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Computational p-Willmore Flow with Conformal Penalty

ANTHONY GRUBER and EUGENIO AULISA, Texas Tech University

Fig. 1. Area-preserving 2-Willmore flow with conformal penalty applied to a cow mesh of 23.4k triangles. Time steps pictured: 0,1,50,90,130. Area change

<0.3%.

The unsigned p-Willmore functional introduced in [Mondino 2011] general-

izes important geometric functionals which measure the area andWillmore

energy of immersed surfaces. Presently, techniques from [Dziuk 2008] are

adapted to compute the first variation of this functional as a weak-form

system of equations, which are subsequently used to develop a model for

the p-Willmore flow of closed surfaces inR3. This model is amenable to con-

straints on surface area and enclosed volume, and is shown to decrease the p-

Willmore energy monotonically. In addition, a penalty-based regularization

procedure is formulated to prevent artificial mesh degeneration along the

flow; inspired by a conformality condition derived in [Kamberov et al. 1996],

this procedure encourages angle-preservation in a closed and oriented sur-

face immersion as it evolves. Following this, a finite-element discretization

of both procedures is discussed, an algorithm for running the flow is given,

and an application to mesh editing is presented.
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1 INTRODUCTION

As another example, the reliableHelfrich-Canhammodel for biomem-

branes (see [Helfrich 1973]) is based on the well-studied Willmore

energy (see [Athukorallage et al. 2015; Bohle et al. 2008;Marques and Neves

2014; Mondino 2011; Weiner 1978; White 1973; Willmore 1965] and

references therein)

W2 (D) =

∫
"
� 2 3`6,

whose !2-gradient flow has been proven to converge smoothly to

a global minimum when the surface genus and initial energy are

sufficiently low [Kuwert and Schätzle 2001; Mondino and Nguyen

2014] (c.f. Figure 4). Due to its pleasing aesthetic character, theWill-

more flow has further attracted the interest of computational math-

ematicians and scientists, and has been studied numerically in a va-

riety of contexts including conformal geometry, geometric partial

differential equations, and computer graphics. See e.g. [Crane et al.

2013; Dziuk and Elliott 2013; Joshi and Séquin 2007] and the refer-

ences therein.

1.1 Related work

Besides the inherent mathematical challenges present in geomet-

ric flows (involving e.g. convergence, changes in global topology,

and singularity formation), their governing equations introduce a

number of computational difficulties as well. In particular, discrete

surfaces are often stored as piecewise-linear data, such as meshes

of simplices, and it is taxing to find a satisfactory method of ex-

pression for second-order geometric phenomena such as curvature.

There have been two broad approaches to this problem in the cur-

rent literature, which can be thought of colloquially as arising from

discrete versus discretized perspectives on the issue.

In discrete geometry, the aim is to use global characterizations

from geometry and topology to develop fully-discrete analogues
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1:2 • Anthony Gruber and Eugenio Aulisa

of classical geometric quantities, which are in some sense inde-

pendent from their original (continuous) definitions. Tools such as

exterior calculus, the Gauss-Bonnet and Stokes’ Theorems are em-

ployed to define length, area, curvature, etc. on a simplicial surface,

which is accomplished through enforcing global geometric relation-

ships rather than considering local values at specific places (nodes)

on a mesh. The main advantages of this approach are relative inde-

pendence from mesh quality, and sparse linear formulations which

are fast to solve. Some notable disadvantages present here are the

restriction of such methods (so far) to triangular meshes, and the

fact that several equivalent definitions of geometric quantities in

the smooth setting become inequivalent when treated in this way

(see [Crane and Wardetzky 2017] for details). Further information

on this area can be found in [Bobenko 2008; Deckelnick and Dziuk

2006; Droske and Rumpf 2004; Gu et al. 2009;Meyer et al. 2003] and

the references therein.

Conversely, discretized geometry involves approximating con-

tinuous geometric quantities as well as possible by using a good

choice of nodal mesh points, so that the difference between the

continuous and discrete objects vanishes in the limit of mesh refine-

ment. Traditional finite element mathematics is based on this idea,

whereby the necessary calculations are done locally and element-

wise without any particular adherence to global phenomena except

in the limit. The primary advantage of this approach is its flexibil-

ity with respect to applications, problem formulations, and mesh

data. Its main disadvantages are its inherent sensitivity to mesh

quality, and its agnosticism with respect to the global aspects of

surface geometry. See [Dziuk and Elliott 2013] for a compendium

of knowledge and techniques in this area.

Remark 1.1. In fact, the failure of the finite element method to

capture global relationships was a primarymotivation for the devel-

opment of a discrete geometric theory, as mentioned in [Bobenko

2008; Gu et al. 2009].

Due in part to their useful application to problems such as mesh

editing (see [Bobenko and Schröder 2005]), the computational de-

tails of geometric flows have been examined previously from both

of the above perspectives. In [Dziuk 2008], the author studies para-

metric Willmore flow using finite-element methods. In particular,

the author develops and discretizes a model for the Willmore flow

of surfaces, detailing some examples and proving stability of this

discretization. On the other hand, the authors in [Crane and Wardetzky

2017] use ideas fromdiscrete conformal geometry to develop a conformally-

constrained model for the Willmore flow. More precisely, they de-

velop results which enable the direct manipulation of surface curva-

ture, allowing for angle-preserving mesh positions to be recovered

using a natural integrability condition. Beyond the Willmore flow,

many computational studies have also been done which focus on

the mean and Gauss curvature flows, Ricci flow, and Yamabe flow

of surfaces; see [Deckelnick et al. 2005; Joshi and Séquin 2007] and

their enclosed references for more details.

This work adopts a discretized perspective similar to [Dziuk 2008;

Dziuk and Elliott 2013] and aims to extend the computational study

of curvature flows that arise from functionals which depend on

some power of the mean curvature of an immersed surface. To that

MCF

(0-Willmore)
Willmore flow

(2-Willmore)
4-Willmore flow

Fig. 2. p-Willmore evolution (with conformal penalty) of a le�er “C” when

? = 0, 2, 4, respectively. Colored by one component of mean curvature and

oriented top to bo�om.

end, the main object of study is the !2-gradient flow of the (un-

signed) p-Willmore functional introduced in [Mondino 2011],

W? (D) =
1

2?

∫
"
|� |? 3`6, ? ≥ 1.

Asmentioned in [Gruber et al. 2019], this definition can be extended

to include the case ? = 0, so that the surface area, (unsigned) total

mean curvature, and Willmore functionals are encompassed here

asW0,W1, andW2, respectively. It follows that the 0-Willmore

flow is simply MCF, and usual Willmore flow occurs when ? = 2.

It is well-known that the analytic properties of these flows are

quite different fromone another. For example, convex surfaces evolv-

ing under MCF become extinct in finite time (see [Huisken 1984]),

while the Willmore flow can terminate in a round sphere of finite

(positive) radius [Kuwert and Schätzle 2001]. In light of these dif-

ferences, it is reasonable to wonder how the behavior of a geomet-

ric flow depends on the exponential weight of the mean curvature

being measured, and the p-Willmore functional provides a natural

way to investigate this idea. In particular, it is apparent from simula-

tion that when ? > 2, (at least some) surfaces which become spher-

ical under the p-Willmore flow will instead grow indefinitely. This

is not surprising, as the p-Willmore functional is only invariant un-

der changes of scale when ? = 2 (c.f. [Gruber 2019]). Therefore,

an immersed surface can easily decrease its p-Willmore energy by

growing uniformly, so that its mean curvature decreases pointwise.

This phenomenon is displayed in Figure 2, where the p-Willmore

evolution of a C-shaped surface is compared when ? = 0, 2, 4. More-

over, Figure 12 shows that even when the various p-Willmore flows

terminate at a common immersion, their intermediate surfaces may

be quite different depending on the value of ? .
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1.2 Contributions

In the following sections, techniques from [Dziuk 2008] will be

adapted to express the !2-gradient ofW? in a computationally-

accessible way, resulting in an appropriate weak formulation of

the p-Willmore flow problem. Once the relevant system of PDE

has been established, geometric constraints on surface area and

enclosed volume will be considered and introduced into the flow

model as Lagrange multipliers, leading to new and different behav-

ior. Moreover, the problem of mesh degradation along the flow will

be discussed, and aminimization procedurewill be given which dra-

matically improves mesh quality throughout the p-Willmore flow

at the expense of solving another nonlinear system at each time

step. This procedure is inspired by a conformality criterion of Kam-

berov, Pedit, and Pinkall derived in [Kamberov et al. 1996] and is

similar in spirit to the least squares conformal mapping (LSCM)

technique introduced in [Lévy et al. 2002]. Consequently, the p-Willmore

flow and mesh regularization systems will be discretized and imple-

mented on manifold meshes of triangles and quadrilaterals using

the Finite Element Multiphysics Solver FEMuS [Aulisa et al. 2014],

and a fully-automated algorithm given for running the p-Willmore

flow with conformal penalty. Finally, some specifics of this imple-

mentation will be discussed, as well as an application to mesh edit-

ing.

The p-Willmore flow algorithm introduced here has the follow-

ing benefits:

• It provides a unified computational treatment of geometric

flowswhich arise from functionals whose integrand is a power

of the unsigned mean curvature, includingMCF and theWill-

more flow.

• It is flexible with respect to geometric constraints on area

and volume, as well as mesh geometry data (tri or quad) and

surface genera.

• It affords the ability to near-conformally regularize the sur-

face mesh along the flow, preventing mesh degeneration at

the expense of an additional nonlinear solve at each time

step.

• It is entirely minimization-based and therefore amenable to

a large library of developed theory and techniques, including

those in [Dziuk and Elliott 2013].

Remark 1.2. The regularization procedure mentioned above can

be easily modified to require only a linear solve, at the expense

of more roughness in the mesh (c.f. Section 5). See Figure 3 for a

comparison on a realistic cow surface. In addition, note that the

conformal penalty regularization in this work is not a true con-

straint on the conformality class of the evolving surface. There-

fore, the approach here differs from the work done on conformally-

constrainedWillmore surfaces in [Bohle et al. 2008; Crane et al. 2011;

Schätzle 2013] and others.

Though the p-Willmore flow with conformal penalty is useful, it

is prudent tomention some challenges that have yet to be overcome.

In particular, the formulation considered here can be sensitive to

initial data due to the high degree of nonlinearity present in the

Fig. 3. A performance comparison of linear versus nonlinear conformal

penalty regularization on a cow with 34.5k triangles. Original mesh (le�),

linear algorithm (middle), nonlinear algorithm (right). Simulations take

roughly 2s, 4s, resp. on a 2.7 GHz Intel Core i5 with 8GB of RAM.

p-Willmore equation, especially when large values of ? are consid-

ered; typically, the flow cannot be run on rough meshes with a high

degree of noise, and can be relatively unstable when ? > 2. More-

over, the nonlinear systems involved in the p-Willmore flow algo-

rithm are computationally demanding, requiring significant effort

on finemeshes whichmay be prohibitively expensive for “real time”

use cases; specifics related to the figures in this work, including the

solver time required are recorded in Table 1. Finally, the p-Willmore

flow with conformal penalty is not yet well-understood with re-

spect to theoretical results on consistency, stability, or convergence.

Such questions provide ample opportunity for future work in this

area.

2 PRELIMINARIES

It is beneficial to recall how to manipulate evolving surfaces mathe-

matically. Let" be a compact, connected�2 surfacewithout bound-

ary. For Y > 0, consider the family of surface immersions D : " ×

(−Y, Y) → R3 with images " (C) ≔ D (", C), and let X ≔ 3/3C |C=0
be the variational derivative operator. Then, if ¤D denotes differenti-

ation with respect to C , the initial surface " (0) is said to undergo

p-Willmore flow provided the equation

¤D = −XW? (D), (1)

is satisfied for all C in some interval (0,) ]. Using standard tech-

niques from the calculus of variations, it can be shown (see [Gruber et al.

2019]) that for closed surfaces " this condition implies the scalar

equation

〈 ¤D, # 〉 = −
?

2
Δ6

(
� |� |?−2

)
− ?� |� |?−2

(
2� 2 −  

)
+ 2� |� |?, (2)

where # : " × (−Y, Y) → (2 is the outward-directed unit normal

vector to " (C) for each C , Δ6 is the Laplace operator associated to

the metric 6 on the surface, and  is its Gauss curvature.

Remark 2.1. Note that from here on the Einstein summation con-

vention will be employed, so that any index appearing twice in an

expression (once up and once down) will be implicity traced over.

While equation (1) can be discretized by itself and used to define

a normally-directed p-Willmore flow, it is advantageous to work di-

rectly with position instead of themean curvature� . Besides being

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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more straightforward to implement, this allows for the considera-

tion of tangential motion during the flowwhich can help regularize

the surface mesh as it evolves (see [Dziuk and Elliott 2013]).

Remark 2.2. Though position-based flow techniques are more

standard in the literature, researchers in [Crane et al. 2013] have

had success working directly with curvature. Using a natural inte-

grability condition, they are able to recover surface positions that

maintain full conformality with respect to the reference immersion.

A major advantage of this approach is that such conformality is

built directly into the flow, completely eradicating mesh degrada-

tion along the evolution.

To develop a suitable model for the p-Willmore flow of surfaces,

it is helpful to adopt the formalism of G. Dziuk found in [Dziuk

2008]. To that end, let - : * ⊂ R2 → " be a parametrization of (a

portion of) the closed surface " , with outward-directed unit nor-

mal field # . Then, the identity map D : " → R3 defined through

D ◦ - = - provides an isometric surface immersion, and the com-

ponents of the induced metric on" ⊂ R3 are given by

68 9 =
〈
m8-, m 9-

〉
≔

〈
-8 , - 9

〉
.

where 〈·, ·〉 denotes the standard Euclidean inner product. With

this, the metric gradient ∇6 of a function 5 : " → R
3 can be

expressed componentwise as (Einstein summation assumed)

(
∇6 5

)
◦- = 68 9�8 ⊗ - 9 ,

where � = 5 ◦- is the pullback of 5 through the parametrization- ,

�8 = 3� (-8), and 6
8:6: 9 = X

8
9 . It follows that the Laplace-Beltrami

operator Δ6 on" is then expressed as

(
Δ6 5

)
◦- =

(
div6∇6 5

)
◦ - =

1√
det6

m 9

(√
det668 9�8

)
,

and a simple calculation verifies that for two functions 5 , ℎ : " →

R
3, the metric inner product extends linearly to yield

〈3 5 , 3ℎ〉6 =

〈
∇6 5 ,∇6ℎ

〉
= 68 9 〈�8 , � 9 〉.

Moreover, in view of the geometric identity . ≔ Δ6D = 2�# , the

p-Willmore functional is expressed succinctly in this framework as

W? (D) =
1

2?

∫
"
|. |? 3`6 .

In particular, introduction of the mean curvature vector . ensures

thatW? is free of explicit second derivatives of the position vector

field.

Remark 2.3. Since the constant factor in front of the p-Willmore

integrand merely scales the value of the functional and does not

affect its geometric behavior, it will be omitted in subsequent pas-

sages with the understanding thatW? truly indicates 2?W? . Note

that this will manifest itself in the flow only as a uniform scaling of

the temporal domain.

Fig. 4. Unconstrained and regularized 2-Willmore evolution of a deformed

torus to a known global minimum. The minimizing surface is the stereo-

graphic projection of a Clifford torus in (3. Note that the conformal struc-

ture on the initial surface cannot be preserved as the pinched neck is thick-

ened.

3 BUILDING THE P-WILLMORE FLOWMODEL

It is now possible to calculate the variational derivative (!2-gradient)

of the functionalW? in a way that is respectful towards computer

implementation. More precisely, the calculation presented here in-

volves no adapted coordinate system or explicit second-order deriva-

tives, and the variations considered are assumed to have tangential

as well as normal components. This will make it possible to accom-

plish the finite element discretization seen later.

Recall that when given a smooth function i : " → R3 and a

parameter C ∈ (−n, n), a variation of D is given by

D (G, C) = D (G) + Ci (G),

where G denotes a local coordinate on" . This in turn induces a vari-

ation in the area functional, which can be calculated as in [Dziuk

2008]. In particular, there is the following lemma from that work.

Lemma 3.1. Let Greek letters indicate tensor components with re-

spect to the standard basis for R3, and define � (i) = ∇6i + (∇6i)
)

through

� (i)UV ≔ 68 9
(
iU8 -

V
9 + i

V
8 -

U
9

)
.

Then, in the notation above and denoting the area functional on" by

A(D) =

∫
"
13`6,

the first and second variations of A may be expressed as

XA(D)i =

∫
"
div6i 3`6 =

∫
"
〈3D,3i〉6 3`6,

X2A(D)(i,k ) = −

∫
"

(
〈� (i)3D,3k 〉6 − 〈3i,3k 〉6

)
3`6

+

∫
"

(
div6i

) (
div6k

)
3`6 .

Proof. The proof is a direct calculation and can be found in

[Dziuk 2008]. �

With this in place, it is helpful also to recall an operator-splitting

technique employed in [Dziuk 2008], which is used to reduce the

order of the flow problem. In particular, let � 1(" ;R3) denote the

space of weakly first differentiable functions on " , and recall the

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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equation . = Δ6D . Integrating this by parts against k ∈ �
1 (" ;R3)

then yields the relationship

∫
"

(
〈.,k 〉 + 〈3D,3k 〉6

)
3`6 = 0, (3)

which can be considered as a weak-form expression of the mean

curvature vector . . Note that due to the definition of . , (3) has the

useful function of effectively reducing the order of the p-Willmore

flow equation (1) by two at the expense of solving an additional

PDE.

It is now pertinent to develop a counterpart to equation (3), so

that the operator splitting above can be beneficial. The resulting

equation should reduce to (2) in the normal direction, while also

suppressing undesirable non-divergence terms such as  . To ac-

complish this, first note that

∫
"
〈.,k 〉3`6 = −

∫
"
〈3D,3k 〉6 = −XA(D)k .

Therefore, differentiating with respect to D in the direction i ∈

� 1(" ;R3) yields

∫
"
〈X. i,k 〉3`6 +

∫
"
〈.,k 〉 div6i 3`6 = −X2A(D)(i,k ). (4)

The goal is to use this expression to develop a weak-form for the

p-Willmore equation by choosing an appropriate test function k .

Moreover, this choice should bemade in avoidance of explicit deriva-

tives of the normal vector # , since they are not well-suited to dis-

cretization using piecewise-linear finite elements. To this end, sim-

ilar differentiation of the p-Willmore integrand yields,

X |. |? i = X 〈.,. 〉
?
2 i = ? |. |?−2 〈X. i,. 〉

=

〈
X. i, ? |. |?−2.

〉
.

Hence, letting, := |. |?−2. be the weighted mean curvature vec-

tor on " , choosing k = ?, in equation (4), and using Lemma 3.1

the variation of the (2? -scaled)Willmore functionalW? can be cal-

culated as

XW? (D)i = X

∫
"
|. |? 3`6

=

∫
"

〈
X. i, ? |. |?−2.

〉
3`6 +

∫
"
|. |? div6i 3`6

=

∫
"

(
(1 − ?) |. |? − ? div6,

)
div6i 3`6

+

∫
"
?

(
〈� (i)3D,3, 〉6 − 〈3i,3, 〉6

)
3`6 .

This computation directly implies the following Theorem.

Theorem 3.2. In the notation above and for ? ≥ 1, the uncon-

strained p-Willmore flow equation (1) is expressed in weak form by

the following system of PDE in the variables u, Y, and W:

0 =

∫
"
〈 ¤D, i〉3`6 +

∫
"

(
(1 − ?) |. |? − ? div6,

)
div6i 3`6

+

∫
"
?

(
〈� (i)3D,3, 〉6 − 〈3i,3, 〉6

)
3`6, (5)

0 =

∫
"
〈.,k 〉3`6 +

∫
"
〈3D,3k 〉6 3`6, (6)

0 =

∫
"

〈
, − |. |?−2., b

〉
3`6 = 0, (7)

which must hold for all C ∈ (0,) ] and all i,k, b ∈ � 1 (
" (C);R3

)
.

Proof. The proof follows immediately from the definitions of

.,, , and the discussion above. �

Remark 3.3. The reader will notice that this reduces to precisely

the system in [Dziuk 2008] for the case ? = 2, in which case the last

equation is not needed. Additionally, the case ? = 0 (MCF), while

not in the domain of the theorem as stated, may be recovered by

simply omitting (7) and replacing equation (5) with the equation

from Lemma 3.1 for the variation of area:∫
"
〈 ¤D,i〉 3`6 −

∫
"
〈3D,3i〉6 3`6 = 0.

The system in Theorem 3.2 is the primarymodel for the p-Willmore

flow studied here, and provides the basis for the p-Willmore flow

algorithm presented later. Before discussing further modifications,

the following theoretical result is presented which guarantees that

the p-Willmore energy always decreases along the flow governed

by the equations above. Note that this property is well known in the

case of MCF (0-Willmore flow), so the proof of this case is omitted.

See e.g. [Mantegazza 2011] for more details. Example illustrations

of this phenomenon include Figures 1, 4, 5, 6, and 8.

Theorem 3.4. The closed surface p-Willmore flow is energy de-

creasing for ? ≥ 1. That is, if, = |. |?−2. is the weighted mean

curvature vector on " and D : " × (0,) ] → R3 is family of surface

immersions with" (C) = D (* , C) satisfying the weak p-Willmore flow

equations (5), (6), and (7), then the ?-Willmore flow satisfies∫
" (C)

| ¤D |2 3`6 +
3

3C

∫
" (C)

|. |? 3`6 = 0.

Proof. Choosing the admissible test functions i = ¤D and k =

?, in (4), as well as noticing that 〈,,. 〉 = |. |? , the following

system is observed

0 =

∫
"
| ¤D |2 3`6 +

∫
"

(
(1 − ?) |. |?div6 ¤D − ?

(
div6,

) (
div6 ¤D

) )
3`6

+

∫
"
?

(
〈� ( ¤D)3D,3, 〉6 − 〈3, ,3 ¤D〉6

)
3`6,

0 =

∫
"
? 〈X.,, 〉 3`6 +

∫
"
?

(
|. |? + div6,

)
div6 ¤D 3`6

+

∫
"
?

(
〈3, ,3 ¤D〉6 − 〈� ( ¤D)3D,3, 〉6

)
3`6 .

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 5. Surface area and volume constrained 2-Willmore flow with conformal penalty applied to a (3,4)-torus knot. Though area preservation is only globally

enforced, the each surface along the evolution is nearly isometric to the given reference immersion.

Adding the above equations in view of (3) then yields

0 =

∫
"
| ¤D |2 3`6 +

∫
"

(
X |. |? + |. |?div6 ¤D

)
3`6

=

∫
"
| ¤D |2 3`6 +

3

3C

∫
"
|. |? 3`6,

completing the argument. �

Now, in light of the physical relevance of the functional W? ,

it is desirable also to have a model for the p-Willmore flow that

is amenable to geometric constraints on surface area and enclosed

volume. This is reasonable not only from a physical point of view

(sincemany curvature-minimizing structures such as biomembranes

constrain themselves naturally in these ways) but also in a math-

ematical sense, as such constraints can serve as a meaningful “re-

placement” for conformal invariance when ? ≠ 2. More precisely,

since the p-Willmore functional is not conformally invariant in gen-

eral, volume/area preservation ensures that physically-meaningful

shapes such as spheres remain locallyminimizing for ? ≠ 2, at least

among some class of variations. Practically, this is accomplished

through the addition of Lagrange multipliers _, ` into the model

from Theorem 3.2. More precisely, let � ⊂ R3 be a region in space

such that m� = " and let 3`, div denote, respectively, the volume

element and divergence operator on R3. Recall the volume func-

tional,

V(D) =

∫
�
13` =

1

3

∫
�
divD 3` =

1

3

∫
"
〈D,# 〉 3`6,

where the Divergence Theorem was applied in the last equality. It

is well known (see e.g. [Barbosa et al. 2012]) that the first variation

of volume is given by

XV(D)i =
1

3

∫
"
〈i, # 〉3`6 .

On the other hand, recall that Lemma 3.1 implies that the first vari-

ation of the area functional can be expressed as

XA(D)i = X

∫
"
13`6 =

∫
"
〈3D,3i〉6 3`6 .

With these expressions available, it is straightforward to formu-

late the next problem considered in this work: closed surface p-

Willmore flow with constraint.

Problem 3.5 (Closed surface p-Willmore flowwith constraint).

Let ? ≥ 1 and, := |. |?−2. . Determine a familyD : "×(0,) ] → R3

of surface immersions with " (C) ≔ D (",C) such that " (0) has ini-

tial volume+0, initial surface area�0, and for all C ∈ (0,) ] the equa-

tion

¤D = −X (W? + _V + WA),

is satisfied for some piecewise-constant functions _, ` : " (C) → R.

Stated in weak form, the goal is to find functionsD,. ,, , _,W on" (C)

such that the equations

0 =

∫
"
〈 ¤D,i〉 3`6 +

∫
"
W 〈3D,3i〉6 3`6 +

∫
"
_ 〈i, # 〉3`6

+

∫
"

(
(1 − ?) |. |? − ? div6,

)
div6i 3`6

+

∫
"
?

(
〈� (i)3D,3, 〉6 − 〈3i,3, 〉6

)
3`6, (8)

0 =

∫
"
〈.,k 〉3`6 +

∫
"
〈3D,3k 〉6 3`6,

0 =

∫
"

〈
, − |. |?−2., b

〉
3`6,

�0 =

∫
"
13`6, (9)

3+0 =

∫
"
〈D,# 〉3`6, (10)
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Fig. 6. 2-Willmore evolution of a rabbit with 18k triangles, constrained by both surface area and enclosed volume. Here appears the biconcave discoid shape

characteristic of genus 0 minimizers of the constrained Helfrich-Canham energy such as red blood cells [Ou-Yang and Tu 2014]. It is further remarkable

that the flow behavior here is different than when either constraint is considered on its own, where the rabbit becomes a globally-minimizing round sphere

instead due to the scale-invariance ofW2 (c.f. Figure 12).

are satisfied for all C ∈ (0,) ] and all i,k, b ∈ � 1 (
" (C);R3

)
.

Remark 3.6. The case where ? = 0 may again be considered by

replacing the equation (8) with the simpler relationship

0 =

∫
"
〈 ¤D,i〉 3`6 +

∫
"
_ 〈i, # 〉3`6 −

∫
"
〈3D,3i〉6 3`6 .

Of course, area preservation makes no sense in this context (since

the objective of MCF is to decrease area), so equation (9) should

also be disregarded in this case. In addition, note that the system

of Problem 3.5 can also be used to study the p-Willmore flow with

fixed volume or fixed surface area separately. In particular, fixed

volume is obtained by setting ` ≡ 0 and ignoring (9), and fixed

area is accomplished similarly with _ ≡ 0 and omission of (10). In

practice, Boolean variables were implemented to enable switching

between the different constrained/unconstrained cases.

Problem 3.5 provides a way to examine the p-Willmore flow sub-

ject to geometric constraints on surface area or enclosed volume.

This is a highly interesting situation, since minimizing surfaces can

vary widely with the type of constraint that is considered. For ex-

ample, when beginning with the embedded surface of genus 0 seen

in Figure 6, enforcing either volume or area preservation separately

during the 2-Willmore flow produces a spherical minimizer. On the

other hand, Figure 6 displays the behavior when this flow is con-

strained by both surface area and enclosed volume together. This

scenario arises frequently in mathematical biology when consid-

ering membrane behavior in an external solution, and minimizing

surfaces often realize familiar shapes—such as the biconcave dis-

coid seen here, which is typical of red blood cells. See [Ou-Yang and Tu

2014] for further details.

Remark 3.7. It is not difficult to show that the constrained p-

Willmore flow in Problem 3.5 enjoys the same stability property

demonstrated in Theorem 3.4. To see this, repeat the argument from

that proof using (8) instead of (5), and recall the derivatives of the

area and volume functionals given previously.

4 BUILDING THE MESH REGULARIZATION
EQUATIONS

One of the main questions that arises in the computer implementa-

tion of curvature flows is how to preserve the quality of the surface

mesh as it evolves. If the initial mesh becomes sufficiently degener-

ate along the flow, it will crash the simulation—sometimes well be-

fore any troublesome behavior occurs in the actual surface geome-

try (c.f. Figure 9). Since curvature flows often alter the initial surface

quite dramatically, this can present a serious issue for accurately

modeling flow behavior. Several different techniques have been de-

veloped to combat this issue e.g. [Crane et al. 2011; Desbrun et al.

2002; Floater and Hormann 2005; Gu and Yau 2003; Lévy et al. 2002],

each with their own strengths and weaknesses. A common chal-

lenge present in all methods of mesh regularization is striking a

good balance between area-preservation and conformality, or angle-

preservation. Of course, area-preserving maps can be arbitrarily

ugly (think following the flow of a vector field tangent to the sur-

face) and conformal maps frequently distort area in undesirable

ways. Therefore, the technique employed in this work is inspired

by the least-squares conformal mapping procedure of [Lévy et al.

2002] as well as the following result from [Kamberov et al. 1996],

which can be thought of as a generalization of the Cauchy-Riemann

equations from classical complex analysis (see AppendixA formore

details).

Theorem 4.1. (Kamberov, Pedit, Pinkall) Let - : " → ImH be

an immersion of the orientable surface " into the imaginary part of

the quaternions, and let � be a complex structure (rotation operator

� 2 = −Id)" ) on )" . Then, if ∗U = U ◦ � is minus the usual Hodge

star on differential forms, it follows that - is conformal if and only

if there is a Gauss map (unit normal field) # : " → ImH such that

∗3- = # 3- .

Since ImH is canonically isomorphic toR3 as a vector space, this

gives a criterion for conformality that can be weakly enforced dur-

ing the p-Willmore flow. More precisely, recall that # ⊥ 3- (E)

for all tangent vector fields E ∈ )" , and that multiplication of

E,F ∈ ImH obeys the rule EF = −〈E,F〉 + E × F where × is the

usual vector cross product. It follows that # 3- (E) = # × 3- (E)
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Fig. 7. The (linear) procedure described in Problem 4.3 applied to a statue mesh of 483k triangles, with close-up on the back of one figure. Before (le�) and

a�er (right).

for all E ∈ )" , and the conformality condition in Theorem 4.1 can

be expressed pointwise as

∗ 3- (E) = # × 3- (E) for all E ∈ )". (11)

For the present purpose of mesh regularization, it suffices to en-

force this condition weakly through a minimization procedure. De-

fine the conformal distortion functional

CD(D) =
1

2

∫
"
|3D � − # × 3D |2 3`6 .

In view of Theorem 4.1, CD(D) is identically 0 if and only if D is

a conformal immersion of" into R3. Assuming the surface metric

is held fixed, minimization of the conformal distortion leads to the

necessary condition

XCD(D)i =

∫
"

〈
(3D � − # × 3D) , (3i � − # × 3i)

〉
6
3`6 = 0,

(12)

which must hold for all i ∈ � 1(",R3).

Remark 4.2. The reader will notice that the evolution-dependent

nature of the mesh regularization problem has been ignored. As

the goal is compute a map very close to D (") itself, the metric

(and hence the volume element) associated to the new immersion

are approximated using the respective quantities coming from the

present immersion.

To make use of this equation in the computational framework

considered here, it must first be expressed in terms of the local co-

ordinates on * ⊂ R2. To that end, a particular section E ∈ )" of

the “complex line bundle” )" is first chosen; it is advantageous to

consider the parametrization domain* and choose- ∗E = 41 where

41 represents the first standard basis vector for)* . Then, (abusing

� to denote the pullback complex structure on )* as well as the

original structure on )"), 42 = � (41) and the integrand of (12) ap-

plied to the basis 3- (48) for )" can be pulled back through - to

yield the coordinate expression

68 9
〈
(3- � (48) − # × 3- (48)) ,

(
3- � (4 9 ) − # × 3- (4 9 )

) 〉
, (13)

where # is understood to mean the pullback (outer) normal field

# =
-1 × -2

|-1 × -2 |
,

which is valid on the parametrization domain * . To write this in a

more compact form, first notice that

3- � (41) − # × 3- (41) = 3- (42) − # × 3- (41),

3- � (42) − # × 3- (42) = − (3- (41) + # × 3- (42)) .

So, letting# = (=1, =2, =3)
) and denoting- 8

9 =
〈
48 , 3- (4 9 )

〉
(where

we have abused notation again by referring to 48 as a standard basis

field on both* and "), one can form the vectors

+ = 3- (42) − # × 3- (41) =
©­­
«
- 1
2 − =2-

3
1 + =3-

2
1

- 2
2 − =3-

1
1 + =1-

3
1

- 3
2 − =1-

2
1 + =2-

1
1

ª®®¬
,

, = 3- (41) + # × 3- (42) =
©­­
«
- 1
1 + =2-

3
2 − =3-

2
2

- 2
1 + =3-

1
2 − =1-

3
2

- 3
1 + =1-

2
2 − =2-

1
2

ª®®
¬
.

With this, careful reorganization of (13) yields theR3G2 dyadic prod-

uct &̃ : Jaci , where Jac denotes the usual Jacobian and &̃ is given

in components as (indices 1 ≤ 8 ≤ 3, mod 3)

&̂8
1 = 6

22,8 + 6
11 (=8+1+8+2 − =8+2+8+1)

+ 612 (=8+2,8+1 − =8+1,8+2 −+8) ,

&̂8
2 = 6

11+8 + 6
22 (=8+2,8+1 − =8+1,8+2)

+ 612 (=8+1+8+2 − =8+2+8+1 −,8) .

For cleanliness of presentation, note that there is a tensor& = & (D) ∈

) ∗* ⊗ )" such that &̂� 9
= 6: 9&�

:
, so we may write this product

(at least formally) as 〈&,3i〉6. Therefore, equation (12) can now be

expressed concisely as∫
"
〈& (D), 3i〉6 3`6 = 0. (14)

Equation 14 is used to ensure that the surface mesh finds a configu-

ration that is “as conformal as possible” to a specified discretization

of the reference surface " ⊂ R3. In practice, best results (particu-

larly for triangle meshes) are achieved if this reference is defined

implicitly based on an adjustment of the initial mesh data. In par-

ticular, it is useful to choose the reference configuration to be the

starting surface with interior angles adjusted relative to the number

of elements sharing a vertex. More precisely, there is the following

procedure. For each vertex 8 in the triangulation, first compute the
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number<8 of elements with 8 as a vertex. Then, if ) is a triangle

adjacent at 8 with vertices 81, 82, 83 and interior angles U81, U82 , U83 ,

rescale U8: ↦→ U8: /<8 to generate “ideal” interior angles. It is clear

that, in general, U81 + U82 + U83 ≠ c , which is necessary for closure.

The strategy is therefore to use the largest interior angle of each

triangle to adjust the others. In particular, suppose U81 > U82 and

U81 > U83 . Then, set

U8: ←
c − U81
U82 + U83

U8: , : = 2, 3.

Moreover, in the case that a given triangle has two or three leading

angles, each angle is set to c/3. Pseudocode for this procedure is

given in Algorithm 1.

Algorithm 1 Generation of reference angles

Require: Reference triangulation T of the closed surface" .

for ) ∈ T do

for vertex 1 ≤ 8 ≤ 3 do

Compute<8 = # of adjacent elements

U8 ← U8/<8

end for

Determine maximum vertex angle U8 .

if U8 > U 9 for all 9 ≠ 8 then

for vertices 9 ≠ 8 do

U 9 ← U 9 (c − U8 ) /
(∑

:≠8 U:
)

end for

else

for vertices 1 ≤ 9 ≤ 3 do

U 9 ← U 9 c /
(∑3

:=1
U:

)
.

end for

end if

end for

Of course, if equation (14) is to be useful as an effective tangen-

tial reparametrization of a surface evolving by p-Willmore flow, it

should not be solved without constraint. For example, it is clear

that any constant function D will satisfy this equation as stated, so

some care must be taken to prevent trivialities. Moreover, it is also

necessary to constrain the regularization in (14) so that it does not

destroy the current surface geometry by moving the surface too far

in the normal direction. One potential solution to this issue is mo-

tivated by the following observation: if the aim is to recover a new

immersion D̂ which is “close” to the current immersion D , then the

difference D̂ (G) −D (G) at any G ∈ " should be tangential to first or-

der, hence orthogonal to the surface normal # (G). Said differently,

a first-order approximation to tangential motion along the surface

can be obtained by requiring that the pointwise equation

〈(D̂ (G) − D (G)) , # (G)〉 = 0,

hold for all G ∈ " during the above minimization. In fact, since

exact conformality is not required for the present purpose of mesh

regularization, it is advantageous to weaken this requirement fur-

ther using a penalty term. Since saddle-point problems with a mix-

ture of linear and piecewise-constant finite elements can exhibit un-

stable discretizations, the inclusion of such a term helps to prevent

Fig. 8. Unconstrained 2-Willmore flow of a genus 4 statuemesh (last image

rotated 90 degrees counterclockwise).

numerical artifacts from appearing during the implementation. Pre-

cisely, the conformal penalty regularization procedure is presented

as the following problem.

Problem 4.3 (Conformal penalty regularization). Given a

fixed Y > 0 and an oriented surface immersion D : " → R3 with

outward unit normal field# , solving the conformally-penalizedmesh

regularization problem amounts to finding a function E : " → R3

and a Lagrange multiplier d : " → R, so that the new immersion

D̂ = D + E is the solution to

min
E

(
CD(D + E) +

Y

2

∫
"
d2 3`6 +

∫
"
d 〈E, # 〉 3`6

)

Formulated weakly, the goal becomes to find a new immersion D̂ and

a multiplier d which satisfy the system

0 =

∫
"
d 〈i, # 〉3`6 +

∫
"
〈& (D + E), 3i〉6 3`6,

0 =

∫
"
k 〈E, # 〉 3`6 + Y

∫
"
kd 3`6,

for all i,k ∈ � 1(" ;R3).

Solving Problem 4.3 at each step of the p-Willmore flow inhibits

the computer simulation from breaking arbitrarily, at the expense

of potentially altering the flow solution at each time step. To be

sure, without such a procedure in place it is not unusual for global

minimizers to remain computationally out-of-reach, as is shown in

Figure 9. Moreover, Figure 7 demonstrates how this regularization

is useful even for stationary surfaces, as it greatly improves the

quality of (perhaps very irregular) surface meshes. The practical

discretization of both this system and the p-Willmore system in

Problem 3.5 will be discussed in the next sections.

5 DISCRETIZATION OF MODEL SYSTEMS

Discretization of the models in Problem 3.5 and Problem 4.3 will

now be discussed. In particular, specifics of the spatial and tempo-

ral discretization are presented, leading to appropriate discrete ver-

sions of the continuous problems above. Moreover, some insight is

given into the treatment of nonlinearities, and the main algorithm

of this work is given.

As in [Dziuk and Elliott 2013], the smooth surface " ⊂ R3 is

assumed to be approximated by a polygonal surface"ℎ consisting

of 2-simplices (triangles) )ℎ that are not degenerate, so that

"ℎ =

⋃
)ℎ ∈Tℎ

)ℎ,
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forms an admissible triangulation of" . Denoting the nodes of this

triangulation by {0 9 }
#
9=1, the standard nodal basis {q8 } on " sat-

isfies q8 (0 9 , C) = X8 9 . The space of piecewise-linear finite elements

on"ℎ (C) is then denoted

(ℎ (C) = Span{q8 } = {q ∈ �
0("ℎ (C)) : q |)ℎ ∈ P1 ()ℎ),)ℎ ∈ Tℎ},

where P1 ()ℎ) denotes the space of linear polynomials on)ℎ .

Now, suppose the simplices )ℎ ∈ Tℎ have maximum diameter ℎ

with inner radius bounded from below by 2ℎ for some 2 > 0. Then,

for any choice of unit normal # there is X > 0 so that points G ∈ R3

in the tube of radius delta around " can be expressed as

G = 0(G) + 3 (G)# (G),

where 0(G) lies on " and |3 | < X . It is assumed that "ℎ is con-

tained in this tube, so that any function 5ℎ defined on the discrete

surface "ℎ can be lifted to a function 5 ;
ℎ
on the smooth surface "

by requiring

5 ;
ℎ
(0(G)) = 5ℎ (G), G ∈ "ℎ .

Denote the inverse process by 5 −; . In this notation, the lift of the

finite element space (ℎ is denoted

(;
ℎ
= {q; | q ∈ (ℎ},

and it is possible to compare geometric quantities on " and "ℎ .

In particular, let 6ℎ denote the induced metric on "ℎ , Dℎ denote

identity on"ℎ , and.ℎ = Δ6ℎDℎ denote the discrete mean curvature

vector defined through the relationship

0 =

∫
"ℎ

〈.ℎ,kℎ〉3`6ℎ +

∫
"ℎ

〈3Dℎ, 3kℎ〉6ℎ 3`6ℎ , ∀kℎ ∈ (ℎ,

where 3 = 3ℎ is understood to mean the derivative operator with

respect to the surface"ℎ and 3`6ℎ is the area element with respect

to the metric 6ℎ . Then, there are the discrete area and volume func-

tionals

A(Dℎ) =

∫
"ℎ

13`6ℎ ,

V(Dℎ) =

∫
"ℎ

〈Dℎ, #ℎ〉 3`6ℎ ,

and the discrete ?-Willmore functional is defined to be

W? (Dℎ) =
1

2?

∫
"ℎ

|.ℎ |
? .

Moreover, if � is understood to be a linear operator on the tangent

space )"ℎ , the discrete conformal distortion functional can be de-

fined as

CD(Dℎ) =
1

2

∫
"ℎ

|3Dℎ � − #ℎ × 3Dℎ |
2 3`6ℎ .

These definitions are seen to yield a reasonable spatial discretiza-

tion of the continuous Problems 3.5 and 4.3, but it remains to dis-

cuss their time-dependent aspect as well. A reasonable strategy

for the temporal discretization of complicated nonlinear PDEs on

evolving surfaces is to linearize the problem at each time step, effec-

tively pushing the nonlinearities into the temporal domain. This is

the strategy of [Dziuk 2008; Dziuk and Elliott 2013]. Though such

formulations enjoy many of the benefits of their linear counter-

parts, they typically require a very small time step and are less

robust to round-off errors as well as other sources of numerical

instability. Therefore, the present strategy for discretizing the p-

Willmore flow Problem 3.5 is to “center” the discretization in time,

except for some isolated terms forwhich this is problematic. Though

this approach will still produce a numerical scheme which is first-

order in time, it is seen to significantly improve the stability of the

fully-discrete p-Willmore flow. To describe this idea more precisely,

let g > 0 be a fixed temporal stepsize, and denote D:
ℎ
≔ Dℎ (·, :g).

Consider that at time step : , the images of D:
ℎ
and D:+1

ℎ
are the old

resp. new surfaces":
ℎ
and ":+1

ℎ
. Therefore, "

:+ 1
2

ℎ
will denote the

central surface defined by the immersionD
:+ 1

2

ℎ
= (1/2)

(
D:
ℎ
+ D:+1

ℎ

)
,

and a field quantity )ℎ defined on each surface will have the cen-

tral counterpart )
:+ 12
ℎ

= (1/2)
(
):
ℎ
+):+1

ℎ

)
. Additionally, 3 and �

will now be used to denote discretized operators with respect to

the metric on the central surface. With this, running the discrete

p-Willmore flow with constraint is presented as the following prob-

lem.

Problem 5.1 (Discrete p-Willmore flow with constraint).

LetD,. ,, , _, ` be as in Problem 3.5. Given the discrete dataD:
ℎ
, .:

ℎ
,, :

ℎ
at time C = :g , the p-Willmore flow problem is to find functions

D:+1
ℎ

, .:+1
ℎ

,, :+1
ℎ

, _ℎ,Wℎ which satisfy the system of equations

0 =

∫
"

:+ 12
ℎ

〈
.
:+ 1

2

ℎ
,kℎ

〉
3`6ℎ +

∫
"

:+ 12
ℎ

〈
3D:+1

ℎ
, 3kℎ

〉
6ℎ
3`6ℎ ,

0 =

∫
"

:+ 1
2

ℎ

〈(
,

:+ 1
2

ℎ
−

����.:+ 12ℎ

����
?−2

.
:+ 1

2

ℎ

)
, bℎ

〉
3`6ℎ , (15)

0 =

∫
"

:+ 12
ℎ

〈
3D

:+ 1
2

ℎ
,
(
3D:+1

ℎ
− 3D:

ℎ

)〉
6ℎ

3`6ℎ , (16)

0 =

∫
"

:+ 1
2

ℎ

〈(
D:+1
ℎ
− D:

ℎ

)
, #

:+ 12
ℎ

〉
3`6ℎ , (17)

0 =

∫
"

:+ 12
ℎ

〈(
D:+1
ℎ
− D:

ℎ

)
, iℎ

〉
g

3`6ℎ

+

∫
"

:+ 12
ℎ

_ℎ

〈
iℎ, #

:+ 1
2

ℎ

〉
3`6ℎ

+

∫
"

:+ 1
2

ℎ

Wℎ

〈
3D

:+ 1
2

ℎ
, 3iℎ

〉
6ℎ

3`6ℎ

+ (1 − ?)

∫
"

:+ 12
ℎ

����.:+ 12ℎ

����
? 〈
3D

:+ 1
2

ℎ
, 3iℎ

〉
6ℎ

3`6ℎ

− ?

∫
"

:+ 12
ℎ

(
div6ℎ,

:+ 1
2

ℎ

) 〈
3D

:+ 1
2

ℎ
, 3iℎ

〉
6ℎ

3`6ℎ

− ?

∫
"

:+ 12
ℎ

〈
3, :+1

ℎ
, 3iℎ

〉
6ℎ
3`6ℎ

+ ?

∫
"

:+ 1
2

ℎ

〈
� (iℎ)3D

:
ℎ
, 3, :

ℎ

〉
6ℎ
3`6ℎ , (18)

for all iℎ,kℎ, bℎ ∈ (ℎ .
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Fig. 9. Surface area and volume constrained 2-Willmore evolution of a trefoil knot, with conformal mesh regularization (top) and without (bo�om). Due to

a coarse discretization, the mesh degenerates when not regularized, preventing movement to the minimizing surface. Conversely, element quality remains

nearly perfect along the flow when regularized at each step, and evolves completely to the desired minimum despite the mesh resolution.

Remark 5.2. Similar to the continuous situation, the case ? = 0

can be handled by omitting equations (15), (16) and replacing equa-

tion (18) with

0 =

∫
"

:+ 12
ℎ

〈(
D:+1
ℎ
− D:

ℎ

)
, iℎ

〉
g

3`6ℎ

+

∫
"

:+ 12
ℎ

_ℎ

〈
iℎ, #

:+ 1
2

ℎ

〉
3`6ℎ

−

∫
"

:+ 1
2

ℎ

〈
3D:+1

ℎ
, 3iℎ

〉
6ℎ
3`6ℎ .

To further explain the heuristic behind Problem 5.1, first recall

that the identity div6i = 〈3D,3i〉6 holds in the continuous set-

ting. Therefore, as in [Dziuk 2008] the divergence of i has been

discretized as

div6ℎiℎ =

〈
3D

:+ 1
2

ℎ
, 3iℎ

〉
6ℎ

,

which improves numerical stability.Moreover, the terms 〈3, ,3i〉6
and 〈3D,3k 〉6 have been discretized fully-implicitly in the interest

ofmoving closer to a second-order time discretization. On the other

hand, the term 〈� (i)3D,3, 〉6 is ill-behaved when not taken explic-

itly, so it has been discretized with respect to the old data D:
ℎ
,, :

ℎ
.

Note that, in any case, differentiation and integration are donewith

respect to the central surface"
:+ 1

2

ℎ
, which greatly improves the re-

sults.

Moreover, it is reasonable to consider (16) and (17) as a central

discretization of the constraint equations (9) and (10). To see this,

first observe that

3A(D) =

∫
"
33`6 =

∫
"
divD 3`6

=

∫
"

(
div6D + 〈#,∇#D〉

)
3`6 =

∫
"

(
1 + |3D |2

)
3`6,

where the second line uses the tangential/normal decomposition

of the ambient divergence operator and the fact that ∇D = � is the

identity matrix. Therefore, since area preservation can be enforced

by requiring zero change between the areas of ":+1
ℎ

and ":
ℎ
, a

reasonable condition for area-preservation is

0 = 2A
(
D:+1
ℎ

)
− 2A

(
D:
ℎ

)
=

∫
":+1

ℎ

���3D:+1ℎ

���2 3`6ℎ −
∫
":

ℎ

���3D:ℎ
���2 3`6ℎ

≈

∫
"

:+ 12
ℎ

〈
3D

:+ 1
2

ℎ
,
(
3D:+1

ℎ
− 3D:

ℎ

)〉
6ℎ

3`6ℎ ,

which is (16). Similarly, the condition for volume preservation be-

comes

0 = 3V
(
D:+1
ℎ

)
− 3V

(
D:
ℎ

)
=

∫
":+1

ℎ

〈
D:+1
ℎ

, #:+1
ℎ

〉
3`6ℎ −

∫
":

ℎ

〈
D:
ℎ
, #:

ℎ

〉
3`6ℎ

≈

∫
"

:+ 12
ℎ

〈(
D:+1
ℎ
− D:

ℎ

)
, #

:+ 1
2

ℎ

〉
3`6ℎ ,

which is expression (17).

Of course, the conformal penalty regularization Problem 4.3 can

also be discretized in a similar fashion. Though this problem is not

necessarily time-dependent, it is advantageous to treat it somewhat

implicitly so that the tangent bundle of the regularized mesh “fits

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.



1:12 • Anthony Gruber and Eugenio Aulisa

together” in a smoother fashion. Indeed, there is no reason to ex-

pect that sliding the mesh points of the initial surface along indi-

vidual tangent planes will produce a new distribution which is it-

self integrable, so a semi-implicit discretization tends to produce

better results in this case. To that end, let D:+1
ℎ

, D̂:+1
ℎ

be the old

resp. new immersions of ":+1
ℎ

as in Problem 4.3, and let #:+1
ℎ

resp. #̂:+1
ℎ

be their respective normal vector fields. Moreover, let

#̃:+1
ℎ

:= (1/2)
(
#:+1
ℎ
+ #̂:+1

ℎ

)
denote the “central” normal field.

The discretized mesh regularization procedure then proceeds as fol-

lows.

Problem 5.3 (Discrete conformal penalty regularization).

Let Y > 0 be fixed, let D̂, D, # , d be as in Problem 4.3, and let #̃ be as

above. Given D:+1
ℎ

, #:+1
ℎ

, solving the discrete conformal penalty reg-

ularization problem means finding functions D̂:+1
ℎ

, dℎ which satisfy

the system

0 =

∫
":+1

ℎ

dℎ

〈
iℎ, #̃

:+1
ℎ

〉
3`6ℎ +

∫
":+1

ℎ

〈
&̂:+1
ℎ

, 3iℎ

〉
6ℎ
3`6ℎ ,

0 =

∫
":+1

ℎ

kℎ

〈(
D̂:+1
ℎ
− D:+1

ℎ

)
, #̃:+1

ℎ

〉
3`6ℎ + Y

∫
":+1

ℎ

kℎ dℎ 3`6ℎ ,

for all iℎ,kℎ ∈ (ℎ and where
〈
&̂:+1
ℎ

, 3iℎ

〉
6ℎ

refers to the discretiza-

tion on the known surface ":+1
ℎ

of the analogous quantity in Prob-

lem 4.3), which involves components of the known normal #:+1
ℎ

and

derivatives of the unknown immersion D̂:+1
ℎ

, computed with respect

to":+1
ℎ

.

Note that Problem 5.3 is nonlinear, but only because the normal

vector field arising from the surface preservation constraint has

been taken centrally. Therefore, as mentioned in Remark 1.2, the

conformal penalty regularization procedure can be easily modified

by replacing #̃:+1
ℎ

with#:+1
ℎ

, yielding a linear system of equations.

This provides a tradeoff between mesh quality and computational

time, as illustrated in Figure 3.

Now that the relevant continuous problems have been discretized,

it is appropriate to give the full algorithm for running the p-Willmore

flowwith conformal penalty. First, recall thatwhen given an immer-

sion D:
ℎ
at time step : it is necessary to compute the curvature data

.:
ℎ
,, :

ℎ
. This is accomplished through the solution of two consecu-

tive linear systems:

0 =

∫
":

ℎ

〈
.:
ℎ
,kℎ

〉
3`6ℎ +

∫
":

ℎ

〈
3D:

ℎ
, 3kℎ

〉
6ℎ
3`6ℎ , (19)

0 =

∫
":

ℎ

〈(
, :

ℎ
−

���.:ℎ
���?−2.:ℎ

)
, bℎ

〉
3`6ℎ . (20)

Note that, although the weighted mean curvature vector is defined

pointwise as, = |. |?−2. , equation (20) computes, in a weak

sense. The reason for this is because the solution to (20) is often

more smoothly distributed across the surface than the interpolated

quantity stored pointwise at vertices, which leads to better numer-

ical behavior during simulation.

Algorithm 2 p-Willmore flow with conformal penalty

Require: Closed, oriented surface immersion D0
ℎ
: "0

ℎ
→ R3; real

numbers Y, g > 0, integer :max ≥ 1.

while 0 ≤ : ≤ :max do

Solve (19) for .:
ℎ

Solve (20) for, :
ℎ

Solve Problem 5.1 for D:+1
ℎ

, .:+1
ℎ

,, :+1
ℎ

, _ℎ, Wℎ

Solve Problem 5.3 for D̂:+1
ℎ

, dℎ

D:+1
ℎ

= D̂:+1
ℎ

: = : + 1

end while

Algorithm 2 is the full procedure developed here for studying the

computational p-Willmore flow of closed surfaces. Though Prob-

lems 5.1 and 5.3 can certainly be used independently of each other,

their combination as above provides a nice tool which leads to the

variety of flow simulations seen presently. Before discussing po-

tential applications of this algorithm, it is important to discuss its

stability. Though precise analysis of the fully-discrete systems in

Algorithm 2 has not yet been done, it is easy to verify empirically

that the energy-decreasing property of the continuous system (c.f.

Theorem 3.4) is preserved by the chosen discretization. An example

of this is demonstrated in Figure 10, which shows experimental re-

sults for the p-Willmore flow applied to the mesh in Figure 2. As ex-

pected, the energy decreases monotonically in every case, suggest-

ing that the fully-discrete flow is indeed numerically stable. More-

over, notice that the conformally-invariant 2-Willmore flow levels

off at 16c (22 times the theoretical minimum, c.f. Remark 2.3), while

the MCF and 4-Willmore flows decrease indefinitely.

On the other hand, it is clear from experimentation that stability

for Algorithm 2 can hold only in a conditional sense. Even though

the discrete scheme used is essentially implicit, a restriction on

the temporal step size is necessary for reasonable results. This is

expected, in general, since integration is performed on a surface

(mesh) whose evolution is solution-dependent; a large time step

will easily generate entanglements which cause the mesh to crum-

ple and invert. In fact, this is precisely what motivated the regular-

ization Problem 5.3. Since an evolving surfacemay change its shape

dramatically over time, intermediate regularization is necessary to

prevent failure caused by numerical degeneration along the flow.

Empirically, it is seen that ? = 0, 2 are quite robust to changes in

the temporal step-size, but values of ? > 2 produce simulations that

are noticeably more sensitive. As illustrated in Table 1, the simula-

tions for 4-Willmore flow tend to require a much smaller step-size

and a much larger amount of iterations to converge. However, it

is also observed that the p-Willmore flow with conformal penalty

is relatively independent of mesh resolution; for a fixed ? and a

temporal step-size g that is stable on a coarse mesh, g appears to re-

main stable on any refinement of thatmesh. This desirable property

is suspected to come from the regularization in Problem 5.3, which

ensures that mesh elements do not become too heavily distorted

during the p-Willmore flow. Indeed, this is reflected in Figure 9,
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Fig. 10. Algorithm 2 applied to various refinements of the le�er “C” from

Figure 2 when ? = 0 (top) , 2 (mid), 4 (bot) . Time domain displayed loga-

rithmically for ? = 2, 4. Note that the energy decreases in every case, and

appears to converge with mesh refinement.

where the regularization prevents mesh elements from degenerat-

ing, even as the area and volume are both constrained. The next

section will discuss some specifics regarding the implementation

of Algorithm 2, as well as how it can be applied to navigate a com-

mon problem in computer graphics.

6 IMPLEMENTATION AND APPLICATION

6.1 Implementation

In brief, the nonlinear systems in Problems 5.1 and 5.3 are solved

through a two-iteration Newton scheme, using a 7Cℎ-order tensor

product quadrature rule to evaluate the relevant integrals. To elab-

orate, consider the process of solving Problem 5.1, and denote vℎ =

(Dℎ, .ℎ,,ℎ, _ℎ,Wℎ). Then, a solution to the discrete p-Willmore flow

system can be formally represented as a solution to the equation

R (vℎ ) = 0,

where R is an operator representing the nonlinear residual of the p-

Willmore system. Let v0
ℎ
be a trial solution, and letJ (vℎ) represent

the tangent operator (or Jacobian) of R in vℎ , evaluated through

J
(
v
8
ℎ

)
=
mR

mvℎ

(
v
8
ℎ

)
.

Then, Newton iteration involves the procedure

v
8
ℎ
= v

8−1
ℎ
− J−1

(
v
8−1
ℎ

)
R

(
v
8−1
ℎ

)
for 8 ≥ 1,

which is typically repeated until the residual quantity ‖R(v8
ℎ
)‖ drops

below a predefined tolerance value. Newton iteration is known to

exhibit quadratic convergence provided that the initial guess E0
ℎ
is

sufficiently close to the true solution. In the case of Algorithm 2,

only two iterations of each nonlinear system in Problems 5.1 and

5.3 are performed at each time step, which is sufficient to produce a

small residual and negligible change between successive solutions.

Moreover, note that symbolic differentiation ofJ is cumbersome

for the particular problems considered here, due to the presence of

integrals evaluated on the evolving surface "ℎ . Though approxi-

mate evaluation of J is of course possible (by e.g. neglecting the

motion-dependent nature of some terms or using approximate dif-

ferentiation methods), it is advantageous to compute the exact Ja-

cobian so that less error is introduced at each step. This is accom-

plished presently with fast reverse automatic differentiation as de-

scribed in [Hogan 2014]. Automatic differentiation techniques use

the chain rule along with backpropagation to numerically evaluate

the derivatives of a specified function. In particular, since the de-

rivative of a composite function involves a product of terms which

are sequentially computable through elementary arithmetic oper-

ations, repeated application of the chain rule can be used to accu-

rately evaluate derivatives of arbitrary order. The implementation

here uses the Adept library, which enables algorithms written in C

and C++ to be automatically differentiated with an operator over-

loading strategy. In addition, the solution of all linear systems nec-

essary for Algorithm 2 is performed using the direct solver found

in the MUMPS library [Amestoy et al. 2001, 2006].

It is worth mentioning that a viable alternative to this approach

would be to pull every integral expression in Problems 5.1 and 5.3
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back to an “original” parametrization domain* ×{0}, which avoids

differentiation on a moving surface. While this greatly complicates

the formulation, it has the advantage of allowing for the Jacobian

J to be evaluated using purely symbolic differentiation. However,

for Algorithm 2 this approach is not at all necessary, and automatic

differentiation is found to be optimal for producing good results.

Therefore, the present approach has been chosen for its higher clar-

ity of formulation, as well as its relative ease of numerical imple-

mentation.

6.2 Application: mesh editing

Many algorithms in computer graphics are sensitive to the quality

of their initial surface data, and (as seen with the p-Willmore flow)

a poormesh can frequently cause numerical failure independent of

the actual geometry involved. To add to the library of techniques

which address this problem, consider the application ofAlgorithm 2

with the goal of improving mesh quality. It is seen that running a

short p-Willmore flow followed by the conformal penalty regular-

ization procedure will often produce a surface that is very close to

the original, but with a better quality triangulation. For example,

Figure 1 (picture 2) shows the result of one iteration of Algorithm 2

with ? = 2 and a very small stepsize. Notice that the change in

surface geometry is quite small, while the mesh has been signifi-

cantly improved. Similarly, Figure 11 shows the result after one lin-

ear 2-Willmore iteration followed by two-step nonlinear conformal

penalty regularization. Here the original and remeshed surfaces can

hardly be distinguished by eye, though the new triangulation is

again much more regular. Further, Figures 3 and 7 show the effects

of conformal penalty regularization without any p-Willmore flow,

which requires much less compute time. In every case, the initial

mesh is significantly improved with only slight changes to the sur-

face geometry.

On the other hand, the p-Willmore flow may also find utility

in computer animation, as it can be used to dramatically alter the

geometry of an object in a prescribed way. In particular, detailed

objects with sharp features will evolve under the p-Willmore flow

to minima that are as round as possible, which could be desirable

when modeling fluids. Moreover, Figures 2 and 12 show that the

value of ? has a significant effect on the flow behavior, though this

is not surprising. Since the functionalW? measures the ?Cℎ power

of |� |, regions of high curvature are weighted increasingly with the

value of ? . This is why regions of high curvature tend to “round out”

faster when ? is large (c.f. Figure 12), which may be desirable if the

goal is to evolve more prominent features before affecting others

that are less pronounced.

Conclusion: The p-Willmore flow with conformal penalty pro-

vides a unified computational treatment of gradient flows which

arise from functionals which depend exponentially on the unsigned

mean curvature. The algorithm presented here provides a new de-

vice for visualizing the p-Willmore flow of closed surfaces subject

to natural constraints on surface area and enclosed volume. Be-

sides extending known methods for computing the Willmore flow,

Fig. 11. A cartoon armadillo with 346k triangles edited by our method. Re-

quires roughly 12 minutes of solver time on a 2.7GHz Intel Core i5 with

8GB of RAM.

it is seen that the conformal penalty regularization procedure inher-

ent in this algorithm allows for certain computational surfaces to

evolve to minima that would otherwise be unreachable. Moreover,

this regularization can be applied to stationary immersions as well,

significantly improving mesh quality with only minor changes to

the surface itself. Avenues for future work include a more rigor-

ous study of the consistency, stability, and convergence of the p-

Willmore flow under mesh refinement, as well as a computer im-

plementation that is more robust to rough data.
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Fig. 12. Volume-preserving p-Willmore flow with conformal penalty applied to the mesh in Figure 6 when ? = 0 (top), 2 (mid), 4 (bo�om).
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A THEOREM 4.1 IMPLIES CAUCHY-RIEMANN

We show that when G,~ are Cartesian coordinates on R2 and D :

R
2 → R3 is an immersion of the (G,~)-coordinate plane, the equa-

tion 3D � − # × 3D = 0 expresses the traditional Cauchy-Riemann

equations on C � ()R2, � ). To see this, let

D (G,~) =
©­­«
D1(G,~)

D2(G,~)

0

ª®®
¬
,
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and consider any constant vector field on )R2, say 41 = (1, 0)) .

Clearly � (41) = 42, so

3D � (41) = 3D (42) =
©­­
«
D1G D1~

D2G D2~

0 0

ª®®¬
(
0

1

)
=

©­­
«
D1~

D2~

0

ª®®¬
.

Since # =

(
0 0 1

))
is normal to the immersion at each point,

it follows that

3D � (41) − # × 3D (41)

=

©­­
«
D1~

D2~

0

ª®®
¬
−

©­­
«
0

0

1

ª®®
¬
×

©­­
«
D1G

D2G

0

ª®®
¬
=

©­­
«
D1~ + D

2
G

D2~ − D
1
G

0

ª®®
¬
= 0,

This expression implies the classical Cauchy-Riemann equations,

D1G = D2~,

D1~ = −D2G ,

and it is evident that the expression

|3D � (41) − # × 3D (41) |
2
=

(
D1~ + D

2
G

)2
+

(
D2~ − D

1
G

)2
,

measures the failure of these equations to hold. This reflects the

fact that, in general, # × (·) is an “almost-complex structure” on

D (R2) ⊂ R3, and an immersion which satisfies the above is “almost

holomorphic”.

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.


	Abstract
	1 Introduction
	1.1 Related work
	1.2 Contributions

	2 Preliminaries
	3 Building the p-Willmore flow model
	4 Building the mesh regularization equations
	5 Discretization of model systems
	6 Implementation and application
	6.1 Implementation
	6.2 Application: mesh editing

	Acknowledgments
	References
	A Theorem 4.1 implies Cauchy-Riemann

