








TABLE III: Quantitative performance comparison for semantic segmentation and saliency prediction: scores are shown as

mean ±
√

variance; the best score and next top three scores for each comparison are colored red and blue, respectively.

Model HD WR RO RI FV Combined Saliency Pred.

F
(→

)

FCN8CNN 76.34± 2.24 70.24± 2.26 39.83± 3.87 61.65± 2.36 76.24± 1.87 64.86± 2.52 75.62± 1.79

FCN8V GG 89.10± 1.50 82.03± 1.94 74.01± 3.23 79.19± 2.27 90.46± 1.18 82.96± 2.02 89.63± 1.24

SegNetCNN 59.60± 2.02 41.60± 1.65 31.77± 3.03 41.88± 2.66 60.08± 1.91 46.97± 2.25 56.96± 1.58

SegNetResNet 80.52± 3.26 77.65± 3.15 62.45± 3.90 82.30± 1.96 91.47± 1.01 76.88± 2.66 86.88± 1.83

UNetGRAY 85.47± 2.21 79.77± 2.01 60.95± 3.31 69.95± 2.57 84.47± 1.39 75.12± 2.30 83.96± 1.40

UNetRGB 89.60± 1.84 86.17± 1.73 68.87± 3.30 79.24± 2.70 91.35± 1.14 83.05± 2.14 89.99± 1.29

PSPNetMobileNet 80.21± 1.19 70.94± 1.61 72.04± 2.21 72.65± 1.62 79.19± 1.74 76.01± 1.67 78.42± 1.59

DeepLabV 3 89.68± 2.09 77.73± 2.18 72.72± 3.35 78.28± 2.70 87.95± 1.59 81.27± 2.30 85.94± 1.72

SUIM-Net 89.04± 1.31 65.37± 2.22 74.18± 2.11 71.92± 1.80 84.36± 1.37 78.86± 1.79 81.36± 1.72

m
I
O
U

(→
)

FCN8CNN 67.27± 2.50 81.64± 2.16 36.44± 3.67 78.72± 2.50 70.25± 2.28 66.86± 2.62 75.63± 1.89

FCN8V GG 79.86± 1.50 85.77± 2.09 65.05± 3.00 85.23± 2.07 81.18± 1.46 79.42± 2.02 85.22± 1.24

SegNetCNN 62.76± 2.35 66.75± 2.57 36.63± 3.12 63.46± 3.18 62.48± 2.32 58.42± 2.71 65.90± 2.12

SegNetResNet 74.00± 2.88 82.68± 2.94 58.63± 3.61 89.61± 1.15 82.96± 1.38 77.58± 2.39 83.09± 1.96

UNetGRAY 78.33± 2.34 85.14± 2.14 57.25± 3.00 79.96± 2.55 78.00± 1.90 75.74± 2.38 82.77± 1.59

UNetRGB 81.17± 2.02 87.54± 2.00 62.07± 3.12 83.69± 2.58 83.83± 1.47 79.66± 2.24 85.85± 1.54

PSPNetMobileNet 75.76± 1.47 86.82± 1.26 72.66± 1.47 85.16± 1.65 74.67± 1.90 77.41± 1.56 80.87± 1.56

DeepLabV 3 80.78± 2.07 85.17± 2.08 66.03± 3.16 83.96± 2.52 79.62± 1.85 79.10± 2.34 83.55± 1.65

SUIM-Net 81.12± 1.76 80.68± 1.74 65.79± 2.10 84.90± 1.77 76.81± 1.82 77.77± 1.64 80.86± 1.64

V. BENCHMARK EVALUATION

We consider the following SOTA models for performance

evaluation on the SUIM dataset: i) FCN8 [4] with two vari-

ants of base model: vanilla CNN (FCN8CNN ) and VGG-16

(FCN8V GG), ii) SegNet [3] with two variants of base model:

vanilla CNN (SegNetCNN ) and ResNet-50 (SegNetResNet),

iii) UNet [5] with two variants of input: grayscale images

(UNetGRAY ) and RGB images (UNetRGB), iv) pyramid

scene parsing network [35] with MobileNet [54] as the base

model (PSPNetMobileNet), and v) DeepLabV 3 [6]. We use

TensorFlow implementations of all these models and train

them on the SUIM datasest using the same hardware setup

(as of SUIM-Net). A few important training parameters are

listed in Table II; further information can be found in their

source repositories which are provided in Appendix II.

We mentioned various use cases of the SUIM dataset for

semantic segmentation and saliency prediction in Section III.

In our evaluation, we conduct performance comparison of the

SOTA models for the following two training configurations:

• Semantic segmentation with the five major object cate-

gories (see Table I): HD, WR, RO, RI, and FV; the rest are

considered as background, i.e., BW=PF=SR=(000)RGB.

Each model is configured for five channels of output,

one for each category. The predicted separate pixel

masks are combined to RGB masks for visualization.

• Single-channel saliency prediction: the ground truth

intensities of HD, RO, FV, and WR pixels are set to 1.0,

and the rest are set to 0.0. The output is thresholded

and visualized as binary images.

Detailed performance analysis for these two setups is pre-

sented in the following sections.

A. Evaluation Criteria

We compare the performance of all the models based on

standard metrics that evaluate region similarity and contour

accuracy [1], [9]. The region similarity metric quantifies the

correctness of predicted pixel labels compared to ground

truth by using the notion of ‘dice coefficient’ aka F score.

It is calculated using the precision (P) and recall (R) as

F =
2×P×R

P+R
. On the other hand, contour accuracy represents

the object boundary localization performance; it is quantified

by the mean IOU (intersection over union) scores, where

IOU =
Area of overlap
Area of union

.

B. Quantitative and Qualitative Analysis

We present the quantitative results in Table III. It com-

pares the F and mIOU scores for semantic segmentation of

each object category; it also compares the respective scores

for saliency prediction. The results suggest that UNetRGB ,

FCN8V GG, and DeepLabV 3 generally perform better than

other models. In particular, they achieve the top three F and

mIOU scores for both semantic segmentation and saliency

prediction. SegNetResNet and PSPNetMobileNet also provide

competitive results; however, their performances are slightly

inconsistent over various object categories. Moreover, sig-

nificantly better scores of SegNetResNet (FCN8V GG) over

SegNetCNN (FCN8CNN ) validate the benefits of using a

powerful feature extractor. As Table IV shows, SegNetResNet

(FCN8V GG) has about twice (five times) the number of

network parameters than SegNetCNN (FCN8CNN ). On the

other hand, consistently better performance of UNetRGB

over UNetGRAY validates the utility of learning on RGB

image space (rather than using grayscale images as input).

TABLE IV: Comparison for the number of parameters and

computational overhead of each model; the frame rates are

computed on a single NvidiaTM GTX 1080 GPU.

Model # of parameters Frame rate

FCN8CNN 69.744 M 17.11 FPS
FCN8V GG 134.286 M 8.79 FPS
SegNetCNN 2.845 M 17.52 FPS
SegNetResNet 15.012 M 10.86 FPS
UNetGRAY 31.032 M 20.13 FPS
UNetRGB 31.033 M 19.98 FPS
PSPNetMobileNet 63.967 M 6.65 FPS
DeepLabV 3 41.254 M 16.00 FPS
SUIM-Net 3.864 M 28.65 FPS
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