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Computational p-Willmore Flow with Conformal Penalty

ANTHONY GRUBER and EUGENIO AULISA, Texas Tech University

Fig. 1. Area-preserving 2-Willmore flow with conformal penalty applied to a cow mesh of 23.4k triangles. Time steps pictured: 0,1,50,90,130. Area change

<0.3%.

The unsigned p-Willmore functional introduced in [Mondino 2011] general-
izes important geometric functionals which measure the area and Willmore
energy of immersed surfaces. Presently, techniques from [Dziuk 2008] are
adapted to compute the first variation of this functional as a weak-form
system of equations, which are subsequently used to develop a model for
the p-Willmore flow of closed surfaces in R3. This model is amenable to con-
straints on surface area and enclosed volume, and is shown to decrease the p-
Willmore energy monotonically. In addition, a penalty-based regularization
procedure is formulated to prevent artificial mesh degeneration along the
flow; inspired by a conformality condition derived in [Kamberov et al. 1996],
this procedure encourages angle-preservation in a closed and oriented sur-
face immersion as it evolves. Following this, a finite-element discretization
of both procedures is discussed, an algorithm for running the flow is given,
and an application to mesh editing is presented.
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1 INTRODUCTION

As another example, the reliable Helfrich-Canham model for biomem-
branes (see [Helfrich 1973]) is based on the well-studied Willmore

energy (see [Athukorallage et al. 2015; Bohle et al. 2008; Marques and Neves

2014; Mondino 2011; Weiner 1978; White 1973; Willmore 1965] and
references therein)

W2 (u) = /M H? dyg,

whose L?-gradient flow has been proven to converge smoothly to
a global minimum when the surface genus and initial energy are
sufficiently low [Kuwert and Schéatzle 2001; Mondino and Nguyen
2014] (c.f. Figure 4). Due to its pleasing aesthetic character, the Will-
more flow has further attracted the interest of computational math-
ematicians and scientists, and has been studied numerically in a va-
riety of contexts including conformal geometry, geometric partial
differential equations, and computer graphics. See e.g. [Crane et al.
2013; Dziuk and Elliott 2013; Joshi and Séquin 2007] and the refer-
ences therein.

1.1 Related work

Besides the inherent mathematical challenges present in geomet-
ric flows (involving e.g. convergence, changes in global topology,
and singularity formation), their governing equations introduce a
number of computational difficulties as well. In particular, discrete
surfaces are often stored as piecewise-linear data, such as meshes
of simplices, and it is taxing to find a satisfactory method of ex-
pression for second-order geometric phenomena such as curvature.
There have been two broad approaches to this problem in the cur-
rent literature, which can be thought of colloquially as arising from
discrete versus discretized perspectives on the issue.

In discrete geometry, the aim is to use global characterizations
from geometry and topology to develop fully-discrete analogues
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of classical geometric quantities, which are in some sense inde-
pendent from their original (continuous) definitions. Tools such as
exterior calculus, the Gauss-Bonnet and Stokes’ Theorems are em-
ployed to define length, area, curvature, etc. on a simplicial surface,
which is accomplished through enforcing global geometric relation-
ships rather than considering local values at specific places (nodes)
on a mesh. The main advantages of this approach are relative inde-
pendence from mesh quality, and sparse linear formulations which
are fast to solve. Some notable disadvantages present here are the
restriction of such methods (so far) to triangular meshes, and the
fact that several equivalent definitions of geometric quantities in
the smooth setting become inequivalent when treated in this way
(see [Crane and Wardetzky 2017] for details). Further information
on this area can be found in [Bobenko 2008; Deckelnick and Dziuk
2006; Droske and Rumpf 2004; Gu et al. 2009; Meyer et al. 2003] and
the references therein.

Conversely, discretized geometry involves approximating con-
tinuous geometric quantities as well as possible by using a good
choice of nodal mesh points, so that the difference between the
continuous and discrete objects vanishes in the limit of mesh refine-
ment. Traditional finite element mathematics is based on this idea,
whereby the necessary calculations are done locally and element-
wise without any particular adherence to global phenomena except
in the limit. The primary advantage of this approach is its flexibil-
ity with respect to applications, problem formulations, and mesh
data. Its main disadvantages are its inherent sensitivity to mesh
quality, and its agnosticism with respect to the global aspects of
surface geometry. See [Dziuk and Elliott 2013] for a compendium
of knowledge and techniques in this area.

Remark 1.1. In fact, the failure of the finite element method to
capture global relationships was a primary motivation for the devel-
opment of a discrete geometric theory, as mentioned in [Bobenko
2008; Gu et al. 2009].

Due in part to their useful application to problems such as mesh
editing (see [Bobenko and Schréder 2005]), the computational de-
tails of geometric flows have been examined previously from both
of the above perspectives. In [Dziuk 2008], the author studies para-
metric Willmore flow using finite-element methods. In particular,
the author develops and discretizes a model for the Willmore flow
of surfaces, detailing some examples and proving stability of this

discretization. On the other hand, the authors in [Crane and Wardetzky
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Fig. 2. p-Willmore evolution (with conformal penalty) of a letter “C” when
p =0,2,4, respectively. Colored by one component of mean curvature and
oriented top to bottom.

end, the main object of study is the L2-gradient flow of the (un-
signed) p-Willmore functional introduced in [Mondino 2011],

1
Wp(u)zz—p/M|H|pdpg, p>1.

As mentioned in [Gruber et al. 2019], this definition can be extended
to include the case p = 0, so that the surface area, (unsigned) total
mean curvature, and Willmore functionals are encompassed here
as WO, W1, and W2, respectively. It follows that the 0-Willmore
flow is simply MCF, and usual Willmore flow occurs when p = 2.
It is well-known that the analytic properties of these flows are
quite different from one another. For example, convex surfaces evolv-
ing under MCF become extinct in finite time (see [Huisken 1984]),
while the Willmore flow can terminate in a round sphere of finite
(positive) radius [Kuwert and Schétzle 2001]. In light of these dif-
ferences, it is reasonable to wonder how the behavior of a geomet-
ric flow depends on the exponential weight of the mean curvature

2017] use ideas from discrete conformal geometry to develop a conformallybeing measured, and the p-Willmore functional provides a natural

constrained model for the Willmore flow. More precisely, they de-
velop results which enable the direct manipulation of surface curva-
ture, allowing for angle-preserving mesh positions to be recovered
using a natural integrability condition. Beyond the Willmore flow,
many computational studies have also been done which focus on
the mean and Gauss curvature flows, Ricci flow, and Yamabe flow
of surfaces; see [Deckelnick et al. 2005; Joshi and Séquin 2007] and
their enclosed references for more details.

This work adopts a discretized perspective similar to [Dziuk 2008;
Dziuk and Elliott 2013] and aims to extend the computational study
of curvature flows that arise from functionals which depend on
some power of the mean curvature of an immersed surface. To that
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way to investigate this idea. In particular, it is apparent from simula-
tion that when p > 2, (at least some) surfaces which become spher-
ical under the p-Willmore flow will instead grow indefinitely. This
is not surprising, as the p-Willmore functional is only invariant un-
der changes of scale when p = 2 (c.f. [Gruber 2019]). Therefore,
an immersed surface can easily decrease its p-Willmore energy by
growing uniformly, so that its mean curvature decreases pointwise.
This phenomenon is displayed in Figure 2, where the p-Willmore
evolution of a C-shaped surface is compared when p = 0, 2, 4. More-
over, Figure 12 shows that even when the various p-Willmore flows
terminate at a common immersion, their intermediate surfaces may
be quite different depending on the value of p.



1.2 Contributions

In the following sections, techniques from [Dziuk 2008] will be
adapted to express the L?-gradient of ‘W? in a computationally-
accessible way, resulting in an appropriate weak formulation of
the p-Willmore flow problem. Once the relevant system of PDE
has been established, geometric constraints on surface area and
enclosed volume will be considered and introduced into the flow
model as Lagrange multipliers, leading to new and different behav-
ior. Moreover, the problem of mesh degradation along the flow will
be discussed, and a minimization procedure will be given which dra-
matically improves mesh quality throughout the p-Willmore flow
at the expense of solving another nonlinear system at each time
step. This procedure is inspired by a conformality criterion of Kam-
berov, Pedit, and Pinkall derived in [Kamberov et al. 1996] and is
similar in spirit to the least squares conformal mapping (LSCM)

technique introduced in [Lévy et al. 2002]. Consequently, the p-Willmore

flow and mesh regularization systems will be discretized and imple-
mented on manifold meshes of triangles and quadrilaterals using
the Finite Element Multiphysics Solver FEMuS [Aulisa et al. 2014],
and a fully-automated algorithm given for running the p-Willmore
flow with conformal penalty. Finally, some specifics of this imple-
mentation will be discussed, as well as an application to mesh edit-
ing.

The p-Willmore flow algorithm introduced here has the follow-
ing benefits:

e It provides a unified computational treatment of geometric
flows which arise from functionals whose integrand is a power
of the unsigned mean curvature, including MCF and the Will-
more flow.

o It is flexible with respect to geometric constraints on area
and volume, as well as mesh geometry data (tri or quad) and
surface genera.

o It affords the ability to near-conformally regularize the sur-
face mesh along the flow, preventing mesh degeneration at
the expense of an additional nonlinear solve at each time
step.

e It is entirely minimization-based and therefore amenable to
alarge library of developed theory and techniques, including
those in [Dziuk and Elliott 2013].

Remark 1.2. The regularization procedure mentioned above can
be easily modified to require only a linear solve, at the expense
of more roughness in the mesh (c.f. Section 5). See Figure 3 for a
comparison on a realistic cow surface. In addition, note that the
conformal penalty regularization in this work is not a true con-
straint on the conformality class of the evolving surface. There-
fore, the approach here differs from the work done on conformally-
constrained Willmore surfaces in [Bohle et al. 2008; Crane et al. 2011;
Schitzle 2013] and others.

Though the p-Willmore flow with conformal penalty is useful, it
is prudent to mention some challenges that have yet to be overcome.
In particular, the formulation considered here can be sensitive to
initial data due to the high degree of nonlinearity present in the
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Fig. 3. A performance comparison of linear versus nonlinear conformal
penalty regularization on a cow with 34.5k triangles. Original mesh (left),
linear algorithm (middle), nonlinear algorithm (right). Simulations take
roughly 2s, 4s, resp. on a 2.7 GHz Intel Core i5 with 8GB of RAM.

p-Willmore equation, especially when large values of p are consid-
ered; typically, the flow cannot be run on rough meshes with a high
degree of noise, and can be relatively unstable when p > 2. More-
over, the nonlinear systems involved in the p-Willmore flow algo-
rithm are computationally demanding, requiring significant effort
on fine meshes which may be prohibitively expensive for “real time”
use cases; specifics related to the figures in this work, including the
solver time required are recorded in Table 1. Finally, the p-Willmore
flow with conformal penalty is not yet well-understood with re-
spect to theoretical results on consistency, stability, or convergence.
Such questions provide ample opportunity for future work in this
area.

2 PRELIMINARIES

It is beneficial to recall how to manipulate evolving surfaces mathe-
matically. Let M be a compact, connected C? surface without bound-
ary. For € > 0, consider the family of surface immersions u : M X
(-&,¢) — R3 with images M(t) := u(M,t), and let § := d/dt|;=o
be the variational derivative operator. Then, if & denotes differenti-
ation with respect to t, the initial surface M(0) is said to undergo
p-Willmore flow provided the equation

i =—-86WP(u), (1

is satisfied for all ¢ in some interval (0,T]. Using standard tech-

niques from the calculus of variations, it can be shown (see [Gruber et al.

2019]) that for closed surfaces M this condition implies the scalar
equation

(i, Ny = —{E)Ag (H|H|P‘2) — pH|H|P? (2H2 - K) +2H|HIP, (2)

where N : M x (—¢,¢) — S? is the outward-directed unit normal
vector to M(t) for each t, A4 is the Laplace operator associated to
the metric g on the surface, and K is its Gauss curvature.

Remark 2.1. Note that from here on the Einstein summation con-
vention will be employed, so that any index appearing twice in an
expression (once up and once down) will be implicity traced over.

While equation (1) can be discretized by itself and used to define
anormally-directed p-Willmore flow, it is advantageous to work di-
rectly with position instead of the mean curvature H. Besides being
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more straightforward to implement, this allows for the considera-
tion of tangential motion during the flow which can help regularize
the surface mesh as it evolves (see [Dziuk and Elliott 2013]).

Remark 2.2. Though position-based flow techniques are more
standard in the literature, researchers in [Crane et al. 2013] have
had success working directly with curvature. Using a natural inte-
grability condition, they are able to recover surface positions that
maintain full conformality with respect to the reference immersion.
A major advantage of this approach is that such conformality is
built directly into the flow, completely eradicating mesh degrada-
tion along the evolution.

To develop a suitable model for the p-Willmore flow of surfaces,
it is helpful to adopt the formalism of G. Dziuk found in [Dziuk
2008]. To that end, let X : U ¢ R? — M be a parametrization of (a
portion of) the closed surface M, with outward-directed unit nor-
mal field N. Then, the identity map u : M — R? defined through
u o X = X provides an isometric surface immersion, and the com-
ponents of the induced metric on M C R3 are given by

gij = <a,'X, an> = <X,',Xj>.

where (-, -) denotes the standard Euclidean inner product. With
this, the metric gradient Vg of a function f : M — R? can be
expressed componentwise as (Einstein summation assumed)

(ng) oX :gijFi ® Xj,

where F = foX is the pullback of f through the parametrization X,
F; = dF (X;), and gikgk i = 5; It follows that the Laplace-Beltrami
operator Ag on M is then expressed as

(Agf) o X = (divgVyf) o X = 9j ( detggijFi),

1
ydetg
and a simple calculation verifies that for two functions f,h: M —
R3, the metric inner product extends linearly to yield

(df,dhy, = (Vof, Vgh) = g"(Fi, Hj).

Moreover, in view of the geometric identity Y := Aju = 2HN, the
p-Willmore functional is expressed succinctly in this framework as

1
W =35 [ 17 g

In particular, introduction of the mean curvature vector Y ensures
that ‘W? is free of explicit second derivatives of the position vector
field.

Remark 2.3. Since the constant factor in front of the p-Willmore
integrand merely scales the value of the functional and does not
affect its geometric behavior, it will be omitted in subsequent pas-
sages with the understanding that W? truly indicates 2 ‘WP Note
that this will manifest itself in the flow only as a uniform scaling of
the temporal domain.
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Fig. 4. Unconstrained and regularized 2-Willmore evolution of a deformed
torus to a known global minimum. The minimizing surface is the stereo-
graphic projection of a Clifford torus in S®. Note that the conformal struc-
ture on the initial surface cannot be preserved as the pinched neck is thick-
ened.

3 BUILDING THE P-WILLMORE FLOW MODEL

It is now possible to calculate the variational derivative (L?-gradient)
of the functional ‘W? in a way that is respectful towards computer
implementation. More precisely, the calculation presented here in-
volves no adapted coordinate system or explicit second-order deriva-
tives, and the variations considered are assumed to have tangential
as well as normal components. This will make it possible to accom-
plish the finite element discretization seen later.

Recall that when given a smooth function ¢ : M — R3 and a
parameter t € (—¢, €), a variation of u is given by

u(x, t) = u(x) +to(x),

where x denotes a local coordinate on M. This in turn induces a vari-
ation in the area functional, which can be calculated as in [Dziuk
2008]. In particular, there is the following lemma from that work.

LEMMA 3.1. Let Greek letters indicate tensor components with re-
spect to the standard basis for R3, and define D(¢p) = Voo + (ngo)T
through

()P = gV (pixt + ol'x5).

Then, in the notation above and denoting the area functional on M by

.?{(u):/Mldpg,

the first and second variations of A may be expressed as
SA(u)p = / divge dug = / (du, d(p)g dug,
M M
AW =~ [ (D) d)y = (o)

" /M (divgp) (divgy) dyg.

Proor. The proof is a direct calculation and can be found in
[Dziuk 2008]. |

With this in place, it is helpful also to recall an operator-splitting
technique employed in [Dziuk 2008], which is used to reduce the
order of the flow problem. In particular, let H(M;R3) denote the
space of weakly first differentiable functions on M, and recall the



equation Y = Aju. Integrating this by parts against y € H L(M;R3)
then yields the relationship

[ (¢« cawayg) dug =o. ®

which can be considered as a weak-form expression of the mean
curvature vector Y. Note that due to the definition of Y, (3) has the
useful function of effectively reducing the order of the p-Willmore
flow equation (1) by two at the expense of solving an additional
PDE.

It is now pertinent to develop a counterpart to equation (3), so
that the operator splitting above can be beneficial. The resulting
equation should reduce to (2) in the normal direction, while also
suppressing undesirable non-divergence terms such as K. To ac-
complish this, first note that

[ erdig=- [ (auan), =-sawy.

Therefore, differentiating with respect to u in the direction ¢ €
H'(M;R3) yields

/ OV .9y dsg + / (V.9 divgp dyig = S AW (09, (@)
M M

The goal is to use this expression to develop a weak-form for the

p-Willmore equation by choosing an appropriate test function .
Moreover, this choice should be made in avoidance of explicit deriva-
tives of the normal vector N, since they are not well-suited to dis-
cretization using piecewise-linear finite elements. To this end, sim-
ilar differentiation of the p-Willmore integrand yields,

SIYIP o =5(Y,Y)% = plYIP2(5Y g, Y)
= (Y ¢, plY[P7%Y).

Hence, letting W := |Y|P~2Y be the weighted mean curvature vec-
tor on M, choosing ¢ = pW in equation (4), and using Lemma 3.1
the variation of the (2P-scaled) Willmore functional ‘W? can be cal-
culated as

sWP =5 [ V1P dyg
M
= 8Y ¢, plYIP7%Y)d +/ Y|P divye d
./M< P > Hg v gP allg
= /M (1= pYIP = pdivgW) divge dpg
+ [ (Do) dw), - @p.aw),) s
This computation directly implies the following Theorem.

THEOREM 3.2. In the notation above and for p > 1, the uncon-
strained p-Willmore flow equation (1) is expressed in weak form by
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the following system of PDE in the variables u, Y, and W:

0= ./M (&, @) dpg +./M (A =pIYIP = pdivgW) divge dug

o [ (o) dw, = dp.aw), ) 5
0= /M (V9 dpy + /M (du,dy), dug, ©
0=/M<W—IY|"‘2Y,§>dug=0, ()

which must hold for all t € (0,T] and all ¢, & € H' (M(t); R®).

Proor. The proof follows immediately from the definitions of
Y, W, and the discussion above. m]

Remark 3.3. The reader will notice that this reduces to precisely
the system in [Dziuk 2008] for the case p = 2, in which case the last
equation is not needed. Additionally, the case p = 0 (MCF), while
not in the domain of the theorem as stated, may be recovered by
simply omitting (7) and replacing equation (5) with the equation
from Lemma 3.1 for the variation of area:

/M<u,<p>dyg-/M<du,d¢>gdyg:o.

The system in Theorem 3.2 is the primary model for the p-Willmore
flow studied here, and provides the basis for the p-Willmore flow
algorithm presented later. Before discussing further modifications,
the following theoretical result is presented which guarantees that
the p-Willmore energy always decreases along the flow governed
by the equations above. Note that this property is well known in the
case of MCF (0-Willmore flow), so the proof of this case is omitted.
See e.g. [Mantegazza 2011] for more details. Example illustrations
of this phenomenon include Figures 1, 4, 5, 6, and 8.

THEOREM 3.4. The closed surface p-Willmore flow is energy de-
creasing for p > 1. That is, if W = |Y|P72Y is the weighted mean
curvature vector on M and u : M x (0,T] — R3 is family of surface
immersions with M(t) = u(U, t) satisfying the weak p-Willmore flow
equations (5), (6), and (7), then the p-Willmore flow satisfies

d
la|? d +—/ [YIP dyg = 0.
/M(t) ST M(t) Ho

Proor. Choosing the admissible test functions ¢ = @ and ¥ =
pW in (4), as well as noticing that (W, Y) = |Y|?, the following
system is observed

0=/ Iulzdpg+/ (1= p)IY[Pdivgi — p (divgW) (divget)) dpg
M M
+ /M P((D(u)dU,dW)g—(dW,du)g)dyg,
0=/ p<5Y,w>dyg+/ p (I[P + divgW) divgu dpg
M M

o [ p(caw.div - D, dwy,) duy
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Fig. 5. Surface area and volume constrained 2-Willmore flow with conformal penalty applied to a (3,4)-torus knot. Though area preservation is only globally
enforced, the each surface along the evolution is nearly isometric to the given reference immersion.

Adding the above equations in view of (3) then yields

0:/ |1'4|2d/,1g+/ (BIYIP + Y|P divgn) dug
M M

completing the argument. O

Now, in light of the physical relevance of the functional ‘W2,
it is desirable also to have a model for the p-Willmore flow that
is amenable to geometric constraints on surface area and enclosed
volume. This is reasonable not only from a physical point of view
(since many curvature-minimizing structures such as biomembranes
constrain themselves naturally in these ways) but also in a math-
ematical sense, as such constraints can serve as a meaningful “re-
placement” for conformal invariance when p # 2. More precisely,
since the p-Willmore functional is not conformally invariant in gen-
eral, volume/area preservation ensures that physically-meaningful
shapes such as spheres remain locally minimizing for p # 2, at least
among some class of variations. Practically, this is accomplished
through the addition of Lagrange multipliers A, p into the model
from Theorem 3.2. More precisely, let D C R3 be a region in space
such that 9D = M and let dy, div denote, respectively, the volume
element and divergence operator on R3. Recall the volume func-

tional,
1 . 1
(V(u)zjldp:—/dlvu d,u:—/ (u,N) dyg,
D 3Jp 3Jm

where the Divergence Theorem was applied in the last equality. It
is well known (see e.g. [Barbosa et al. 2012]) that the first variation
of volume is given by

Ve =3 [ 0N du,
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On the other hand, recall that Lemma 3.1 implies that the first vari-
ation of the area functional can be expressed as

5.?{(14)('0:5/};41dyg:/1\'4(du,d(p)gdyg.

With these expressions available, it is straightforward to formu-
late the next problem considered in this work: closed surface p-
Willmore flow with constraint.

PROBLEM 3.5 (CLOSED SURFACE P-WILLMORE FLOW WITH CONSTRAINT).
Letp > 1andW := |Y|P~2Y. Determine a familyu : Mx(0,T] — R3
of surface immersions with M(t) = u(M,t) such that M(0) has ini-
tial volume Vy, initial surface area Ay, and for allt € (0, T] the equa-
tion

i =-8(WP+ 1V +yA),

is satisfied for some piecewise-constant functions A, i : M(t) — R.
Stated in weak form, the goal is to find functionsu, Y, W, A,y on M(t)
such that the equations

0= [ wordig+ [ vdudor,dug+ [ 260N d

. /M (1= PIYIP = p divgW) divgp dyig

+ /M p (D(@)du, dW)y - (dg.dW), ) dy, ®)
0= /M Y,y dpg + /M (du,dy), dpy,
o:/M(w-|Y|P—2Y,§)dyg,

Ao = / 1dp, )
M

3Vp = /M (u,N) dpg, (10)
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Fig. 6. 2-Willmore evolution of a rabbit with 18k triangles, constrained by both surface area and enclosed volume. Here appears the biconcave discoid shape
characteristic of genus 0 minimizers of the constrained Helfrich-Canham energy such as red blood cells [Ou-Yang and Tu 2014]. It is further remarkable

that the flow behavior here is different than when either constraint is considered on its own, where the rabbit becomes a globally-minimizing round sphere

instead due to the scale-invariance of ‘W? (c.f. Figure 12).

are satisfied for all t € (0,T] and all ¢, ¢, & € H' (M(t);R?).

Remark 3.6. The case where p = 0 may again be considered by
replacing the equation (8) with the simpler relationship

0= [ Gwordng+ [ 20Ny~ [ (dudor,duy
M M M

Of course, area preservation makes no sense in this context (since
the objective of MCF is to decrease area), so equation (9) should
also be disregarded in this case. In addition, note that the system
of Problem 3.5 can also be used to study the p-Willmore flow with
fixed volume or fixed surface area separately. In particular, fixed
volume is obtained by setting p = 0 and ignoring (9), and fixed
area is accomplished similarly with A = 0 and omission of (10). In
practice, Boolean variables were implemented to enable switching
between the different constrained/unconstrained cases.

Problem 3.5 provides a way to examine the p-Willmore flow sub-
ject to geometric constraints on surface area or enclosed volume.
This is a highly interesting situation, since minimizing surfaces can
vary widely with the type of constraint that is considered. For ex-
ample, when beginning with the embedded surface of genus 0 seen
in Figure 6, enforcing either volume or area preservation separately
during the 2-Willmore flow produces a spherical minimizer. On the
other hand, Figure 6 displays the behavior when this flow is con-
strained by both surface area and enclosed volume together. This
scenario arises frequently in mathematical biology when consid-
ering membrane behavior in an external solution, and minimizing
surfaces often realize familiar shapes—such as the biconcave dis-

coid seen here, which is typical of red blood cells. See [Ou-Yang and Tu

2014] for further details.

Remark 3.7. It is not difficult to show that the constrained p-
Willmore flow in Problem 3.5 enjoys the same stability property
demonstrated in Theorem 3.4. To see this, repeat the argument from
that proof using (8) instead of (5), and recall the derivatives of the
area and volume functionals given previously.

4 BUILDING THE MESH REGULARIZATION
EQUATIONS

One of the main questions that arises in the computer implementa-
tion of curvature flows is how to preserve the quality of the surface

mesh as it evolves. If the initial mesh becomes sufficiently degener-

ate along the flow, it will crash the simulation—sometimes well be-
fore any troublesome behavior occurs in the actual surface geome-
try (c.f. Figure 9). Since curvature flows often alter the initial surface

quite dramatically, this can present a serious issue for accurately

modeling flow behavior. Several different techniques have been de-
veloped to combat this issue e.g. [Crane et al. 2011; Desbrun et al.

2002; Floater and Hormann 2005; Gu and Yau 2003; Lévy et al. 2002],
each with their own strengths and weaknesses. A common chal-
lenge present in all methods of mesh regularization is striking a

good balance between area-preservation and conformality, or angle-
preservation. Of course, area-preserving maps can be arbitrarily

ugly (think following the flow of a vector field tangent to the sur-
face) and conformal maps frequently distort area in undesirable

ways. Therefore, the technique employed in this work is inspired

by the least-squares conformal mapping procedure of [Lévy et al.
2002] as well as the following result from [Kamberov et al. 1996],

which can be thought of as a generalization of the Cauchy-Riemann

equations from classical complex analysis (see Appendix A for more

details).

THEOREM 4.1. (Kamberov, Pedit, Pinkall) Let X : M — ImH be
an immersion of the orientable surface M into the imaginary part of
the quaternions, and let ] be a complex structure (rotation operator
J? = —Idrp) on TM. Then, if *a = a o J is minus the usual Hodge
star on differential forms, it follows that X is conformal if and only
if there is a Gauss map (unit normal field) N : M — ImH such that
*dX = NdX.

Since Im H is canonically isomorphic to R? as a vector space, this
gives a criterion for conformality that can be weakly enforced dur-
ing the p-Willmore flow. More precisely, recall that N L dX(v)
for all tangent vector fields v € TM, and that multiplication of
v,w € ImH obeys the rule vw = —(v, w) + v X w where X is the
usual vector cross product. It follows that NdX(v) = N x dX(v)

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.
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Fig. 7. The (linear) procedure described in Problem 4.3 applied to a statue mesh of 483k triangles, with close-up on the back of one figure. Before (left) and

after (right).

for all v € TM, and the conformality condition in Theorem 4.1 can
be expressed pointwise as

*dX(v) = N xdX(v) forall v € TM. (11)

For the present purpose of mesh regularization, it suffices to en-
force this condition weakly through a minimization procedure. De-
fine the conformal distortion functional

1
CZ)(u)=§/M|duJ-Nxdu|2d,lg.

In view of Theorem 4.1, CD (u) is identically 0 if and only if u is
a conformal immersion of M into R3. Assuming the surface metric
is held fixed, minimization of the conformal distortion leads to the
necessary condition

5CZ)(u)tp=‘/M((du]—Nxdu),(d(p]—NXd(p))gdyg=0,

(12)
which must hold for all ¢ € H'(M,R3).

Remark 4.2. The reader will notice that the evolution-dependent
nature of the mesh regularization problem has been ignored. As
the goal is compute a map very close to u(M) itself, the metric
(and hence the volume element) associated to the new immersion
are approximated using the respective quantities coming from the
present immersion.

To make use of this equation in the computational framework
considered here, it must first be expressed in terms of the local co-
ordinates on U C R2. To that end, a particular section v € TM of
the “complex line bundle” TM is first chosen; it is advantageous to
consider the parametrization domain U and choose X*v = e; where
e1 represents the first standard basis vector for TU. Then, (abusing
J to denote the pullback complex structure on TU as well as the
original structure on TM), ez = J(e1) and the integrand of (12) ap-
plied to the basis dX(e;) for TM can be pulled back through X to
yield the coordinate expression

97 {(dX J(e;) = N x dX(e;)), (dX J(ej) — N x dX(e;))), (13)
where N is understood to mean the pullback (outer) normal field

_ X1 XXz
IX1 % Xa|’

ACM Trans. Graph., Vol. 1, No. 1, Article 1. Publication date: January 2020.

which is valid on the parametrization domain U. To write this in a
more compact form, first notice that

dX J(e1) — N xdX(e1) = dX(ez) — N xdX(e1),
dX](ez) -NXx dX(ez) =- (dX(el) +N X dX(ez)) .
So, letting N = (n1, na, n3)T and denoting XJ‘: = (ei, dX(ej)> (where
we have abused notation again by referring to e; as a standard basis
field on both U and M), one can form the vectors
X; —ny X3+ n3 X2
V =dX(e2) - N xdX(e1) = | X2 - ns X} +ny X3
X3 —n X2 +ny X}

X! +n2 X3 —n3 X2
W =dX(e1) + N xdX(e2) = [ X2+ n3 X} = ny X3
X3 +n1 X2 —ny X;

With this, careful reorganization of (13) yields the R3*? dyadic prod-
uct Q : Jac ¢, where Jac denotes the usual Jacobian and Q is given
in components as (indices 1 < i < 3, mod 3)

0! = g2 Wi + g (nis1 Visz — nisz Vie1)
+9"% (nisz Wizt — nigt Wisz = Vi),
0} = g" Vi + g% (nisz Wis1 — nist Wisa)
+9"% (nis1 Visz — nisz Vier — Wy) .

For cleanliness of presentation, note that there is a tensor Q = Q(u) €
T*U ® TM such that OV = gkj Qi, so we may write this product
(at least formally) as (Q, do) g Therefore, equation (12) can now be
expressed concisely as

[ @tw.do)ydug =o. (14)
M

Equation 14 is used to ensure that the surface mesh finds a configu-
ration that is “as conformal as possible” to a specified discretization
of the reference surface M C R3. In practice, best results (particu-
larly for triangle meshes) are achieved if this reference is defined
implicitly based on an adjustment of the initial mesh data. In par-
ticular, it is useful to choose the reference configuration to be the
starting surface with interior angles adjusted relative to the number
of elements sharing a vertex. More precisely, there is the following
procedure. For each vertex i in the triangulation, first compute the



number m; of elements with i as a vertex. Then, if T is a triangle
adjacent at i with vertices iy, iz, i3 and interior angles a;,, ai,, 2i,,
rescale aj, — aj, /m; to generate “ideal” interior angles. It is clear
that, in general, a;, + a;, + @i, # 7, which is necessary for closure.
The strategy is therefore to use the largest interior angle of each
triangle to adjust the others. In particular, suppose a;, > a;, and
ai, > ai,. Then, set

k=23

Moreover, in the case that a given triangle has two or three leading
angles, each angle is set to /3. Pseudocode for this procedure is
given in Algorithm 1.

Algorithm 1 Generation of reference angles

Require: Reference triangulation 7~ of the closed surface M.
forT € 7 do
for vertex 1 < i <3 do
Compute m; = # of adjacent elements
ai « ai/mj
end for
Determine maximum vertex angle a;.
if a; > aj for all j # i then
for vertices j # i do
aj — aj (7 = i) [ (Zgzi @)
end for
else
for vertices 1 < j < 3do
aj — aj ﬂ/(zzzl ak).
end for
end if
end for

Of course, if equation (14) is to be useful as an effective tangen-
tial reparametrization of a surface evolving by p-Willmore flow, it
should not be solved without constraint. For example, it is clear
that any constant function u will satisfy this equation as stated, so
some care must be taken to prevent trivialities. Moreover, it is also
necessary to constrain the regularization in (14) so that it does not
destroy the current surface geometry by moving the surface too far
in the normal direction. One potential solution to this issue is mo-
tivated by the following observation: if the aim is to recover a new
immersion @ which is “close” to the current immersion u, then the
difference @(x) —u(x) at any x € M should be tangential to first or-
der, hence orthogonal to the surface normal N(x). Said differently,
a first-order approximation to tangential motion along the surface
can be obtained by requiring that the pointwise equation

((@(x) —u(x)),N(x)) =0,
hold for all x € M during the above minimization. In fact, since
exact conformality is not required for the present purpose of mesh
regularization, it is advantageous to weaken this requirement fur-
ther using a penalty term. Since saddle-point problems with a mix-
ture of linear and piecewise-constant finite elements can exhibit un-
stable discretizations, the inclusion of such a term helps to prevent

Computational p-Willmore Flow with Conformal Penalty + 1:9

Fig. 8. Unconstrained 2-Willmore flow of a genus 4 statue mesh (last image
rotated 90 degrees counterclockwise).

numerical artifacts from appearing during the implementation. Pre-
cisely, the conformal penalty regularization procedure is presented
as the following problem.

PROBLEM 4.3 (CONFORMAL PENALTY REGULARIZATION). Given a
fixed ¢ > 0 and an oriented surface immersion u : M — R> with
outward unit normal field N, solving the conformally-penalized mesh
regularization problem amounts to finding a functionv : M — R3
and a Lagrange multiplier p : M — R, so that the new immersion
@t = u +v is the solution to

. £ 2
mz}n(CZ)(u+v)+§/Mp dyg+/Mp<v,N) dyg)

Formulated weakly, the goal becomes to find a new immersion 4 and
a multiplier p which satisfy the system

0= [ ploNydig+ [ (Qu+a.de)yd

0=/ r//<v,N>dug+€/ Ypdpg,
M M
forall p, € H'(M;R3).

Solving Problem 4.3 at each step of the p-Willmore flow inhibits
the computer simulation from breaking arbitrarily, at the expense
of potentially altering the flow solution at each time step. To be
sure, without such a procedure in place it is not unusual for global
minimizers to remain computationally out-of-reach, as is shown in
Figure 9. Moreover, Figure 7 demonstrates how this regularization
is useful even for stationary surfaces, as it greatly improves the
quality of (perhaps very irregular) surface meshes. The practical
discretization of both this system and the p-Willmore system in
Problem 3.5 will be discussed in the next sections.

5 DISCRETIZATION OF MODEL SYSTEMS

Discretization of the models in Problem 3.5 and Problem 4.3 will
now be discussed. In particular, specifics of the spatial and tempo-
ral discretization are presented, leading to appropriate discrete ver-
sions of the continuous problems above. Moreover, some insight is
given into the treatment of nonlinearities, and the main algorithm
of this work is given.

As in [Dziuk and Elliott 2013], the smooth surface M c R3 is
assumed to be approximated by a polygonal surface M}, consisting
of 2-simplices (triangles) T}, that are not degenerate, so that

My= ) T

Th€Tn
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forms an admissible triangulation of M. Denoting the nodes of this
triangulation by {a; }ﬁ\]: 1> the standard nodal basis {¢;} on M sat-
isfies $;(aj,t) = &;ij. The space of piecewise-linear finite elements

on Mj,(t) is then denoted
Sp(t) = Span{gi} = {¢ € CO(My(1)) : $lz;, € P1(Tp), Ty € Tr},

where P;(Tj,) denotes the space of linear polynomials on Tj,.

Now, suppose the simplices T, € 75, have maximum diameter h
with inner radius bounded from below by ch for some ¢ > 0. Then,
for any choice of unit normal N there is § > 0 so that points x € R?
in the tube of radius delta around M can be expressed as

x = a(x) +d(x)N(x),
where a(x) lies on M and |d| < §. It is assumed that M}, is con-
tained in this tube, so that any function f;, defined on the discrete
surface My, can be lifted to a function f}f on the smooth surface M
by requiring
frla() = f(x),

Denote the inverse process by f =L In this notation, the lift of the

x € Mp.

finite element space Sy, is denoted

1 1
S,=1{9"1¢ € S},
and it is possible to compare geometric quantities on M and Mj,.
In particular, let g denote the induced metric on My, uy, denote
identity on My, and Y}, = Ay, uj, denote the discrete mean curvature
vector defined through the relationship

0= [ i dus, + [ dundiidg, digss Vi < S
My Mp

where d = dj, is understood to mean the derivative operator with
respect to the surface Mj, and djig,, is the area element with respect
to the metric gy,. Then, there are the discrete area and volume func-
tionals

ﬂ(uh):/ 1dug,,
Mp

V(up) = / (o Np) diigy.
Mp

and the discrete p-Willmore functional is defined to be

1
P = Y, |P .
WP (up,) ZP/A/rhlh'

Moreover, if ] is understood to be a linear operator on the tangent
space TMy, the discrete conformal distortion functional can be de-

fined as

1
CD(up) = E/M duy, J — Njy, x duy|? dpg,.
h

These definitions are seen to yield a reasonable spatial discretiza-
tion of the continuous Problems 3.5 and 4.3, but it remains to dis-
cuss their time-dependent aspect as well. A reasonable strategy
for the temporal discretization of complicated nonlinear PDEs on
evolving surfaces is to linearize the problem at each time step, effec-
tively pushing the nonlinearities into the temporal domain. This is
the strategy of [Dziuk 2008; Dziuk and Elliott 2013]. Though such
formulations enjoy many of the benefits of their linear counter-
parts, they typically require a very small time step and are less
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robust to round-off errors as well as other sources of numerical
instability. Therefore, the present strategy for discretizing the p-
Willmore flow Problem 3.5 is to “center” the discretization in time,
except for some isolated terms for which this is problematic. Though
this approach will still produce a numerical scheme which is first-
order in time, it is seen to significantly improve the stability of the
fully-discrete p-Willmore flow. To describe this idea more precisely,
let 7 > 0 be a fixed temporal stepsize, and denote u”: = up (-, k7).

Consider that at time step k, the images of uili and uﬁ” are the old

k+1
resp. new surfaces M”; and M}I:H. Therefore, MhJr2 will denote the

k+1
central surface defined by the immersion uh+ 2 =(1/2) (uﬁ + uﬁ“),

and a field quantity Ty, defined on each surface will have the cen-

1
tral counterpart T;: T2 (1/2) (T}’lc + T/l‘“). Additionally, d and D
will now be used to denote discretized operators with respect to
the metric on the central surface. With this, running the discrete
p-Willmore flow with constraint is presented as the following prob-
lem.

PrOBLEM 5.1 (DISCRETE P-WILLMORE FLOW WITH CONSTRAINT).
Letu,Y, W, A, u be as in Problem 3.5. Given the discrete data u}’i, Y}Il‘, W}f
at time t = kr, the p-Willmore flow problem is to find functions
u}’:”, Y}Il‘”, W/:”, Ans Yn which satisfy the system of equations

k+,l k+1
oz/+7<y z h>d +/+7<du+,d¢h> dpg,.
M}I: 1\ Y, 5 Yn) dug, M}I: 1\ %y n Hgn,
kel P72
0:/k+l w7l Y g, ) dpg, (15)
Mh 2
ktg (0 ket k
0= ! duh ,(duh —duh) dygh, (16)
Mh 9h
0= k+1_ k Nk+% d (17)
= kel \Mh T U)o Ny Hgn>
Mh
(k" ) on) d
O_Ak+% T th

k k
+PA:+% <D(<ph)duh,dWh >9h dyg,, (18)

for all p, Y. & € Sp-
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Fig. 9. Surface area and volume constrained 2-Willmore evolution of a trefoil knot, with conformal mesh regularization (top) and without (bottom). Due to

a coarse discretization, the mesh degenerates when not regularized, preventing movement to the minimizing surface. Conversely, element quality remains
nearly perfect along the flow when regularized at each step, and evolves completely to the desired minimum despite the mesh resolution.

Remark 5.2. Similar to the continuous situation, the case p = 0
can be handled by omitting equations (15), (16) and replacing equa-
tion (18) with

([t =) on)
0= e+l d:ugh
M T

k+d
+A4k+% /1h<q0h,Nh 2>dpgh

_ k+1
/M,ﬂ% <d”h ’d¢h>gh dpigy-

h

To further explain the heuristic behind Problem 5.1, first recall
that the identity divge = (du, d(p)g holds in the continuous set-
ting. Therefore, as in [Dziuk 2008] the divergence of ¢ has been
discretized as

. K+
divg, op = <duh 2,d¢h> ,
Gh

which improves numerical stability. Moreover, the terms (dW, dg) ,
and (du,d}); have been discretized fully-implicitly in the interest
of moving closer to a second-order time discretization. On the other
hand, the term (D (¢)du, dW) gis ill-behaved when not taken explic-

itly, so it has been discretized with respect to the old data ullj, W’f .
Note that, in any case, differentiation and integration are done with

1
respect to the central surface M;: 2 , which greatly improves the re-
sults.
Moreover, it is reasonable to consider (16) and (17) as a central
discretization of the constraint equations (9) and (10). To see this,

first observe that

Bﬂ(u):/ Sdpg:/ divudyy
M M
:/ (divgu+(N,VNu))dyg=/ (1+|du|2)dyg,
M M

where the second line uses the tangential/normal decomposition
of the ambient divergence operator and the fact that Vu = I is the
identity matrix. Therefore, since area preservation can be enforced
by requiring zero change between the areas of M,’f” and M,’f, a
reasonable condition for area-preservation is

2
0=2A (uk+1) -2A (uk) =/ dp —/
h h " 9n
ket MF

h

kts [k k
z/k+% <duh 2,(duh+1—duh)> digy,»
M, 9h

duk+1

2
h dygy,

k
duh

which is (16). Similarly, the condition for volume preservation be-
comes

0=3V (uﬁ“) -3V (u’,j)

— k+1 nrk+1 _ k k
_'/];/[;:H <uh Ny >dygh '/];/[;: <uh,Nh>dygh

k+i
~ /Mf; <(“'ﬁ” ~uf) Ny > dug:
which is expression (17).

Of course, the conformal penalty regularization Problem 4.3 can
also be discretized in a similar fashion. Though this problem is not
necessarily time-dependent, it is advantageous to treat it somewhat
implicitly so that the tangent bundle of the regularized mesh “fits
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together” in a smoother fashion. Indeed, there is no reason to ex-
pect that sliding the mesh points of the initial surface along indi-
vidual tangent planes will produce a new distribution which is it-
self integrable, so a semi-implicit discretization tends to produce
better results in this case. To that end, let ul}iﬂ,ﬁ]ﬁ“ be the old

resp. new immersions of M}]:” as in Problem 4.3, and let N}:”

resp. N I]:H be their respective normal vector fields. Moreover, let

]\7}1‘“ = (1/2) (N}’lchl +N}Il‘+1) denote the “central” normal field.

The discretized mesh regularization procedure then proceeds as fol-
lows.

PROBLEM 5.3 (DISCRETE CONFORMAL PENALTY REGULARIZATION).
Let ¢ > 0 be fixed, let 4, u, N, p be as in Problem 4.3, and let N be as

]gﬂ, N;l‘“, solving the discrete conformal penalty reg-

N : Lkt
ularization problem means finding functions @, ",

above. Given u

pr, which satisfy
the system

_ Jk+1 Ak+1
0= /M i P (qoh,Nh >dugh + /M o <Qh ,d¢h>gh diigy:
rk+1 k+1) xX7hk+1
O:/Mk+1 ¢h<(“h+ —ukt ),Nh+ >d”9h+€/Mk+1 U ph dpig,
h h

for all pp, Yy, € Sy, and where <QI}:+1, dq0h> refers to the discretiza-
9h

tion on the known surface M’]f” of the analogous quantity in Prob-

lem 4.3), which involves components of the known normal N}’:” and

derivatives of the unknown immersion 12’];”, computed with respect

to M}]:”.

Note that Problem 5.3 is nonlinear, but only because the normal
vector field arising from the surface preservation constraint has
been taken centrally. Therefore, as mentioned in Remark 1.2, the
conformal penalty regularization procedure can be easily modified
by replacing N }I:H with N, }]f”, yielding a linear system of equations.
This provides a tradeoff between mesh quality and computational
time, as illustrated in Figure 3.

Now that the relevant continuous problems have been discretized,
it is appropriate to give the full algorithm for running the p-Willmore
flow with conformal penalty. First, recall that when given an immer-

sion ullj at time step k it is necessary to compute the curvature data

Y}Il‘, W}f . This is accomplished through the solution of two consecu-
tive linear systems:

0= /M,’f <Y;]:, I//h> dug, + /M,’j <dulﬁ, dt//h>gh dug,, (19)

S AICE LR DI

Note that, although the weighted mean curvature vector is defined
pointwise as W = |Y|?~2Y, equation (20) computes W in a weak
sense. The reason for this is because the solution to (20) is often
more smoothly distributed across the surface than the interpolated
quantity stored pointwise at vertices, which leads to better numer-
ical behavior during simulation.
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Algorithm 2 p-Willmore flow with conformal penalty

Require: Closed, oriented surface immersion ug : Mg — R3; real
numbers ¢, 7 > 0, integer kmax > 1.
while 0 < k < kpax do
Solve (19) for Y}I:

Solve (20) for W}f
Solve Problem 5.1 for u’];”, Y}I:H, W}:‘H, Abs Yh

Solve Problem 5.3 for ﬁﬁ”, Ph

k+1 _ pk+1
uy =ty
k=k+1

end while

Algorithm 2 is the full procedure developed here for studying the
computational p-Willmore flow of closed surfaces. Though Prob-
lems 5.1 and 5.3 can certainly be used independently of each other,
their combination as above provides a nice tool which leads to the
variety of flow simulations seen presently. Before discussing po-
tential applications of this algorithm, it is important to discuss its
stability. Though precise analysis of the fully-discrete systems in
Algorithm 2 has not yet been done, it is easy to verify empirically
that the energy-decreasing property of the continuous system (c.f.
Theorem 3.4) is preserved by the chosen discretization. An example
of this is demonstrated in Figure 10, which shows experimental re-
sults for the p-Willmore flow applied to the mesh in Figure 2. As ex-
pected, the energy decreases monotonically in every case, suggest-
ing that the fully-discrete flow is indeed numerically stable. More-
over, notice that the conformally-invariant 2-Willmore flow levels
off at 167 (22 times the theoretical minimum, c.f. Remark 2.3), while
the MCF and 4-Willmore flows decrease indefinitely.

On the other hand, it is clear from experimentation that stability
for Algorithm 2 can hold only in a conditional sense. Even though
the discrete scheme used is essentially implicit, a restriction on
the temporal step size is necessary for reasonable results. This is
expected, in general, since integration is performed on a surface
(mesh) whose evolution is solution-dependent; a large time step
will easily generate entanglements which cause the mesh to crum-
ple and invert. In fact, this is precisely what motivated the regular-
ization Problem 5.3. Since an evolving surface may change its shape
dramatically over time, intermediate regularization is necessary to
prevent failure caused by numerical degeneration along the flow.

Empirically, it is seen that p = 0, 2 are quite robust to changes in
the temporal step-size, but values of p > 2 produce simulations that
are noticeably more sensitive. As illustrated in Table 1, the simula-
tions for 4-Willmore flow tend to require a much smaller step-size
and a much larger amount of iterations to converge. However, it
is also observed that the p-Willmore flow with conformal penalty
is relatively independent of mesh resolution; for a fixed p and a
temporal step-size 7 that is stable on a coarse mesh, 7 appears to re-
main stable on any refinement of that mesh. This desirable property
is suspected to come from the regularization in Problem 5.3, which
ensures that mesh elements do not become too heavily distorted
during the p-Willmore flow. Indeed, this is reflected in Figure 9,
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Fig. 10. Algorithm 2 applied to various refinements of the letter “C” from
Figure 2 when p = 0 (top), 2 (mid), 4 (bot). Time domain displayed loga-
rithmically for p = 2, 4. Note that the energy decreases in every case, and
appears to converge with mesh refinement.
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where the regularization prevents mesh elements from degenerat-
ing, even as the area and volume are both constrained. The next
section will discuss some specifics regarding the implementation
of Algorithm 2, as well as how it can be applied to navigate a com-
mon problem in computer graphics.

6 IMPLEMENTATION AND APPLICATION

6.1 Implementation

In brief, the nonlinear systems in Problems 5.1 and 5.3 are solved
through a two-iteration Newton scheme, using a 7th_order tensor
product quadrature rule to evaluate the relevant integrals. To elab-
orate, consider the process of solving Problem 5.1, and denote vy, =
(up, Yn, Wi, A, vn)- Then, a solution to the discrete p-Willmore flow
system can be formally represented as a solution to the equation

R (vp) =0,

where R is an operator representing the nonlinear residual of the p-
Willmore system. Let v?l be a trial solution, and let J (v},) represent

the tangent operator (or Jacobian) of R in vy, evaluated through

g ()= jv—ﬁ (vi)-

Then, Newton iteration involves the procedure
Vil = vﬁl_l - j_l (Vil_l) R (Vil_l) for i>1,

which is typically repeated until the residual quantity ||R (v;l) || drops
below a predefined tolerance value. Newton iteration is known to
exhibit quadratic convergence provided that the initial guess vg is
sufficiently close to the true solution. In the case of Algorithm 2,
only two iterations of each nonlinear system in Problems 5.1 and
5.3 are performed at each time step, which is sufficient to produce a
small residual and negligible change between successive solutions.

Moreover, note that symbolic differentiation of J is cumbersome
for the particular problems considered here, due to the presence of
integrals evaluated on the evolving surface M. Though approxi-
mate evaluation of J is of course possible (by e.g. neglecting the
motion-dependent nature of some terms or using approximate dif-
ferentiation methods), it is advantageous to compute the exact Ja-
cobian so that less error is introduced at each step. This is accom-
plished presently with fast reverse automatic differentiation as de-
scribed in [Hogan 2014]. Automatic differentiation techniques use
the chain rule along with backpropagation to numerically evaluate
the derivatives of a specified function. In particular, since the de-
rivative of a composite function involves a product of terms which
are sequentially computable through elementary arithmetic oper-
ations, repeated application of the chain rule can be used to accu-
rately evaluate derivatives of arbitrary order. The implementation
here uses the Adept library, which enables algorithms written in C
and C++ to be automatically differentiated with an operator over-
loading strategy. In addition, the solution of all linear systems nec-
essary for Algorithm 2 is performed using the direct solver found
in the MUMPS library [Amestoy et al. 2001, 2006].

It is worth mentioning that a viable alternative to this approach
would be to pull every integral expression in Problems 5.1 and 5.3
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back to an “original” parametrization domain U x {0}, which avoids
differentiation on a moving surface. While this greatly complicates
the formulation, it has the advantage of allowing for the Jacobian
J to be evaluated using purely symbolic differentiation. However,
for Algorithm 2 this approach is not at all necessary, and automatic
differentiation is found to be optimal for producing good results.
Therefore, the present approach has been chosen for its higher clar-
ity of formulation, as well as its relative ease of numerical imple-
mentation.

6.2 Application: mesh editing

Many algorithms in computer graphics are sensitive to the quality
of their initial surface data, and (as seen with the p-Willmore flow)
a poor mesh can frequently cause numerical failure independent of
the actual geometry involved. To add to the library of techniques
which address this problem, consider the application of Algorithm 2
with the goal of improving mesh quality. It is seen that running a
short p-Willmore flow followed by the conformal penalty regular-
ization procedure will often produce a surface that is very close to
the original, but with a better quality triangulation. For example,
Figure 1 (picture 2) shows the result of one iteration of Algorithm 2
with p = 2 and a very small stepsize. Notice that the change in
surface geometry is quite small, while the mesh has been signifi-
cantly improved. Similarly, Figure 11 shows the result after one lin-
ear 2-Willmore iteration followed by two-step nonlinear conformal
penalty regularization. Here the original and remeshed surfaces can
hardly be distinguished by eye, though the new triangulation is
again much more regular. Further, Figures 3 and 7 show the effects
of conformal penalty regularization without any p-Willmore flow,
which requires much less compute time. In every case, the initial
mesh is significantly improved with only slight changes to the sur-
face geometry.

On the other hand, the p-Willmore flow may also find utility
in computer animation, as it can be used to dramatically alter the
geometry of an object in a prescribed way. In particular, detailed
objects with sharp features will evolve under the p-Willmore flow
to minima that are as round as possible, which could be desirable
when modeling fluids. Moreover, Figures 2 and 12 show that the
value of p has a significant effect on the flow behavior, though this
is not surprising. Since the functional ‘WP measures the p* power
of |H|, regions of high curvature are weighted increasingly with the
value of p. This is why regions of high curvature tend to “round out”
faster when p is large (c.f. Figure 12), which may be desirable if the
goal is to evolve more prominent features before affecting others
that are less pronounced.

Conclusion: The p-Willmore flow with conformal penalty pro-
vides a unified computational treatment of gradient flows which
arise from functionals which depend exponentially on the unsigned
mean curvature. The algorithm presented here provides a new de-
vice for visualizing the p-Willmore flow of closed surfaces subject
to natural constraints on surface area and enclosed volume. Be-
sides extending known methods for computing the Willmore flow,
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Fig. 11. A cartoon armadillo with 346k triangles edited by our method. Re-
quires roughly 12 minutes of solver time on a 2.7GHz Intel Core i5 with
8GB of RAM.

it is seen that the conformal penalty regularization procedure inher-
ent in this algorithm allows for certain computational surfaces to
evolve to minima that would otherwise be unreachable. Moreover,
this regularization can be applied to stationary immersions as well,
significantly improving mesh quality with only minor changes to
the surface itself. Avenues for future work include a more rigor-
ous study of the consistency, stability, and convergence of the p-
Willmore flow under mesh refinement, as well as a computer im-
plementation that is more robust to rough data.
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Fig. 12. Volume-preserving p-Willmore flow with conformal penalty applied to the mesh in Figure 6 when p = 0 (top), 2 (mid), 4 (bottom).
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A THEOREM 4.1 IMPLIES CAUCHY-RIEMANN

We show that when x, y are Cartesian coordinates on R? and u :
R? — R? is an immersion of the (x, y)-coordinate plane, the equa-
tion du J] — N X du = 0 expresses the traditional Cauchy-Riemann
equations on C = (TR?, J). To see this, let
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and consider any constant vector field on TR?, say e = (1, O)T.

Clearly J(e1) = e, so

11 1

ety o uy

duJ(e1) = du(e) = | u ui ) = ui
0 0 0

T
Since N = (0 0 1) is normal to the immersion at each point,
it follows that

duJ(e1) — N X du(er)

u%/ 0 u,lc ub +u,2C
= ui —10|X uJZC = ui - u}c =0,
0 1 0 0
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This expression implies the classical Cauchy-Riemann equations,

u,lc = uz,
1_ .2
Uy = —uy,

and it is evident that the expression
2 2
|du J(e1) — N x du(e)|? = (u!l/ + u,zc) + (ui - u}c) ,
measures the failure of these equations to hold. This reflects the
fact that, in general, N X (-) is an “almost-complex structure” on

u(R?) c R3, and an immersion which satisfies the above is “almost
holomorphic”.
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