114*, 1831–1846.
- (21) Śmiechowski, M. Unusual Influence of Fluorinated Anions on the Stretching Vibrations of Liquid Water. *J. Phys. Chem. B* **2018**, *122*, 3141–3152.
- (22) Stangret, J.; Gampe, T. Ionic Hydration Behavior Derived from Infrared Spectra in HDO. *J. Phys. Chem. B* **2002**, *106*, 5393–5402.
- (23) Rodríguez-Otero, J.; Cabaleiro-Lago, E. M.; Peña-Gallego, Á. Comment on: A Theoretical Investigation of the Interactions between Water Molecules and Ionic Liquids. *J. Phys. Chem. B* **2008**, *112*, 13465–13466.
- (24) Robertson, W. H.; Price, E. A.; Weber, J. M.; Shin, J.-W.; Weddle, G. H.; Johnson, M. A. Infrared Signatures of a Water Molecule Attached to Triatomic Domains of Molecular Anions: Evolution of the H-bonding Configuration with Domain Length. *J. Phys. Chem. A* **2003**, *107*, 6527–6532.
- (25) Woronowicz, E. A.; Robertson, W. H.; Weddle, G. H.; Johnson, M. A.; Myshakin, E. M.; Jordan, K. D. Infrared Spectroscopic Characterization of the Symmetrical Hydration Motif in the SO₃²⁻ H₂O Complex. *J. Phys. Chem. A* **2002**, *106*, 7086–7089.
- (26) Surber, E.; Ananthavel, S. P.; Sanov, A. Nonexistent electron affinity of OCS and the stabilization of carbonyl sulfide anions by gas phase hydration. *J. Chem. Phys.* **2002**, *116*, 1920–1929.
- (27) Myshakin, E. M.; Jordan, K. D.; Sibert, E. L.; Johnson, M. A. Large anharmonic effects in the infrared spectra of the symmetrical CH₃NO₂⁻(H₂O) and CH₃CO₂⁻(H₂O) complexes. *J. Chem. Phys.* **2003**, *119*, 10138–10145.
- (28) Schneider, H.; Vogelhuber, K. M.; Weber, J. M. Infrared spectroscopy of anionic hydrated fluorobenzenes. *J. Chem. Phys.* **2007**, *127*, 114311.

589 (29) Kelly, J. T.; Ellington, T. L.; Sexton, T. M.; Fortenberry, R. C.;
590 Tschumper, G. S.; Asmis, K. R. Communication: Gas Phase
591 Vibrational Spectroscopy of the Azide-Water Complex. *J. Chem.*
592 *Phys.* **2018**, *149*, 191101.

593 (30) Bentley, J.; Collins, J. Y.; Chipman, D. M. Dissociation of
594 Ozonide in Water. *J. Phys. Chem. A* **2000**, *104*, 4629–4635.

595 (31) Johnson, M. S.; Kuwata, K. T.; Wong, C.-K.; Okumura, M.
596 Vibrational spectrum of $\text{I}^-(\text{H}_2\text{O})$. *Chem. Phys. Lett.* **1996**, *260*, 551–
597 557.

598 (32) Ayotte, P.; Weddle, G. H.; Kim, J.; Johnson, M. A. Vibrational
599 Spectroscopy of the Ionic Hydrogen Bond: Fermi Resonances and
600 Ion-Molecule Stretching Frequencies in the Binary $\text{X}^-\cdot\text{H}_2\text{O}$ ($\text{X} = \text{Cl}$,
601 Br , I) Complexes via Argon Predissociation Spectroscopy. *J. Am.*
602 *Chem. Soc.* **1998**, *120*, 12361–12362.

603 (33) Weber, J. M.; Kelley, J. A.; Nielsen, S. B.; Ayotte, P.; Johnson,
604 M. A. Isolating the Spectroscopic Signature of a Hydration Shell With
605 the Use of Clusters: Superoxide Tetrahydrate. *Science* **2000**, *287*,
606 2461–2463.

607 (34) Weber, J. M.; Kelley, J. A.; Robertson, W. H.; Johnson, M. A.
608 Hydration of a structured excess charge distribution: Infrared
609 spectroscopy of the $\text{O}_2^-\cdot(\text{H}_2\text{O})_n$ ($1 \leq n \leq 5$) clusters. *J. Chem.*
610 *Phys.* **2001**, *114*, 2698–2706.

611 (35) Robertson, W. H.; Johnson, M. A.; Myshakin, E. M.; Jordan, K.
612 D. Isolating the Charge-Transfer Component of the Anionic H Bond
613 Via Spin Suppression of the Intracluster Proton Transfer Reaction in
614 the $\text{NO}^-\cdot\text{H}_2\text{O}$ Entrance Channel Complex. *J. Phys. Chem. A* **2002**,
615 *106*, 10010–10014.

616 (36) Robertson, W. H.; Johnson, M. A. Molecular Aspects of Halide
617 Ion Hydration: The Cluster Approach. *Annu. Rev. Phys. Chem.* **2003**,
618 *54*, 173–213.

619 (37) Schneider, H.; Boese, A. D.; Weber, J. M. Unusual hydrogen
620 bonding behavior in binary complexes of coinage metal anions with
621 water. *J. Chem. Phys.* **2005**, *123*, 084307.

622 (38) Roscioli, J. R.; Diken, E. G.; Johnson, M. A.; Horvath, S.;
623 McCoy, A. B. Prying Apart a Water Molecule with Anionic H-
624 Bonding: A Comparative Spectroscopic Study of the $\text{X}^-\cdot\text{H}_2\text{O}$ ($\text{X} =$
625 OH , O , F , Cl , and Br) Binary Complexes in the 600–3800 cm^{-1}
626 Region. *J. Phys. Chem. A* **2006**, *110*, 4943–4952.

627 (39) Kim, J.; Lee, H. M.; Suh, S. B.; Majumdar, D.; Kim, K. S.
628 Comparative ab initio study of the structures, energetics and spectra
629 of $\text{X}^-\cdot(\text{H}_2\text{O})_{n=1-4}$ [$\text{X} = \text{F}$, Cl , Br , I] clusters. *J. Chem. Phys.* **2000**, *113*,
630 5259–5272.

631 (40) Xantheas, S. S.; Dunning, T. H. Structures and Energetics of
632 $\text{F}^-(\text{H}_2\text{O})_n$, $n = 1 - 3$ Clusters from *ab Initio* Calculations. *J. Phys.*
633 *Chem.* **1994**, *98*, 13489–13497.

634 (41) Xantheas, S. S.; Dang, L. X. Critical Study of Fluoride-Water
635 Interactions. *J. Phys. Chem.* **1996**, *100*, 3989–3995.

636 (42) Ayotte, P.; Nielsen, S. B.; Weddle, G. H.; Johnson, M. A.;
637 Xantheas, S. S. Spectroscopic Observation of Ion-Induced Water
638 Dimer Dissociation in the $\text{X}^-\cdot(\text{H}_2\text{O})_2$ ($\text{X} = \text{F}$, Cl , Br , I) Clusters. *J.*
639 *Phys. Chem. A* **1999**, *103*, 10665–10669.

640 (43) Chaban, G. M.; Xantheas, S. S.; Gerber, R. B. Anharmonic
641 Vibrational Spectroscopy of the $\text{F}^-(\text{H}_2\text{O})_n$ Complexes, $n = 1, 2$. *J.*
642 *Phys. Chem. A* **2003**, *107*, 4952–4956.

643 (44) Baik, J.; Kim, J.; Majumdar, D.; Kim, K. S. Structures,
644 energetics, and spectra of fluoride-water clusters $\text{F}^-(\text{H}_2\text{O})_n$, $n = 1 - 6$:
645 Ab initio study. *J. Chem. Phys.* **1999**, *110*, 9116–9127.

646 (45) Combariza, J. E.; Kestner, N. R.; Jortner, J. Microscopic
647 solvation of anions in water clusters. *Chem. Phys. Lett.* **1993**, *203*,
648 423–428.

649 (46) Combariza, J. E.; Kestner, N. R.; Jortner, J. Energystructure
650 relationships for microscopic solvation of anions in water clusters. *J.*
651 *Chem. Phys.* **1994**, *100*, 2851–2864.

652 (47) Xantheas, S. S. Quantitative Description of Hydrogen Bonding
653 in Chloride-Water Clusters. *J. Phys. Chem.* **1996**, *100*, 9703–9713.

654 (48) Ayotte, P.; Weddle, G. H.; Kim, J.; Johnson, M. A. Mass-
655 selected “matrix isolation” infrared spectroscopy of the $\text{I}^-\cdot(\text{H}_2\text{O})_2$
656 complex: making and breaking the inter-water hydrogen-bond. *Chem.*
657 *Phys.* **1998**, *239*, 485–491.

658 (49) Bajaj, P.; Zhuang, D.; Paesani, F. Specific Ion Effects on
659 Hydrogen-Bond Rearrangements in the Halide-Dihydrate Complexes. *J. Phys. Chem. Lett.* **2019**, *10*, 2823–2828.

660 (50) Dorsett, H. E.; Watts, R. O.; Xantheas, S. S. Probing
661 Temperature Effects on the Hydrogen Bonding Network of the
662 $\text{Cl}^-(\text{H}_2\text{O})_2$ Cluster. *J. Phys. Chem. A* **1999**, *103*, 3351–3355.

663 (51) Wolke, C. T.; Menges, F. S.; Tötsch, N.; Gorlova, O.; Fournier,
664 J. A.; Weddle, G. H.; Johnson, M. A.; Heine, N.; Esser, T. K.; Knorke,
665 H.; et al. Thermodynamics of Water Dimer Dissociation in the
666 Primary Hydration Shell of the Iodide Ion with Temperature-
667 Dependent Vibrational Predissociation Spectroscopy. *J. Phys. Chem. A* **2015**, *119*, 1859–1866.

668 (52) Myshakin, E. M.; Jordan, K. D.; Robertson, W. H.; Weddle, G.
669 H.; Johnson, M. A. Dominant structural motifs of $\text{NO}^-\cdot(\text{H}_2\text{O})_n$
670 complexes: Infrared spectroscopic and ab initio studies. *J. Chem. Phys.* **2003**, *118*, 4945–4953.

671 (53) Robertson, W. H.; Diken, E. G.; Price, E. A.; Shin, J.-W.;
672 Johnson, M. A. Spectroscopic Determination of the OH^- Solvation
673 Shell in the $\text{OH}^-(\text{H}_2\text{O})_n$ Clusters. *Science* **2003**, *299*, 1367–1372.

674 (54) Chipman, D. M.; Bentley, J. Structures and Energetics of
675 Hydrated Oxygen Anion Clusters. *J. Phys. Chem. A* **2005**, *109*, 7418–
676 7428.

677 (55) Wang, X.-B.; Kowalski, K.; Wang, L.-S.; Xantheas, S. S.
678 Stepwise hydration of the cyanide anion: A temperature-controlled
679 photoelectron spectroscopy and ab initio computational study of
680 $\text{CN}^-(\text{H}_2\text{O})_n$, $n = 2 - 5$. *J. Chem. Phys.* **2010**, *132*, 124306.

681 (56) Gorlova, O.; DePalma, J. W.; Wolke, C. T.; Brathwaite, A.;
682 Odbadrakh, T. T.; Jordan, K. D.; McCoy, A. B.; Johnson, M. A.
683 Characterization of the primary hydration shell of the hydroxide ion
684 with H_2 tagging vibrational spectroscopy of the $\text{OH}^-(\text{H}_2\text{O})_{n=2,3}$ and
685 $\text{OD}^-(\text{H}_2\text{O})_{n=2,3}$ clusters. *J. Chem. Phys.* **2016**, *145*, 134304.

686 (57) Schneider, H.; Weber, J. M. Infrared spectra of $\text{SF}_6^-\cdot(\text{H}_2\text{O})_n$ (n
687 = 1 – 3): Incipient reaction and delayed onset of water network
688 formation. *J. Chem. Phys.* **2007**, *127*, 244310.

689 (58) Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-
690 Salvetti correlation-energy formula into a functional of the electron
691 density. *Phys. Rev. B* **1988**, *37*, 785.

692 (59) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and
693 accurate ab initio parameterization of density functional dispersion
694 correction (DFT-D) for the 94 elements H–Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

695 (60) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals
696 for main group thermochemistry, thermochemical kinetics, non-
697 covalent interactions, excited states, and transition elements: two new
698 functionals and systematic testing of four M06-class functionals and
699 12 other functionals. *Theor. Chem. Acc.* **2008**, *120*, 215–241.

700 (61) Chai, J.-D.; Head-Gordon, M. Long-range corrected hybrid
701 density functionals with damped atom-atom dispersion corrections.
702 *Phys. Chem. Chem. Phys.* **2008**, *10*, 6615–6620.

703 (62) Dunning, T. H. Gaussian basis sets for use in correlated
704 molecular calculations. I. The atoms boron through neon and
705 hydrogen. *J. Chem. Phys.* **1989**, *90*, 1007–1023.

706 (63) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron
707 affinities of the first-row atoms revisited. Systematic basis sets and
708 wave functions. *J. Chem. Phys.* **1992**, *96*, 6796–6806.

709 (64) Møller, C.; Plesset, M. S. Note on an Approximation Treatment
710 for Many-electron Systems. *Phys. Rev.* **1934**, *46*, 618–622.

711 (65) Bartlett, R. J. Coupled-cluster Theory and its Equation-of-
712 motion Extensions. *WIREs Comput. Mol. Sci.* **2012**, *2*, 126–138.

713 (66) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
714 Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci,
715 B.; Petersson, G. A.; et al. *Gaussian09* Revision D.01; Gaussian Inc.:
716 Wallingford CT, 2009.

717 (67) Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.;
718 Stopkowicz, S.; Jagau, T.-C.; Szalay, P. G.; Gauss, J.; Stanton, J. F.
719 Coupled-cluster techniques for computational chemistry: The
720 CFOUR program package. *J. Chem. Phys.* **2020**, *152*, 214108.

721 (68) Kestner, N. R. He-He Interaction in the SCF-MO
722 Approximation. *J. Chem. Phys.* **1968**, *48*, 252–257.

727 (69) Liu, B.; McLean, A. D. Accurate Calculation of the Attractive
728 Interaction of Two Ground State Helium Atoms. *J. Chem. Phys.* **1973**,
729 **59**, 4557–4558.

730 (70) Jansen, H. B.; Ros, P. Non-Empirical Molecular Orbital
731 Calculations on the Protonation of Carbon Monoxide. *Chem. Phys.*
732 *Lett.* **1969**, **3**, 140–143.

733 (71) Boys, S. F.; Bernardi, F. The Calculation of Small Molecular
734 Interactions by the Differences of Separate Total Energies. Some
735 Procedures with Reduced Errors. *Mol. Phys.* **1970**, **19**, 553–566.

736 (72) Tschumper, G. S. Reliable Electronic Structure Computations
737 for Weak Non-Covalent Interactions in Clusters. *Rev. Comput. Chem.*
738 **2009**, **26**, 39–90.

739 (73) Tschumper, G. S.; Leininger, M. L.; Hoffman, B. C.; Valeev, E.
740 F.; Schaefer, H. F.; Quack, M. Anchoring the Water Dimer Potential
741 Energy Surface with Explicitly Correlated Computations and Focal
742 Point Analyses. *J. Chem. Phys.* **2002**, **116**, 690–701.

743 (74) Howard, J. C.; Gray, J. L.; Hardwick, A. J.; Nguyen, L. T.;
744 Tschumper, G. S. Getting down to the fundamentals of hydrogen
745 bonding: Anharmonic vibrational frequencies of the hetero and
746 homogeneous dimers of HF and H₂O from ab initio electronic
747 structure computations. *J. Chem. Theory Comput.* **2014**, **10**, 5426–
748 5435.

749 (75) Newton, K. A.; He, M.; Amunugama, R.; McLuckey, S. A.
750 Selective cation removal from gaseous polypeptide ions: proton vs.
751 sodium ion abstraction via ion/ion reactions. *Phys. Chem. Chem. Phys.*
752 **2004**, **6**, 2710–2717.

753 (76) The Gaussian09 conventions for molecular orientation and
754 irreducible representation assignments were adopted whenever they
755 differed from the conventions in CFOUR.

756 (77) Anderson, J. A.; Crager, K.; Fedoroff, L.; Tschumper, G. S.
757 Anchoring the Potential Energy Surface of the Cyclic Water Trimer. *J.*
758 *Chem. Phys.* **2004**, **121**, 11023–11029.