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Abstract

In recent decades computer-aided technologies have become prevalent in medicine,
however cancer drugs are often only tested on in vitro cell-lines from biopsies. We
derive a full 3-dimensional (3-D) model of inhomogeneous – anisotropic diffusion in a
tumor region coupled to a binary population model, which simulates in vivo scenarios
faster than traditional cell-line tests. The diffusion tensors are acquired using Diffusion
Tensor Magnetic Resonance Imaging (DTI) from a patient diagnosed with glioblastoma
multiform (GBM). Then we numerically simulate the full model with Finite Element
Methods (FEM) and produce drug concentration heat maps, apoptosis hotspots, and
dose-response curves. Finally, predictions are made about optimal injection locations
and volumes, which are presented in a form that can be employed by doctors and
oncologists.
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1 Introduction

There is an ongoing struggle in cancer treatments to develop therapies that kill a majority
of tumor cells, while having negligible effect on healthy cells. Treatments for brain tumors
are especially delicate as brain tumors are associated with very high mortality. The five-
year survival rate for people with a malignant brain or central nervous system tumor is
approximately 34% for men and 36% for women in the United States and brain tumors
account for 85% to 90% of all primary central nervous system tumors [1].

One of the major obstacles to improve current treatments is the presence of some physical
barriers such as the blood-brain barrier and the bloodbrain tumor barrier impeding drugs
from reaching the tumor sites in the brain [2, 3, 4]. The blood-brain barrier (BBB), existing
between the brains microvessels and tissue, prevents many macromolecules from entering
interstitial space in the brain; thus separating the central nervous system and systemic
circulation of the body. It is reported in [5] that BBB prevents entry of approximately 98%
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of the small molecules and nearly 100% of large molecules, such as recombinant proteins or
gene-based medicines into brain tumors from the vascular compartment. Similarly, the blood-
brain tumor barrier (BBTB) is located between brain tumor tissues and the brain’s blood
vessels formed by highly specialized endothelial cells, limiting the delivery of most anti-cancer
drugs to tumor tissue. To overcome the challenges associated with these barriers, several
methods have been developed such as intrarterial administration, barrier disruption, drug
packaging, and inhibiting drug efflux from tumors [6]. Regardless, oral and intravascular
administration allows only a small fraction of therapeutic agents to reach the tumor region
in the brain because the drug concentration decreases precipitously due to the sink effect
of the extracellular space along the route of drug transport to the tumor region. Thus,
necessitating the administration of a high dose to achieve sufficient drug concentrations to
kill the tumor cells. Unfortunately, physiological toxicity limits the amount of therapeutic
agent allowed in a particular therapy.

Significant effort has gone into developing therapies with high efficacy to toxicity ratios
through the use of lower drug concentrations via direct administration in targeted regions.
One such method is discussed in de Boer et al. [5]. Drug injection therapies allow for
uncomplicated individualized treatment for solid accessible tumors [5, 7, 8, 9, 10]. Further,
these types of therapies provide us with an opportunity to optimize drug efficacy by changing
the fluidic properties of the injection as shown by Morhard et al. [9]. While testing a variety
of therapeutic agents on animals is time intensive and costly, numerical simulations may
prove to be a cheap and effective solution.

In order to conduct numerical experiments on the effects of drugs on cancerous tumors, we
need transport – population coupled models. Transport models often focus on the dynamics
of therapeutic drug delivery processes to the tumor site by blood flow through capillaries
and tissues. To reach the cancer cells, relevant agents must enter the tumor interstitial fluid
through the blood vessels walls of the tumor [11]. Drug-transport modeling is a relatively
well-established field [12], and several models investigating various aspects of this process
can be found in the literature [13, 14, 15, 16]. As noted in [11], in order for the drug
therapies to be successful, the agent must be effective on the the corresponding cancer type
in the in-vivo setting and an optimal amount of drugs must be delivered to the tumor site.
Mathematical modeling plays a crucial role in understanding these therapies. For example, in
the case of nano-particle therapies [17, 18, 19], drug transport has been modeled extensively
[20, 21, 22, 23]. While there are many sophisticated models for drugs penetrating into tumor
from the blood stream, there are few mathematical investigation of drugs injected directly
into the solid tumor [24, 25, 26].

Administered drugs can lead to partial or full ablation of tumor cells as well as produce
toxicity or side effects on the healthy cells [27, 28]. Moreover, tumor cells can also develop
resistance to the corresponding drug [29, 30, 31]. The internal dynamics of the tumor,
regardless of the drug exposure, also play a crucial role in a successful cancer therapy.
Thus, most of the aforementioned models above and many other studies in the literature
investigate tumor growth and invasion [32, 33, 34, 35, 36], formation of new blood vessels
in the tumor (antiogenesis) [37, 38], and the ability of cancer cells to migrate to a different
location (metastasis) [39, 40].

In [41], Rahman et al. present a simple drug diffusion – binary population model. It is
assumed that a drug is being injected directly into the center of a homogeneous – isotropic
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spherical tumor, and hence the diffusion is radial with constant diffusivity. Furthermore, it is
assumed that a cell is either dead if the concentration of the drug is greater than a threshold
and alive if the concentration is less than this threshold; i.e., the drug acts as a trigger
for cell death. From this model dose-response curves (response as a function of dose) are
produced in order to relate it to relevant empirical data, such as Harvard Medical School’s
LINCS data base (http://lincs.hms.harvard.edu/db/) [42]. Since the data set does not
include replication studies, artificial replication dose-response curves were produced, and the
dose-response curves from the mechanistic model were shown, in many cases, to lie within
95% piecewise-linear confidence bands.

While the model of Rahman et al. [41] performed well against artificial replication data,
the simplicity is burdened by the baggage of assumptions. Transport of drugs in the brain is
a complex process due to the highly inhomogeneous and anisotropic structure of brain tissue,
local pressure differences, and chemcial interactions of the drug with the surrounding tissue.
However, a model that does not obviate negligible contributions falls prey to computational
constraints. Even with parallelization on a supercomputing cluster, would it be useful to an
oncologist that is working directly with a patient?

In this investigation, we keep the simple binary population model, and explore the com-
plexities of drug transport from a single injection into deformed globular tumors (topological
3-spheres). It is well known that diffusion dominates, but we assume it can be inhomoge-
neous and anisotropic. This allows for fast in vivo simulations of direct injection therapies,
which we use to produce dose-response curves, apoptosis hotspots, and optimal injection
locations. This investigation, using patient specific DTI data with a transport - population
model, endeavors to present results to aid practitioners in optimizing treatment strategies.

The remainder of the paper is organized as follows: We begin our discussions by deriving
the inhomogeneous - anisotropic diffusion and binary population models in Sec. 2. Then in
Sec. 3, we develop the computational foundation of the investigation in two steps. First, Sec.
3.1 sets up the finite element scheme. We use Galerkin Finite Element Method for the spatial
discretization and a Crank-Nicolson scheme for the temporal integration. Then the diffusion
tensors are constructed from patient MRI data in Sec. 3.2. Section 4 presents the numerical
simulations and oncological predictions of our study. We first examine the drug diffusion
in the tumor and observe the high inhomogeneity and anisotropy in the concentration heat
maps. Then the apoptosis is simulated by invoking the binary population model. This allows
us to create dose-response curves. Importantly, the model predicts optimal injection sites,
evidenced by the dose-response curves, different from what intuition might suggest. Finally,
the investigation is concluded in Sec. 5 with a discussion on viable oncological applications
and future modeling directions.

2 Drug diffusion and binary population models

In this section we derive the inhomogenous – anisotropic diffusion model and the binary
tumor population model. First we write a general diffusion model. It has been shown
through Magnetic Resonance Imaging (MRI) in the brain that tumors often grow in an
inhomogeneous – anisotropic diffusion-like manner [43, 44, 45, 46]. Using Diffusion Tensor
Imaging (DTI) techniques [47], the effective diffusivity of water in tissue can be estimated.
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Since there is a large contrast between cancerous and healthy tissues, DTI can be used to
map the geometry of a tumor and estimate the diffusivity of water in a tumor [48, 49, 50].
Finally, it is worth noting, due to the infiltrative nature of gliomas, when we use the word
“tumor” we are referring to a tumor region in a similar fashion to the seminal works of
Scherer [51].

Consider a drug with molarity u diffusing from an injection into a porous tumor, with an
effective diffusivity tensor D. Next for the sake of brevity, let x = (x1, x2, x3) be the position
vector. Finally, we model the leak at the boundary of the region of interest as “Newton’s
law of cooling” [52]. This gives us the generic model in Cartesian coordinates

∂u(x; t)

∂t
= ∇ · (D(x)∇u(x; t)) , x ∈ Ω; (1a)

D(x)∇u(x; t) · n = −γu(x; t), x ∈ ∂Ω; (1b)

u(x; t = 0) = ū(x), (1c)

where ū(x) is some generic initial concentration profile of the drug soon after injection and
γ is the constant leak coefficient. We treat the boundary as a buffer zone containing only
non-cancerous cells such that the rate of leakage is similar to the rate of diffusion at the
boundary. Moreover, we neglect the chemical reactions, absorption, and adsorption of the
drug following a similar apprach presented in [24].

We now impose a specific initial condition. In [41] a bump function (compact Gaussian)
decaying to zero just within the domain was used. This represents the short timescale spread
of the distribution profile from an initial Dirac delta function. During inhomogeneous –
anisotropic diffusion, the drug does not diffuse evenly, and hence a bump function that
extends to the endpoints would not capture the irregularities expected in such a problem.
Nevertheless, there are many numerical advantageous to using a bump function. We may
either introduce a sharper bump or try to capture the diffusive irregularities in the initial
condition. In general, for an injection at point xc, we have

ū(r) =
U0

Vb

exp

(
1− R2

b

R2
b − r2

)
, r < Rb

0, r ≥ Rb

(2)

where, r = ‖x− xc‖, Rb is the radius of the bump, U0 is the injected concentration, and Vb

is the normalization constant for the bump function; that is,

Vb =

∫ π

0

∫ 2π

0

∫ Rb

0

exp

(
1− R2

b

R2
b − r2

)
r2 sinφdrdθdφ

2.1 Binary population model

As done in [41], we use a binary population model: the tumor cell is dead after some exposure
time τ (which is much larger than the diffusive time scale), if at any time during the diffusion
process the drug concentration is above some given threshold value uT (τ), otherwise it is
alive. Suppose that the rate of cell death is equivalent to the rate of cell growth; thereby
negating external factors such as nutrition and programmed cell death. This allows us
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to focus on cell death due to the drug concentration, which we expect to be the major
contributing factor, unless the drug is ineffective. We expect the threshold to decrease with
time because it takes more toxins to kill a cell quickly than it does to kill it slowly. Further,
since dose-response to drugs is often assumed to be sigmoidal [53], we expect uT to be a
negative exponential with time τ ,

uT (τ) = a− be−cτ , (3)

where the parameters a, b, and c are back calculated from a representative sample of the
Harvard Medical School LINCS drug data base (http://lincs.hms.harvard.edu/db/) [42].
From the representative sample we calculate what uT (τ = 24 hrs), uT (τ = 48 hrs), uT (τ =
72 hrs) must be in order to produce the empirically observed response. It should be noted
that uT may not be monotonic based on drug resistance and other biological effects.

We have three equations with three unknowns, which is solved explicitly in [41]. In this
paper, we use the following representative threshold values calculated from the dose-response
data of cell-line “C32” and drug “Selumetinib” from the LINCS data set:

uT (24) = 0.230153 µM, uT (48) = 0.0700055 µM, uT (72) = 0.0499662 µM.

From these threshold values, we calculate the parameters of (3),

a ≈ 0.0471, b = −1.4629, and c = 0.0866.

A simple 1-dimensional example of how the binary population works in practice is il-
lustrated in Fig. 1. From the figure whenever u(x, t) > uT (τ) we calculate the fraction of
tumor cells killed due to the exposure at diffusion time, t. If the concentration at point x is
ever greater than the threshold, that point contributes to the apoptosis fraction. Then we
integrate all the apoptosis points over diffusion time t ∈ [0, T ] and divide by the length of
the entire interval [−1, 1].

3 Numerical procedure

In this section, we first describe the numerical procedure to approximate the solution of
the system (1) in Sec. 2. Galerkin finite element method (GFEM) is used for the spatial
discretization and a Crank-Nicolson scheme for the temporal integration. For a practical
introduction finite element method, reader can refer to [54].

For the inhomogeneous – anisotropic diffusivity we incorporate diffusion tensors from
diffusion tensor magnetic resonance imaging (DTI) data. The magnetic field gradients in
different directions from the MRI is used to map out directions of faster and slower diffu-
sion that is normalized to the diffusivity of water molecules. While in medical imaging the
diffusion tensor is predominantly used to identify anomalies, and often averaged out in pref-
erential directions for that reason, we use the tensor itself in the diffusivity of the transport
model. Thus allowing us to produce accurate qualitative simulations of in vivo scenarios.

There are a few studies in the literature integrating FEM with DTI in a modeling frame-
work. Kraft et al. incorporated DTI with FEM to investigate the mechanics of neurotrauma
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Figure 1: A 1-dimensional example of the binary population model. Whenever u(x, t) >
uT (τ), the cells in position x contribute to the apoptosis fraction.
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[55]. In [56], Ramasamy et al. proposed a subject-specific finite element model for the resid-
ual limb to assess the effect of a particular socket on deep tissue injury. They utilized DTI to
reveal the anatomy of muscle fiber and mapped the information onto a finite element mesh.
A nonlinear hyperelastic, transversely isotropic skeletal muscle constitutive law containing a
deep tissue injury model were then solved with FEM. Clatz et al. [57] used FEM to simulate
the invasion of GBM in the brain parenchyma and its mass effect on the invaded tissue.
They described a coupling strategy between reaction-diffusion and linear elastic mechanical
constitutive equations where diffusion tensor information was provided by DTI. In [24], a
convection-enhanced drug delivery (CED), where the anti-cancer agent is directly adminis-
tered into the brain tissue, was introduced. Governing equations concerning the transport
of the therapeutic agent and tissue deformation was solved with the Finite Volume Method,
where the information about the structures of the tissue is acquired through DTI.

3.1 Finite element discretization

Consider the Sobolev space H1(Ω) = {v ∈ L2(Ω) : ∂xiv ∈ L2(Ω) i = 1, 2, 3}, where Ω is the
domain of the PDE from Sec. 2. If u is sufficiently smooth, by multiplying (1a) with a test
function v ∈ H1(Ω) and integrating over Ω using Green’s formula, we obtain the variational
formulation of (1a); that is, find u such that for every t ∈ I = [0, T ],∫

Ω

∂u

∂t
vdx = −

∫
Ω

D∇u · ∇vdx−
∫
∂Ω

γuvds, ∀v ∈ H1(Ω), t ∈ I. (4)

Let
Ωh = {K1, K2, .., Kn} (5)

be a geometrically conforming hexagonal triangulation of Ω.
As a test space, we use the space of scalar valued piece-wise quadratic polynomials; i.e.,

Vh = {p ∈ C0(Ω̄) : p|K ∈ Q2(K), ∀K ∈ Ωh} ⊂ H1(Ω).

Replacing H1(Ω) with Vh, the finite element formulation of (4) reads: find uh such that for
every t ∈ I,∫

Ω

∂uh
∂t

vhdx = −
∫

Ω

D∇uh · ∇vhdx−
∫
∂Ω

γuhvhds, ∀vh ∈ Vh, t ∈ I. (6)

Let {ψi}ni=1 be a basis of the space Vh consisting of the orthogonal nodal basis functions
satisfying ψi(Nj) = δij for every nodal point Nj. For every uh ∈ Vh, there exist time
dependent coefficients ξj(t) such that

uh(x, t) =
n∑
j=1

ξj(t)ψj(x). (7)

From this construction, ξj(t)’s are the nodal values of uh for every time t. If we substitute
(7) in (6), we obtain the following system of ordinary differential equations (ODEs)

M ˙ξ(t) = −(A+R)ξ(t), (8)
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where ξ(t) = [ξ1(t), ξ2(t), .., ξn(t)]T and

Mij =

∫
Ω

ψjψi, Aij =

∫
Ω

D∇ψj · ∇ψi, Rij =

∫
∂Ω

γψjψi. (9)

Note that the diffusion tensor D is defined element-wise. Let 0 = t0 < t1 < . . . < tN = T
be a partition of the interval [0, T ] with the constant time step ∆t = tn+1 − tn. Application
of the Crank-Nicolson scheme for (8) yields

M
ξk+1 − ξk

∆t
= −(A+R)

ξk + ξk+1

2
, (10)

where ξ0 is chosen as the nodal values of ū(x) defined in (1c) of Sec. 2. For the remainder
of the manuscript we take the step size ∆t = 0.02 with N = 60 equal time intervals and the
leak coefficient is set to γ = 0.002. For the implementation of the problem (10), we use the
open source finite element C++ library FeMUS [58].

3.2 Incorporating the diffusion tensor

Diffusion patterns of water molecules in biological tissue can be visualized by means of diffu-
sion tensor magnetic resonance imaging (DTI). The diffusivity in the medium is quantified
at each image voxel (a volumetric pixel) with a diffusion tensor that relates diffusive flux to
a concentration gradient in each Cartesian direction. The three diagonal elements Dxx, Dyy,
and Dzz represent diffusion coefficients measured along each of the principal x−, y−, and
z− axes. The six off-diagonal entries quantify the correlation of Brownian motion between
corresponding principal directions. A generic diffusion tensor can be written as

D =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (11)

where Dij has the unit of mm2/s.
The diffusivities from DTI are usually averaged out and illustrated by condensing the

tensor information into a scalar quantity or plotted as a color encoded texture map. The
former consists of scalar measurements to quantify the magnitude or the shape of the diffu-
sion. In terms of magnitude, mean diffusivity (MD), which is the mean of the eigenvalues of
the diffusion tensor, is one of the most common scalar measurements. On the other hand,
fractional anisotropy (FA), which is the normalized variance of the eigenvalues, is the most
commonly used anisotropy measure. In addition to various scalar measurements, one can also
consider the direction of the major eigenvector (the eigenvector associated with the largest
eigenvalue) and create a color map for the corresponding directions. The most commonly
used color scheme in terms of anatomical planes is as follows; blue is superior-inferior, red
is left-right, and green is anterior-posterior [47]. For an extensive overview of the diffusion
tensor imaging, the reader may refer to [59].

To capture the anisotropies of the diffusion in our numerical simulations we use a dataset
that includes a diffusion tensor magnetic resonance image of a 35-year old male diagnosed
with glioblastoma multiform (GBM). The dataset can be found in the tutorial [60]. From the
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diffusivity data, in Fig. 2, we derive and display the major eigenvector direction (indicated by
the colors prescribed in the preceding paragraph), fractional anisotropy, and mean diffusivity.
In the figure the GBM region can be observed around the right frontal lobe.

(c)(b)(a)

Figure 2: Axial view of the brain DTI with illustrations from 3DSlicer of (a) the major
eigenvalue direction, (b) fractional anisotropy, and (c) mean diffusivity. In all images the
tumor region can be seen around the right frontal lobe.

The coordinate dimensions of the sample volume is 256×256×51 with voxel size 1×1×2.6
mm. In the pre-processing of the DTI volume, we utilized the open source software 3DSlicer
[61], which allows advanced medical image analysis and processing. It provides a graphical
user interface with various modules as well as a Python console, which gives access to data
arrays of image models for further analysis.

The diffusion tensor is symmetric and positive definite (SPD) but in practice the posi-
tive definiteness can be corrupted due to measurement noise. Thus we first re-sample the
DTI volume to correct the tensors that are not positive semi-definite. We are particularly
interested in diffusion in the tumor tissue. Hence, we extract a region of 64 × 64 × 64mm3

from the re-sampled volume enclosing the entire tumor region and centered at the origin to
create the region,

Ω = {(x, y, z) : −32mm ≤ x, y, z ≤ 32mm}. (12)

We take Ω as the computational domain of the problem described in (1). After the re-scaling,
the tumor region fits completely inside the rectangular subdomain of Ω,

T = {(x, y, z) : −7.68mm ≤ x ≤ 21.76mm,−19.2mm ≤ y ≤ 19.2mm,−14.08mm ≤ z ≤ 28.16mm} ⊂ Ω.
(13)
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Now let

Di =

Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (14)

be the diffusion tensor defined for the hexagonal element Ki in (5). Note that we define
D element-wise so it is essentially piece-wise discontinuous across the problem domain. Let
Da
i = (Dxx +Dyy +Dzz)/3 be the element-wise apparent diffusion coefficient (ADC).

A major prediction made in this investigation is the fraction of the tumor volume killed
against preassigned thresholds, uT (24), uT (48) and uT (72), from Sec. 2.1. This task essen-
tially requires the elementwise identification of the tumor cells in Ω. The only quantitative
information about the sample data are the diffusion tensors at each voxel provided by DTI.
No method is known to precisely differentiate the tumor and healthy cells by means of diffu-
sion tensor information. However, we employ the fact that water diffuses significantly faster
in GBM tissue than the surrounding healthy tissue [62].

We first assume that there is no tumor cell outside the region T. Then, we will mark any
element Ki in T as cancerous if Da

i > 0.002. This is the value where we observe a relatively
sharp transition between the normal and cancerous regions. To calculate the apoptosis
fraction, first consider the unit step function

H(s) =

{
1, s > 0,

0, s ≤ 0;
(15)

and the sub-region TC ⊂ T defined as

TC = {x ∈ T : Da
i (x) > 0.002} (16)

We compute the fraction of cells, i, that were once exposed to a concentration higher than
uT at the simulation time t = tn as follows,

i(τ, tn) =

∫
TC
H(maxt∈[0,tn] [u(x, t)− uT (τ)])dV∫

TC
dV

(17)

where τ = 24, 48 or 72 hours. Then to get the apoptosis fraction, ℵ, we prescribe tn = T in
(17),

ℵ(τ) = i(τ, T ). (18)

Note that the resulting fractions above are relative to the sub-region TC since we assume all
tumor cells lie in TC .

Different cross sections of the computational domain Ω indicating the element-wise ADCs
can be seen in Fig. 3. We construct Ω to be consistent with the anatomical coordinate system
described in [63]. Positive directions of the x, y, and z axes are chosen to be anterior, left,
and superior, respectively. Consequently, xy, xz, and yz coordinate planes correspond to
transverse, sagital and frontal planes, respectively. In Fig. 3, for example, the horizontal
plane with respect to the monitor corresponds to the transverse plane.

DTI is a non-invasive technique based on the measurement of the diffusion of water
molecules. Therefore, the diffusion tensor D may be quantitatively different across the tissue
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Figure 3: Computational domain with three representative slices centered at xc =
(6.4mm, 0, 0). The heat map indicates the magnitude of the apparent diffusion coefficient
(ADC). The color scheme is scaled to a visibly distinguishable range.

of interest when another substance, such as a therapeutic agent, is used. Seemingly, there
is no experimental study proposing a numerical relationship between the diffusion tensor
of water and other fluids in brain tissue. Therefore, we will assume that although water
and corresponding drug molecules have different fluidic properties, they display qualitatively
similar behavior in the same medium. With this assumption, we will treat the diffusion
tensors that we extracted from the dataset, described above, as the diffusion tensors of the
agent used in the simulated treatment. For information on treatments of this type, the
reader can refer to [57, 24].

4 Results and predictions

In this section we present the in vivo direct injection treatment simulations resulting from
the numerical solutions of our model (1). Based on the location of T, we set the initial
condition (15) (illustrated in Fig. 4) as follows

u(x; t = 0) =
U0

Vb

{
exp

(
1− R2

b

R2
b−r2

)
for r ≤ Rb,

0 for r ≥ Rb;
(19)

where Vb = 1.1990mm3, Rb = 12.8mm, and r =
√

(x− 6.4)2 + y2 + z2. We set a very high
initial concentration of U0 = 1.5 µM for illustrative purposes.

In Sec 2.1, we assumed that if the concentration at the element Ki is above a certain
threshold, uT (τ), at any simulation time, t, then Ki will die out after the corresponding
exposure times, τ . With this assumption, we can create a heat map indicating the regions
which is predicted to die after the related exposure times, τ = 24, 48, and 72 hours. It should
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be noted that although the precise tumor region is TC , we will display the apoptotic region
within T for illustration purposes. Also note that the drugs eventually leak out beyond
the region TC and can reach unintended regions of the brain resulting in unpredictable side
effects. In several clinical brain tumor trials, poor targeting of the tumor region is identified
as one of the most significant obstacles to efficient implementation of CED [64, 65]. Thus,
the spread of the drug into the healthy brain tissue can be considered as one of the potential
sources of toxicity which may arise in CED therapies. Other sources of toxicity may be from
the physical damage to the brain tissue caused by the catheter, mechanical stress induced
by the infusion of the drug, or the type of drug used [66, 67, 68, 69, 70]. In this work,
we assume that any cell exposed to concentrations above the threshold, uT (τ), will have
an adverse reaction to the drug, and we leave a more detailed investigation of toxicity to a
future study.

In Fig. 5, we present the apoptotic region induced by the initial bump function within
the tumor region T (Fig. 5a) and the entire computational domain Ω (Fig. Fig. 5b); that
is, the region of cells expected to die within an exposure time τ simply due to the initial
condition before any diffusive spreading has occurred. In the figure, the outermost red region
represents the location of the cells where the drug concentration is below any threshold value.
The innermost dark blue region shows the locations where the concentration is above the
threshold value uT (24), and the heat map illustrates regions where the concentration of the
bump function is above the respective threshold values.

As the drug diffuses across the computational domain, Ω, more cells are exposed to
the drug over the course of the simulation. Figure 6 shows the planar projections of the
concentration profiles as a heat map at increasing simulation times. Red represents a higher
concentration of drugs and deep blue represents a concentration of zero. To improve the
visibility of simulations, we scale the data to visible data range. The inhomogeneous -
anisotropic nature of the diffusion can be clearly observed from the concentration profiles in
Fig. 6.

Now, we can compute the concentration levels at particular simulations times and com-
pare them to the threshold values. For a particular simulation time, tn, the volume fraction
of the tumor where the concentration is above the threshold, uT (τ), for the first time is
calculated and summed with that of all previous times ti where i < n, using (17). When
this is done for the final time, tn = T , which is chosen to be large enough that all of the
drug mixture leaks away after this time, then we have our apoptosis fraction, ℵ(τ) in (18).
We report the exact fractions, i(τ, tn), from (17) in Table 1. Note that the fourth column
presents the final values that indicate the percentage of the tumor cells killed, ℵ(τ).

Table 1: Convergence of apoptosis fraction approximation for U0 = 1.5 µM

tn = 0.2s tn = 0.5s tn = 0.8s tn = 1s tn = 1.2s
i(24, tn) 0.498408 0.528229 0.528229 0.528229 0.528229
i(48, tn) 0.698709 0.814072 0.864979 0.873871 0.877210
i(72, tn) 0.750721 0.878613 0.909647 0.915700 0.921299

The effects of the inhomogeneous - anisotropic diffusion on apoptosis can be observed
in Fig. 7. For example, the drug efficacy is significantly higher on the transverse plane
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Figure 4: Initial concentration profile u(x; t = 0s) centered at the location xc = (6.4mm, 0, 0)
with an initial injection molarity of U0 = 1.5 µM.

(b)(a)

Figure 5: Apoptotic region induced by the initial bump function centered at xc =
(6.4mm, 0, 0), with a very high drug concentration of U0 = 1.5 µM for illustration pur-
poses, within (a) the tumor region T and (b) the computational domain Ω. The inner most
blue region shows the locations where the tumor cells will die out within 24 hours. The
outermost orange cells are predicted to die out within 72 hours of exposure. Finally, the
deep red cells towards the outside of the regions do not die after up to 72 hours of exposure.
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(a) (b)

(c) (d)

Figure 6: Concentration profiles for an initial injection of U0 = 1.5 µM centered at xc =
(6.4mm, 0, 0) at t = 0.2, 0.5, 0.8, 1 in seconds, [(a) - (d)] respectively. The heat map is scaled
to the visible range for each figure; i.e., the intensities are with respect to the concentration
distribution in each figure independently of the other figures. Each figure is displayed with
the intersection of three representative slices and two separate views of the frontal, yz-plane,
and transverse xy-plane. The inhomogeneous - anisotropic nature of the diffusion can be
observed in the planar slices accompanying the 3-D figures.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7: Cells with a drug concentration higher than the given threshold, i(τ, tn), at
simulation times tn = 0.2, 0.5, 0.8, 1, in seconds [(a,b) - (g,h)] respectively, after an initial
injection of U0 = 1.5 µM centered at xc = (6.4mm, 0, 0). The column on the left, (a), (c),
(e), (g), shows the entire computational domain, Ω, and the column on the right, (b), (d),
(f), (h), shows the tumor region, T. Each figure is displayed with the intersection of three
representative slices and two separate views of the frontal, yz-plane, and transverse xy-plane.
It is observed that the number of cells exposed to a sufficient amount of drugs is higher on
transverse, compared to the sagital, xz-plane, and the frontal plane. The inner most blue
region shows the locations where u(x, t) > uT (τ = 24hours) for any t = tn. The outermost
orange cells correspond to τ = 72 hours. Finally, the deep red cells towards the outside of
the regions has concentrations u(x, t) < uT (τ) for all t and τ .
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compared to the sagital and frontal planes. This can be seen in Fig. 7h where the apoptotic
region covers almost the entire transverse plane, while nontrivial portions of the frontal plane
remains unscathed. Moreover, even though relatively high apoptosis fractions are achieved
in the tumor region, T, it is observed in Fig. 8 that significant amounts of the drug leak out
of T. So our results indicate that considerable portions of the healthy cells are subject to
toxicity. We can visually inspect the leakage of the drug by superimposing the representative
slices of the computational domain Ω and the sub-region T (Fig. 8).

(a) (b)

(c) (d)

Figure 8: A visual demonstration of toxicity. The effect of the threshold is extended beyond
the tumor region, T, (the dark blue rectangular mesh), and the heat map is calculated in
the yz, xz, and xy-planes from (17) at simulation times tn = 0, 0.2, 0.5, 1, in seconds [(a)
- (d)] respectively. It is observed that most of the drug mixture eventually diffuses outside
of the tumor region. Thus, significant portions of healthy cells may potentially be subjected
to toxicity. The inner most blue region shows the locations where u(x, t) > uT (τ = 24hours)
for any t = tn. The outermost orange cells correspond to τ = 72 hours. Finally, the deep
red cells towards the outside of the regions has concentrations u(x, t) < uT (τ) for all t and
τ .

It is observed in Table 1 that the current configuration of the problem leads to partial
ablation in the tumor region since 92 % of the region dies after 72 hours. In fact, as shown in
the dose-response curves in Fig. 9, the apoptosis fraction seemingly asymptotes as we increase
the amount of initial injection because the interaction of the drug with several obstacles, local
inhomogeneities, and leakage, do not allow sufficient concentrations to diffuse to every part of
the tumor region. Thus, we can conclude that our mechanistic model is capable of reflecting
the diffusion patterns mostly governed by location-wise structural differences.

Considering the internal injection scenario, several ways can be proposed to improve the
efficacy of the drug without changing its fluidic properties. An obvious way may be to use a
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higher initial concentration, U0. In fact, we can create dose-response curves for a broader view
of the effects of various initial concentrations U0 on the final apoptosis fractions. Figure 9
demonstrates the final percentages of the tumor that is killed for 31 different initial injections
varying from U0 = 0.01 µM to U0 = 5 µM. Dose-response curves reveal that even though the
initial injection is excessively elevated, it is not possible to reach a complete tumor ablation.
Indeed it is observed that apoptosis fractions barely improve after approximately U0 = 2
µM for τ = 48 and 72 hours exposure times. We reported in Fig. 8 that even U0 = 1.5
µM causes the presence of significant concentrations of drugs outside of the tumor region T.
Thus we can conclude that the use of initial drug concentrations outside of a certain range
is prohibitive and can severely contribute to toxicity.

Figure 9: Dose-response curves (24, 48, and 72 hours from bottom to top) produced from
31 different initial injection concentrations varying from over the interval [0.01, 5]. It can be
seen that the apoptosis fraction starts to asymptote beyond U0 = 2µM for 48 and 72 hours
exposure options.

Another important parameter effecting the apotosis fraction is the location of injection.
Our initial choice as the center of the bump function is (6.4mm, 0, 0), which we pick by
visual inspection to be near the center of the tumor. We found that changing the injection
location greatly effects the diffusion pattern, and hence the final apoptosis fraction. In this
sense, an important prediction in this investigation is that a seemingly poor location in T in
terms of the distance from the center of the tumor bulk can yield higher apoptosis fractions
than some locations that are close to the tumor center. To illustrate this phenomenon, in
Fig. 10, we choose four different injections points P1(6.4,−3.84,−6.4), P2(−3.84, 0,−7.68),
P3(−3.84,−3.84,−7.68), and P4(0, 12.8, 0) (all in mm), and create dose response curves
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for each location. Our results demonstrate that finding the optimal injection location to
maximize apoptosis fractions is quite an unpredictable process and cannot be achieved with
a basic visual inspection. For example, we pick P4 to be the “poor” location considering its
position relative to the center of the tumor, and expected to get lower apoptosis fractions
compared to the other locations, but Fig. 10 shows a different outcome. Although P1, P2,
and P3 yield relatively similar patterns, P4 produces a better results for 48 and 72 exposure
times after U0 = 0.8 µM . However, efficacy is remarkably low for P1 comparing to others if
one opts to measure the apoptosis after 24 hours. We should also note that similar to the
initial findings, none of these configurations lead to full ablation in the tumor region.
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Figure 10: Dose-response curves with 4 different injection points: P1(6.4,−3.84,−6.4),
P2(−3.84, 0,−7.68), P3(−3.84,−3.84,−7.68), and P4(0, 12.8, 0) (all in mm). (a) 24 hour
dose-response curves. (b) 48 hour dose-response curves. (c) 72 hour dose-response curves.
Although P4 is picked as an intuitively “poor” location in terms of distance to the center of
the tumor bulk, it yields better efficacy for 48 and 72 hour exposure times after U0 = 1 µM
and U0 = 0.7 µM, respectively.

We can further investigate this idea in a slightly different context. Let us manually choose
20 different injection points around the tumor region and calculate the apoptosis fractions by
fixing the initial injection to U0 = 1.5 µM. We then label corresponding locations with these
fractions and display them inside the tumor region T in Fig. 11. In the figure, blue points
represent lower efficacy (69%) and red points represent higher efficacy (90%) for an exposure
of 72 hours. It is observed that the injection location has a significant influence on the
efficacy of the drug. For example, in Fig. 11, P4(0, 1, 0) (the right most red point) from Fig.
10 is represented and had a much higher efficacy than several points taken around the center.
In a realistic treatment case, one can increase the number of points used in the simulations
to obtain broader information about the optimal injection sites. However, if the same figure
is created with a sufficient number of injection points around (and even outside) the tumor
region, we can create a more fine-grained apoptosis heat map. In this way, we can obtain a
volumetric partition of the tissue of interest with respect to mean apoptosis fractions. Such
a work-flow can allow practitioners to determine the optimal infusion locations. Once the
corresponding partition is identified, we can utilize the simulation to find an ideal injection
amount which can strike a balance between toxicity and efficacy.

In 3D simulations, computation time is undoubtedly of great importance and essentially
determines if the proposed model is feasible in practical applications. In finite element
models, the type and number of elements in the computational domain is the primary fac-
tor effecting the computation time. In this paper, we constructed the domain with 98403
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(a)

(b)

Figure 11: Location based apoptosis fractions with U0 = 1.5 µM based on 20 injection points.
The numbers attached to the points are the predicted apoptosis fractions at these locations.
(b) is a magnified version of (a).
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bi-quadratic hexagonal elements. We should note that the number of elements must be de-
termined by the number of diffusion tensors existing in the segmented volume of the original
data.

Our computing environment is 9th Generation Intel(R) Core(TM) i7-9750H (12MB Cache,
up to 4.5GHz, 6 cores) with 32GB DDR4-2666MHz RAM. We run the simulations with an
MPI-based parallel environment on four cores and observed that computation time is ap-
proximately 15 minutes for one simulation with an initial injection of U0 = 1.5 µM and an
output of apoptosis fractions for a given threshold, uT (τ), the results of which are reported
in Table 1 and 5.2 hours to create the dose-response curve using 31 initial injection values
in Fig. 9. We should carefully note that the number of elements in this framework should
be completely determined by the dimension of the diffusion tensor volume extracted from
the original data. Thus, to be able to describe the corresponding quantities in finer detail,
diffusion tensor images with higher resolutions are needed, but in this case we need a more
powerful environment to obtain the results in a reasonable computing time.

In future studies, a more realistic computational domain may be created. For simplicity,
we worked with a cubic domain in this study. However, it may possible to locate and cut
out the tumor region more accurately and create a volumetric mesh based on this segmented
region. A rough description of the tumor region extracted from the original data can be
seen in red in Fig. 12. We display the tumor along with a discretized representation of the
brain. We can then feed this mesh structure into the existing model. This approach has the
potential to generate a more realistic model, but it can be quite challenging. For example, we
would need to properly address how to interpolate the diffusion tensors across the boundary
of this new domain if boundary conditions are to be imposed only on the surface of the
tumor volume.

5 Conclusion and future work

Brain tissue poses a unique transport challenge due to the highly inhomogeneous - anisotropic
nature of the medium. Since drug exposure directly impacts cell death, the geometry and
topography of the tumor will have a significant effect on efficacy. Further, the tumor will also
grow in an inhomogeneous - anisotropic manner [43, 44, 45, 46], and hence its structure can be
quite unpredictable. Diffusion Tensor Magnetic Resonance Imaging (DTI) provides structure
level information on an individual basis [47]. While there have been articles on employing
DTI to study drug transport in the brain [5], thus far none have simulated the efficacy of a
drug as a consequence of drug transport. With a drug transport - tumor population coupled
model, there is potential in producing computer aided treatment strategies.

The response of cancer cells to a therapeutic agent is undoubtedly a highly complex
phenomenon. However, some aspects of it can be addressed with the help of a mathematical
model. In this sense, our aim in this study was to build a partial differential equation
framework based on patient-specific data that can be used to predict the efficacy of drug
diffusion in the brain tissue occupied by tumor cells. Moreover, this framework may be
used to create diffusion models which take into account more complex considerations. For
example, a problem encountered in some cancer therapies is drug resistance, which can
be defined as the ability of cancer cells to survive and grow despite various anti-cancer
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Figure 12: Approximate tumor region segmented from the original DTI volume. The primary
tumor region can be seen in red along with a discretized representation of the brain
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treatments [71]. Further, oxygen concentration also has an effect on drug efficacy [72, 73, 74,
75]. In this paper, we assumed that the tumor cells exposed to a drug concentration above
certain threshold values will be ablated after the corresponding exposure times. Finally,
our model does not accommodate gliomatosis cerebri where the infiltration is so extensive
that no central focal area of the tumor can be located [76]. However, if reliable empirical
knowledge is present about drug resistance, oxygen concentration, and a fine grained map of
the infiltration, a time dependent or location-based threshold model may be integrated into
this framework. In this regard, using finite element method in the model provides flexibility
since it allows us to attach scalar quantities in the desired locations.

In future studies we propose to integrate this mechanistic model with a statistical model
capable of predicting dose-response curves for new individuals for whom we have access to
genetic information as well as DTI/MRI images of tumors. Our mechanistic pharmacokinetic
models (PKM), in their original form, may not predict the drug response in new patients.
Omics models, on the other hand, connects the genetic information of patients with their drug
responses to predict the expected response for the same drug in a new patient. However, most
Omics models do not explicitly take into account the properties of the tumor. Therefore,
the Omics based model will produce similar expected response to the same drug among
patients with similar genetic makeup even though their tumors may have very different
diffusivities. Naturally, we would like incorporate both pharmacokinetic and Omics based
models to increase our understanding of the impact of tumor and genetic heterogeneity on
drug responses. However, combining these two approaches are difficult because PKM cannot
handle the high dimensional nature of genetic information (typically in the order of tens-
of-thousands), while the Omics based models use a regression framework to connect drug
response with genetic information and the physical properties of the tumor can be viewed
as a predictor at best, thereby losing the spatial information of local diffusivities and tumor
geometry.

The model we propose can offer a way combine PKM with Omics methodology in the
following fashion. Observe that, the binary population model (Sec. 2.1) is the key construct
that connects the concentration profile with the observed dose-response curves via three free
time-invariant parameters a, b, and c. Now, if two patients with similar tumor properties
produce different responses to the same drug, the foregoing free parameters will be able
to capture the differences. Therefore, we view these parameters as individual-specific and
any individual differences will be captured via these parameters. Consequently, a regression
model connecting these parameters with Omics data can be posited. Once the regression
model is trained, we can predict â, b̂, and ĉ for a new patient and use these estimates with the
PKM output to predict the dose response for new patient with different genetic information
and tumor diffusivities.

It should be noted that this work assumes histological constancy (genetic homogeneity),
however within a patient tumor this may not be the case [77, 78, 79, 80]. Moreover, there
may be temporal heterogeneity, which may lead to therapeutic resistance [77, 81]. However,
targeted therapy protocols often do not consider these heterogeneities and focus on the
presence or absence of mutations despite the fact the intratumor heterogeneity may induce
different responses to the same therapeutic agent in different regions of the tumor thereby
severely impacting expected outcome [81, 82]. Several therapeutic strategies have been
proposed to accommodate such heterogeneity [83, 84]. Despite the histological constancy
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assumption, mathematically, multi-foci drug delivery is more beneficial than single focus
modes. Although this finding is yet to be experimentally tested in the context of GBM, we
note that theranostic experiments conducted on heterogeneous ovarian cancer demonstrated
multi-foci delivery of nanoparticle drugs elicited strong therapeutic response [85]. In fact,
our approach offers mathematical support to therapeutic strategies that rely on non-invasive
imaging to identify molecular subtypes in tumors to guide the course of treatment [86].

In addition, while the binary population model has computational advantages due to its
simplicity, a more accurate model would be a stochastic dynamical system that is depen-
dent on the concentration threshold. One concern may be the complexity of coupling, but
fortunately transport happens on a much faster timescale than apoptosis. We would solve
the partial differential equations for the transport, and then tackle the population dynamics
to produce the apoptosis fractions. However, as with any model, adding more complexity is
counterproductive unless it is accompanied by reliable data.

These challenges give the scientific community a singular opportunity to develop both
biological and physical experiments to accurately estimate parameters and test the models.
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Grégoire Malandain, and Nicholas Ayache. Realistic simulation of the 3-d growth of
brain tumors in mr images coupling diffusion with biomechanical deformation. IEEE
transactions on medical imaging, 24(10):1334–1346, 2005.
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