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Abstract
Efficient and interpretable spatial analysis is cru-

cial in many fields such as geology, sports, and

climate science. Tensor latent factor models can

describe higher-order correlations for spatial data.

However, they are computationally expensive to

train and are sensitive to initialization, leading to

spatially incoherent, uninterpretable results. We

develop a novel Multiresolution Tensor Learn-

ing (MRTL) algorithm for efficiently learning in-

terpretable spatial patterns. MRTL initializes the

latent factors from an approximate full-rank ten-

sor model for improved interpretability and pro-

gressively learns from a coarse resolution to the

fine resolution to reduce computation. We also

prove the theoretical convergence and computa-

tional complexity of MRTL. When applied to two

real-world datasets, MRTL demonstrates 4 ∼ 5x

speedup compared to a fixed resolution approach

while yielding accurate and interpretable latent

factors.

1. Introduction
Analyzing large-scale spatial data plays a critical role in

sports, geology, and climate science. In spatial statistics,

kriging or Gaussian processes are popular tools for spa-

tial analysis (Cressie, 1992). Others have proposed vari-

ous Bayesian methods such as Cox processes (Miller et al.,

2014; Dieng et al., 2017) to model spatial data. However,

while mathematically appealing, these methods often have
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difficulties scaling to high-resolution data.

Figure 1. Latent factors: random

(left) vs. good (right) initializa-

tion. Latent factors vary in inter-

pretability depending on initial-

ization.

We are interested in learn-

ing high-dimensional ten-

sor latent factor models,

which have shown to be

a scalable alternative for

spatial analysis (Yu et al.,

2018; Litvinenko et al.,

2019). High resolution

spatial data often con-

tain higher-order corre-

lations between features

and locations, and ten-

sors can naturally encode

such multi-way correlations. For example, in competitive

basketball play, we can predict how each player’s decision to

shoot is jointly influenced by their shooting style, his or her

court position, and the position of the defenders by simul-

taneously encoding these features as a tensor. Using such

representations, learning tensor latent factors can directly

extract higher-order correlations.

A challenge in such models is high computational cost.

High-resolution spatial data is often discretized, leading

to large high-dimensional tensors whose training scales ex-

ponentially with the number of parameters. Low-rank tensor

learning (Yu et al., 2018; Kossaifi et al., 2019) reduces the

dimensionality by assuming low-rank structures in the data

and uses tensor decomposition to discover latent semantics;

for an overview of tensor learning, see review papers (Kolda

& Bader, 2009; Sidiropoulos et al., 2017). However, many

tensor learning methods have been shown to be sensitive to

noise (Cheng et al., 2016) and initialization (Anandkumar

et al., 2014). Other numerical techniques, including random

sketching (Wang et al., 2015; Haupt et al., 2017) and paral-

lelization, (Austin et al., 2016; Li et al., 2017a) can speed up

training, but they often fail to utilize the unique properties

of spatial data such as spatial auto-correlations.

Using latent factor models also gives rise to another issue:

interpretability. It is well known that a latent factor model

is generally not identifiable (Allman et al., 2009), leading to

uninterpretable factors that do not offer insights to domain

experts. In general, the definition of interpretability is highly
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application dependent (Doshi-Velez & Kim, 2017). For spa-

tial analysis, one of the unique properties of spatial patterns

is spatial auto-correlation: close objects have similar values

(Moran, 1950), which we use as a criterion for interpretabil-

ity. As latent factor models are sensitive to initialization,

previous research (Miller et al., 2014; Yue et al., 2014) has

shown that randomly initialized latent factor models can

lead to spatial patterns that violate spatial auto-correlation

and hence are not interpretable (see Fig. 1).

In this paper, we propose a Multiresolution Tensor Learning

algorithm, MRTL, to efficiently learn accurate and inter-

pretable patterns in spatial data. MRTL is based on two key

insights. First, to obtain good initialization, we train a full-

rank tensor model approximately at a low resolution and

use tensor decomposition to produce latent factors. Second,

we exploit spatial auto-correlation to learn models at multi-

ple resolutions: we train starting from a coarse resolution

and iteratively finegrain to the next resolution. We provide

theoretical analysis and prove the convergence properties

and computational complexity of MRTL. We demonstrate

on two real-world datasets that this approach is significantly

faster than fixed resolution methods. We develop several

finegraining criteria to determine when to finegrain. We

also consider different interpolation schemes and discuss

how to finegrain in different applications. The code for our

implementation is available 1.

In summary, we:

• propose a Multiresolution Tensor Learning (MRTL) op-

timization algorithm for large-scale spatial analysis.

• prove the rate of convergence for MRTL which depends

on the spectral norm of the interpolation operator. We

also show the exponential computational speedup for

MRTL compared with fixed resolution.

• develop different criteria to determine when to transi-

tion to a finer resolution and discuss different finegrain-

ing methods.

• evaluate on two real-world datasets and show MRTL
learns faster than fixed-resolution learning and can

produce interpretable latent factors.

2. Related Work.
Spatial Analysis Discovering spatial patterns has signifi-

cant implications in scientific fields such as human behavior

modeling, neural science, and climate science. Early work

in spatial statistics has contributed greatly to spatial analysis

through the work in Moran’s I (Moran, 1950) and Getis-Ord

general G (Getis & Ord, 1992) for measuring spatial auto-

correlation. Geographically weighted regression (Brunsdon

et al., 1998) accounts for the spatial heterogeneity with a

1https://github.com/Rose-STL-Lab/mrtl

local version of spatial regression but fails to capture higher

order correlation. Kriging or Gaussian processes are popular

tools for spatial analysis but they often require carefully de-

signed variograms (also known as kernels) (Cressie, 1992).

Other Bayesian hierarchical models favor spatial point pro-

cesses to model spatial data (Diggle et al., 2013; Miller

et al., 2014; Dieng et al., 2017). These frameworks are

conceptually elegant but often computationally intractable.

Tensor Learning Latent factor models utilize correlations

in the data to reduce the dimensionality of the problem, and

have been used extensively in multi-task learning (Romera-

Paredes et al., 2013) and recommendation systems (Lee &

Seung, 2001). Tensor learning (Zhou et al., 2013; Bahadori

et al., 2014; Haupt et al., 2017) uses tensor latent factor

models to learn higher-order correlations in the data in a

supervised fashion. In particular, tensor latent factor models

aim to learn the higher-order correlations in spatial data by

assuming low-dimensional representations among features

and locations. However, high-order tensor models are non-

convex by nature, suffer from the curse of dimensionality,

and are notoriously hard to train (Kolda & Bader, 2009;

Sidiropoulos et al., 2017). There are many efforts to scale

up tensor computation, e.g., parallelization (Austin et al.,

2016) and sketching (Wang et al., 2015; Haupt et al., 2017;

Li et al., 2017b). In this work, we propose an optimization

algorithm to learn tensor models at multiple resolutions that

is not only fast but can also generate interpretable factors.

We focus on tensor latent factor models for their wide appli-

cability to spatial analysis and interpretability. While deep

neural networks models can be more accurate, they are com-

putationally more expensive and are difficult to interpret.

Multiresolution Methods Multiresolution methods have

been applied successfully in machine learning, both in la-

tent factor modeling (Kondor et al., 2014; Ozdemir et al.,

2017) and deep learning (Reed et al., 2017; Serban et al.,

2017). For example, multiresolution matrix factorization

(Kondor et al., 2014; Ding et al., 2017) and its higher order

extensions (Schifanella et al., 2014; Ozdemir et al., 2017;

Han & Dunson, 2018) apply multi-level orthogonal opera-

tors to uncover the multiscale structure in a single matrix.

In contrast, our method aims to speed up learning by ex-

ploiting the relationship among multiple tensors of different

resolutions. Our approach resembles the multigrid method

in numerical analysis for solving partial differential equa-

tions (Trottenberg et al., 2000; Hiptmair, 1998), where the

idea is to accelerate iterative algorithms by solving a coarse

problem first and then gradually finegraining the solution.

3. Tensor Models for Spatial Data
We consider tensor learning in the supervised setting. We

describe both models for the full-rank case and the low-rank
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case. An order-3 tensor is used for ease of illustration but

our model covers higher order cases.

3.1. Full Rank Tensor Models

Given input data consisting of both non-spatial and spa-

tial features, we can discretize the spatial features at r =
1, . . . , R resolutions, with corresponding dimensions as

D1, . . . , DR. Tensor learning parameterizes the model with

a weight tensor W(r) ∈ R
I×F×Dr over all features, where

I is number of outputs and F is number of non-spatial fea-

tures. The input data is of the form X (r) ∈ R
I×F×Dr . Note

that both the input features and the learning model are res-

olution dependent. Yi ∈ R, i = 1, . . . , I is the label for

output i.

At resolution r, the full rank tensor learning model can be

written as

Yi = a

⎛
⎝ F∑

f=1

Dr∑
d=1

W(r)
i,f,dX (r)

i,f,d + bi

⎞
⎠ , (1)

where a is the activation function and bi is the bias for output

i. The weight tensor W is contracted with X along the non-

spatial mode f and the spatial mode d. In general, Eqn.

(1) can be extended to multiple spatial features and spatial

modes, each of which can have its own set of resolution-

dependent dimensions. We use a sigmoid activation function

for the classification task and the identity activation function

for regression.

3.2. Low Rank Tensor Model

Low rank tensor models assume a low-dimensional latent

structure in W which can characterize distinct patterns in

the data and also alleviate model overfitting. To transform

the learned tensor model to a low-rank one, we use CANDE-

COMP/PARAFAC (CP) decomposition (Hitchcock, 1927)

on W , which assumes that W can be represented as the sum

of rank-1 tensors. Our method can easily be extended for

other decompositions as well.

Let K be the CP rank of the tensor. In practice, K cannot

be found analytically and is often chosen to sufficiently ap-

proximate the dataset. The weight tensor W(r) is factorized

into multiple factor matrices as

W(r)
i,f,d =

K∑
k=1

Ai,kBf,kC
(r)
d,k

The tensor latent factor model is

Yi = a

⎛
⎝ F∑

f=1

Dr∑
d=1

K∑
k=1

Ai,kBf,kC
(r)
d,kX (r)

i,f,d + bi

⎞
⎠ , (2)

where the columns of A,B,Cr are latent factors for each

mode of W and C(r) is resolution dependent.

CP decomposition reduces dimensionality by assuming that

A,B,Cr are uncorrelated, i.e. the features are uncorre-

lated. This is a reasonable assumption depending on how

the features are chosen and leads to enhanced spatial in-

terpretability as the learned spatial latent factors can show

common patterns regardless of other features.

3.3. Spatial Regularization

Interpretability is in general hard to define or quantify

(Doshi-Velez & Kim, 2017; Ribeiro et al., 2016; Lipton,

2018; Molnar, 2019). In the context of spatial analysis, we

deem a latent factor as interpretable if it produces a spatially

coherent pattern exhibiting spatial auto-correlation. To this

end, we utilize a spatial regularization kernel (Lotte & Guan,

2010; Miller et al., 2014; Yue et al., 2014) and extend this

to the tensor case.

Let d = 1, . . . , Dr index all locations of the spatial dimen-

sion for resolution r. The spatial regularization term is:

Rs =

Dr∑
d=1

Dr∑
d′=1

Kd,d′‖W:,:,d −W:,:,d′‖2F , (3)

where ‖ · ‖F denotes the Frobenius norm and Kd,d′ is the

kernel that controls the degree of similarity between loca-

tions. We use a simple RBF kernel with hyperparameter σ.

Kd,d′ = e(−‖ld−ld′‖2/σ) , (4)

where ld denotes the location of index d. The distances

are normalized across resolutions such that the maximum

distance between two locations is 1. The kernels can be

precomputed for each resolution. If there are multiple spatial

modes, we apply spatial regularization across all different

modes. We additionally use L2 regularization to encourage

smaller weights. The optimization objective function is

f(W) = L(W;X ,Y) + λRR(W) , (5)

where L is a task-dependent supervised learning loss, R(W)
is the sum of spatial and L2 regularization, and λR is the

regularization coefficient.

4. Multiresolution Tensor Learning
We now describe our algorithm MRTL, which addresses both

the computation and interpretability issues. Two key con-

cepts of MRTL are learning good initializations and utilizing

multiple resolutions.

4.1. Initialization

In general, due to their nonconvex nature, tensor latent

factor models are sensitive to initialization and can lead

to uninterpretable latent factors (Miller et al., 2014; Yue
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et al., 2014). We use full-rank initialization in order to learn

latent factors that correspond to known spatial patterns.

We first train an approximate full-rank version of the tensor

model at a low resolution in Eqn. (1). The weight tensor

is then decomposed into latent factors and these values are

used to initialize the low-rank model. The low-rank model

in Eqn. (2) is then trained to the final desired accuracy.

As we use approximately optimal solutions of the full-rank

model as initializations for the low-rank model, our algo-

rithm produces interpretable latent factors in a variety of

different scenarios and datasets.

Full-rank initialization requires more computation than

other simpler initialization methods. However, as the full-

rank model is trained only for a small number of epochs,

the increase in computation time is not substantial. We

also train the full-rank model only at lower resolutions, for

further reduction.

Previous research (Yue et al., 2014) showed that spatial reg-

ularization alone is not enough to learn spatially coherent

factors, whereas full-rank initialization, though computa-

tionally costly, is able to fix this issue. We confirm the

same holds true in our experiments (see Section 6.4). Thus,

full-rank initialization is critical for spatial interpretability.

4.2. Multiresolution

Learning a high-dimensional tensor model is generally com-

putationally expensive and memory inefficient. We utilize

multiple resolutions for this issue. We outline the procedure

of MRTL in Alg. 1, where we omit the bias term in the

description for clarity.

We represent the resolution r with superscripts and the it-

erate at step t with subscripts, i.e. W(r)
t is W at resolution

r at step t. W0 is the initial weight tensor at the lowest

resolution. F (r) = (A,B,C(r)) denotes all factor matrices

at resolution r and we use n to index the factor F (r),n.

For efficiency, we train both the full rank and low rank

models at multiple resolutions, starting from a coarse spatial

resolution and progressively increase the resolution. At each

resolution r, we learn W(r) using the stochastic optimiza-

tion algorithm of choice Opt (we used Adam (Kingma &

Ba, 2014) in our experiments). When the stopping criterion

is met, we transform W(r) to W(r+1) in a process we call

finegraining (Finegrain). Due to spatial auto-correlation,

the trained parameters at a lower resolution will serve as a

good initialization for higher resolutions. For both models,

we only finegrain the factors that corresponds to resolution

dependent mode, which is the spatial mode in the context

of spatial analysis. Finegraining can be done for other non-

spatial modes for more computational speedup as long as

there exists a multiresolution structure (e.g. video or time

series data).

Algorithm 1 Multiresolution Tensor Learning: MRTL

1: Input: initialization W0, data X ,Y .

2: Output: latent factors F (r)

3: # full rank tensor model
4: for each resolution r ∈ {1, . . . , r0} do
5: Initialize t ← 0
6: Get a mini-batch B from training set
7: while stopping criterion not true do
8: t ← t+ 1

9: W(r)
t+1 ← Opt

(
W(r)

t | B
)

10: end while
11: W(r+1) = Finegrain

(
W(r)

)

12: end for
13: # tensor decomposition
14: F (r0) ← CP ALS

(
W(r0)

)

15: # low rank tensor model
16: for each resolution r ∈ {r0, . . . , R} do
17: Initialize t ← 0
18: Get a mini-batch B from training set
19: while stopping criterion not true do
20: t ← t+ 1

21: F (r)
t+1 ← Opt

(
F (r)

t | B
)

22: end while
23: for each spatial factor n ∈ {1, · · · , N} do
24: F (r+1),n = Finegrain

(
F (r),n

)

25: end for
26: end for

Once the full rank resolution has been trained up to resolu-

tion r0 (which can be chosen to fit GPU memory or time

constraints), we decompose W(r) using CP ALS, the stan-

dard alternating least squares (ALS) algorithm (Kolda &

Bader, 2009) for CP decomposition. Then the low-rank

model is trained at resolutions r0, . . . , R to final desired

accuracy, finegraining to move to the next resolution.

When to finegrain There is a tradeoff between training

times at different resolutions. While training for longer at

lower resolutions significantly decreases computation, we

do not want to overfit to the coarse, lower resolution data.

On the other hand, training at higher resolutions can yield

more accurate solutions using more detailed information.

We investigate four different criteria to balance this tradeoff:

1) validation loss, 2) gradient norm, 3) gradient variance,

and 4) gradient entropy.

Increase in validation loss (Prechelt, 1998; Yao et al., 2007)

is a commonly used heuristic for early stopping. Another

approach is to analyze the gradient distributions during train-

ing. For a convex function, stochastic gradient descent will

converge into a noise ball near the optimal solution as the

gradients approach zero. However, lower resolutions may

be too coarse to learn more finegrained curvatures and the

gradients will increasingly disagree near the optimal solu-

tion. We quantify the disagreement in the gradients with
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metrics such as norm, variance, and entropy. We use in-

tuition from convergence analysis for gradient norm and

variance (Bottou et al., 2018), and information theory for

gradient entropy (Srinivas et al., 2012).

Let Wt and ξt represent the weight tensor and the random

variable for sampling of minibatches at step t, respectively.

Let f(Wt; ξt) := ft be the validation loss and g(Wt; ξt) :=
gt be the stochastic gradients at step t. The finegraining

criteria are:

• Validation Loss: E[ft+1]− E[ft] > 0

• Gradient Norm: E[‖gt+1‖2]− E[‖gt‖2] > 0

• Gradient Variance: V (E[gt+1])− V (E[gt]) > 0

• Gradient Entropy: S(E[gt+1])− S(E[gt]) > 0 ,

where S(p) =
∑

i −pi ln(pi). One can also use thresholds,

e.g. |ft+1 − ft| < τ , but as these are dependent on the

dataset, we use τ = 0 in our experiments. One can also

incorporate patience, i.e. setting the maximum number of

epochs where the stopping conditions was reached.

How to finegrain We discuss different interpolation

schemes for different types of features. Categori-

cal/multinomial variables, such as a player’s position on

the court, are one-hot encoded or multi-hot encoded onto

a discretized grid. Note that as we use higher resolutions,

the sum of the input values are still equal across resolutions,∑
d X (r)

:,:,d =
∑

d X (r+1)
:,:,d . As the sum of the features re-

mains the same across resolutions and our tensor models are

multilinear, nearest neighbor interpolation should be used

in order to produce the same outputs.

Dr∑
d=1

W(r)
:,:,dX (r)

:,:,d =

Dr+1∑
d=1

W(r+1)
:,:,d X (r+1)

:,:,d

as X (r)
i,f,d = 0 for cells that do not contain the value. This

scheme yields the same outputs and thus the same loss

values across resolutions.

Continuous variables that represent averages over locations,

such as sea surface salinity, often have similar values at each

finegrained cell at higher resolutions (as the values at coarse

resolutions are subsampled or averaged from values at the

higher resolution). Then
∑Dr+1

d X (r+1)
:,:,d ≈ 22

∑Dr

d X (r)
:,:,d,

where the approximation comes from the type of downsam-

pling used.

Dr∑
d=1

W(r)
:,:,dX (r)

:,:,d ≈ 22
Dr+1∑
d=1

W(r+1)
:,:,d X (r+1)

:,:,d

using a linear interpolation scheme. The weights are divided

by the scale factor of
Dr+1

Dr
to keep the outputs approxi-

mately equal. We use bilinear interpolation, though any

other linear interpolation can be used.

5. Theoretical Analysis.
5.1. Convergence

We prove the convergence rate for MRTL with a single spa-

tial mode and one-dimensional output, where the weight

tensor reduces to a weight vector w. We defer all proofs

to Appendix A. For the loss function f and a stochastic

sampling variable ξ, the optimization problem is:

w� = argmin E[f(w; ξ)] (6)

We consider a fixed-resolution model that follows Alg. 1

with r = {R}, i.e. only the final resolution is used. For

a fixed-resolution miniSGD algorithm, under common as-

sumptions in convergence analysis:

• f is μ- strongly convex, L-smooth

• (unbiased) gradient E[g(wt; ξt)] = �f(wt) given ξ<t

• (variance) for all the w, E[‖g(w; ξ)‖22] ≤ σ2
g +

cg‖�f(w)‖22
Theorem 5.1. (Bottou et al., 2018) If the step size ηt ≡
η ≤ 1

Lcg
, then a fixed resolution solution satisfies

E[‖wt+1 −w�‖22] ≤γt(E[‖w0 −w�‖22)− β] + β,

where γ = 1 − 2ημ, β =
ησ2

g

2μ , and w� is the optimal
solution.

which gives O(1/t) +O(η) convergence.

At resolution r, we define the number of total iterations as

tr, and the weights as w(r). We let Dr denote the num-

ber of dimensions at r and we assume a dyadic scaling

between resolutions such that Dr+1 = 2Dr. We define

finegraining using an interpolation operator P such that

w
(r+1)
0 = Pw

(r)
tr as in (Bramble, 2019). For the simple

case of a 1D spatial grid where w
(r)
t has spatial dimension

Dr, P would be of a Toeplitz matrix of dimension 2Dr×Dr.

For example, for linear interpolation of Dr = 2,

Pw(r) =
1

2

⎡
⎢⎢⎣
1 0
2 0
1 1
0 2

⎤
⎥⎥⎦
[
w

(r)
1

w
(r)
2

]
=

⎡
⎢⎢⎢⎣

w
(r+1)
1 /2

w
(r+1)
1

w
(r+1)
1 /2 +w

(r+1)
2 /2

w
(r+1)
2

⎤
⎥⎥⎥⎦ .

Any interpolation scheme can be expressed in this form.

The convergence of multiresolution learning algorithm de-

pends on the following property of spatial data:

Definition 5.2 (Spatial Smoothness). The difference be-
tween the optimal solutions of consecutive resolutions is
upper bounded by ε

‖w(r+1)
� − Pw

(r)
� ‖ ≤ ε,

with P being the interpolation operator.
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The following theorem proves the convergence rate of MRTL,

with a constant that depends on the operator norm of the

interpolation operator P .

Theorem 5.3. If the step size ηt ≡ η ≤ 1
Lcg

, then the
solution of MRTL satisfies

E[‖w(r)
t −w�‖22] ≤ γt‖P‖2rop E[‖w0 −w�‖22 +O(η‖P‖op),

where γ = 1 − 2ημ, β =
ησ2

g

2μ , and ‖P‖op is the operator
norm of the interpolation operator P .

5.2. Computational Complexity

To analyze computational complexity, we resort to fixed

point convergence (Hale et al., 2008) and the multigrid

method (Stüben, 2001). Intuitively, as most of the training

iterations are spent on coarser resolutions with fewer number

of parameters, multiresolution learning is more efficient than

fixed-resolution training.

Assuming that ∇f is Lipschitz continuous, we can view

gradient-based optimization as a fixed-point iteration oper-

ator F with a contraction constant of γ ∈ (0, 1) (note that

stochastic gradient descent converges to a noise ball instead

of a fixed point):

w ← F (w), F := I − η∇f,

‖F (w)− F (w′)‖ ≤ γ‖w −w′‖
Let w

(r)
� be the optimal estimator at resolution r and w(r) be

a solution satisfying ‖w(r)
� −w(r)‖ ≤ ε/2. The algorithm

terminates when the estimation error reaches C0R
(1−γ)2 . The

following lemma describes the computational cost of the

fixed-resolution algorithm.

Lemma 5.4. Given a fixed point iteration operator F with
contraction constant of γ ∈ (0, 1), the computational com-
plexity of fixed-resolution training for tensor model of order
p and rank K is

C = O
(

1

| log γ| · log
(

1

(1− γ)ε

)
· Kp

(1− γ)2ε

)
, (7)

where ε is the terminal estimation error.

The next Theorem 5.5 characterizes the computational

speed-up gained by MRTL compared to fixed-resolution

learning, with respect to the contraction factor γ and the

terminal estimation error ε.

Theorem 5.5. If the fixed point iteration operator (gradi-
ent descent) has a contraction factor of γ, multiresolution
learning with the termination criteria of C0r

(1−γ)2 at resolu-
tion r is faster than fixed-resolution learning by a factor of
log 1

(1−γ)ε , with the terminal estimation error ε.

Note that the speed-up using multiresolution learning uses a

global convergence criterion ε for each r.

6. Experiments
We apply MRTL to two real-world datasets: basketball track-

ing and climate data. More details about the datasets and

pre-processing steps are provided in Appendix B.

6.1. Datasets

Tensor classification: Basketball tracking We use a

large NBA player tracking dataset from (Yue et al., 2014;

Zheng et al., 2016) consisting of the coordinates of all play-

ers at 25 frames per second, for a total of approximately

6 million frames. The goal is to predict whether a given

ball handler will shoot within the next second, given his

position on the court and the relative positions of the de-

fenders around him. In applying our method, we hope to

obtain common shooting locations on the court and how a

defender’s relative position suppresses shot probability.

Figure 2. Left: Discretizing a continuous-valued position of a

player (red) via a spatial grid. Right: sample frame with a ball-

handler (red) and defenders (green). Only defenders close to the

ballhandler are used.

The basketball data contains two spatial modes: the ball

handler’s position and the relative defender positions around

the ball handler. We instantiate a tensor classification model

in Eqn (1) as follows:

Yi =

D1
r∑

d1=1

D2
r∑

d2=1

σ(W(r)
i,d1,d2X (r)

i,d1,d2 + bi) ,

where i ∈ {1, . . . , I} is the ballhandler ID, d1 indexes the

ballhandler’s position on the discretized court of dimension

{D1
r}, and d2 indexes the relative defender positions around

the ballhandler in a discretized grid of dimension {D2
r}.

We assume that only defenders close to the ballhandler

affect shooting probability and set D2
r < D1

r to reduce

dimensionality. As shown in Fig. 2, we orient the defender

positions so that the direction from the ballhandler to the

basket points up. Yi ∈ {0, 1} is the binary output equal

to 1 if player i shoots within the next second and σ is the

sigmoid function.

We use nearest neighbor interpolation for finegraining and a
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weighted cross entropy loss (due to imbalanced classes):

Ln = −β
[
Yn · log Ŷn + (1− Yn) · log (1− Ŷn)

]
, (8)

where n denotes the sample index and β is the weight of the

positive samples and set equal to the ratio of the negative

and positive counts of labels.

Tensor regression: Climate Recent research (Li et al.,

2016a;b; Zeng et al., 2019) shows that oceanic variables

such as sea surface salinity (SSS) and sea surface temper-

ature (SST) are significant predictors of the variability in

rainfall in land-locked locations, such as the U.S. Midwest.

We aim to predict the variability in average monthly precipi-

tation in the U.S. Midwest using SSS and SST to identify

meaningful latent factors underlying the large-scale pro-

cesses linking the ocean and precipitation on land (Fig. 3).

We use precipitation data from the PRISM group (PRISM

Climate Group, 2013) and SSS/SST data from the EN4

reanalysis (Good et al., 2013).

Figure 3. Left: precipitation over continental U.S. Right: regions

considered in particular.

Let X be the historical oceanic data with spatial features

SSS and SST across Dr locations, using the previous 6
months of data. As SSS and SST share the spatial mode

(the same spatial locations), we set the F2 = 2 to denote

the index of these features. We also consider the lag as a

non-spatial feature so that F1 = 6. We instantiate the tensor

regression model in Eqn (1) as follows:

Y =

F1∑
f1=1

F2∑
f2=1

Dr∑
d=1

W(r)
f1,f2,d

X (r)
f1,f2,d

+ b

The features and outputs (SSS, SST, and precipitation) are

subject to long-term trends and a seasonal cycle. We use dif-

ference detrending for each timestep due to non-stationarity

of the inputs, and remove seasonality in the data by standard-

izing each month of the year. The features are normalized

using min-max normalization. We also normalize and desea-

sonalize the outputs, so that the model predicts standardized

anomalies. We use mean square error (MSE) for the loss

function and bilinear interpolation for finegraining.

Implementation Details For both datasets, we discretize

the spatial features and use a 60-20-20 train-validation-test

Figure 4. Basketball: F1 scores of MRTL vs. the fixed-resolution

model for the full rank (left) and low rank model (right). The

vertical lines indicate finegraining to the next resolution.

Figure 5. Basketball: F1 scores different finegraining criteria for

the full rank (left) and low rank (right) model

set split. We use Adam (Kingma & Ba, 2014) for opti-

mization as it was empirically faster than SGD in our ex-

periments. We use both L2 and spatial regularization as

described in Section 3. We selected optimal hyperparame-

ters for all models via random search. We use a stepwise

learning rate decay with stepsize of 1 with γ = 0.95. We

perform ten trials for all experiments. All other details are

provided in Appendix B.

6.2. Accuracy and Convergence

We compare MRTL against a fixed-resolution model on ac-

curacy and computation time. We exclude the computation

time for CP ALS as it was quick to compute for all experi-

ments (< 5 seconds for the basketball dataset). The results

of all trials are listed in Table 1. Some results are provided

in Appendix B.

Fig. 4 shows the F1 scores of MRTL vs a fixed resolution

model for the basketball dataset (validation loss was used

as the finegraining criterion for both models). For the full

rank case, MRTL converges 9 times faster than the fixed res-

olution case (the scaling of the axes obscures convergence;

nevertheless, both algorithms have converged). The fixed-

resolution model is able to reach a higher F1 score for the

full rank case, as it uses a higher resolution than MRTL and

is able to use more finegrained information, translating to a

higher quality solution. This advantage does not transfer to

the low rank model.

For the low rank model, the training times are comparable

and both reach a similar F1 score. There is decrease in the
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Table 1. Runtime and prediction performance comparison of a fixed-resolution model vs MRTL for datasets

Dataset Model
Full Rank Low Rank

Time [s] Loss F1 Time [s] Loss F1

Basketball
Fixed 11462 ±565 0.608 ±0.00941 0.685 ±0.00544 2205 ±841 0.849 ±0.0230 0.494 ±0.00417

MRTL 1230 ±74.1 0.699 ±0.00237 0.607 ±0.00182 2009 ±715 0.868 ±0.0399 0.475 ±0.0121

Climate
Fixed 12.5±0.0112 0.0882 ±0.0844 - 269 ±319 0.0803 ±0.0861 -
MRTL 1.11 ±0.180 0.0825 ±0.0856 - 67.1 ±31.8 0.0409 ±0.00399 -

Figure 6. Climate: Some latent factors of sea surface locations after training. The red areas in the northwest Atlantic region (east of North

America and Gulf of Mexico) represent areas where moisture export contributes to precipitation in the U.S. Midwest.

F1 score going from full rank to low rank for both MRTL
and the fixed resolution model due to approximation error

from CP decomposition. Note that this is dependent on the

choice of K, specific to each dataset. Furthermore, we see

a smaller increase in performance for the low rank model

vs. the full rank case, indicating that the information gain

from finegraining does not scale linearly with the resolution.

We see a similar trend for the climate data, where MRTL
converges faster than the fixed-resolution model. Overall,

MRTL is approximately 4 ∼ 5 times faster and we get a

similar speedup in the climate data.

6.3. Finegraining Criteria

We compare the performance of different finegraining cri-

teria in Fig. 5. Validation loss converges much faster than

other criteria for the full rank model while the other fine-

graining criteria converge slightly faster for the low rank

model. In the classification case, we observe that the full

rank model spends many epochs training when we use

gradient-based criteria, suggesting that they can be too strict

for the full rank case. For the regression case, we see all

criteria perform similarly for the full rank model, and valida-

tion loss converges faster for the low rank model. As there

are differences between finegraining criteria for different

datasets, one should try all of them for fastest convergence.

6.4. Interpretability

We now demonstrate that MRTL can learn semantic repre-

sentations along spatial dimensions. For all latent factor

figures, the factors have been normalized to (−1, 1) so that

reds are positive and blues are negative.

Figure 7. Basketball: Latent factor heatmaps of ballhandler po-

sition after training for k = 1, 3, 20. They represent common

shooting locations such as the right/left sides of the court, the paint,

or near the three point line.

Figure 8. Basketball: Latent factor heatmaps of relative defender

positions after training for k = 1, 3, 20. The green dot represents

the ballhandler at (6, 2). The latent factors show spatial patterns

near the ballhandler, suggesting important positions to suppress

shot probability.

Figs. 7, 8 visualize some latent factors for ballhandler po-

sition and relative defender positions, respectively (see Ap-

pendix for all latent factors). For the ballhandler position

in Fig. 7, coherent spatial patterns (can be both red or blue

regions as they are simply inverses of each other) can corre-

spond to common shooting locations. These latent factors

can represent known locations such as the paint or near the

three-point line on both sides of the court.

For relative defender positions in Fig. 8, we see many con-

centrated spatial regions near the ballhandler, indicating that
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Figure 9. Latent factor comparisons (k = 3, 10) of randomly ini-

tialized low-rank model (1st and 3rd) and MRTL (2nd and 4th) for

ballhandler position (left two plots) and the defender positions

(right two plots). Random initialization leads to uninterpretable

latent factors.

such close positions suppress shot probability (as expected).

Some latent factors exhibit directionality as well, suggesting

that guarding one side of the ballhandler may suppress shot

probability more than the other side.

Fig. 6 depicts two latent factors of sea surface locations. We

would expect latent factors to correspond to regions of the

ocean which independently influence precipitation. The left

latent factor highlights the Gulf of Mexico and northwest

Atlantic ocean as influential for rainfall in the Midwest due

to moisture export from these regions. This is consistent

with findings from (Li et al., 2018; 2016a).

Random initialization We also perform experiments us-

ing a randomly initialized low-rank model (without the full-

rank model) in order to verify the importance of full rank

initialization. Fig. 9 compares random initialization vs.

MRTL for the ballhandler position (left two plots) and the

defender positions (right two plots). We observe that even

with spatial regularization, randomly initialized latent factor

models can produce noisy, uninterpretable factors and thus

full-rank initialization is essential for interpretability.

7. Conclusion and Future Work
We presented a novel algorithm for tensor models for spatial

analysis. Our algorithm MRTL utilizes multiple resolutions

to significantly decrease training time and incorporates a

full-rank initialization strategy that promotes spatially coher-

ent and interpretable latent factors. MRTL is generalized to

both the classification and regression cases. We proved the

theoretical convergence of our algorithm for stochastic gradi-

ent descent and compared the computational complexity of

MRTL to a single, fixed-resolution model. The experimental

results on two real-world datasets support its improvements

in computational efficiency and interpretability.

Future work includes 1) developing other stopping criteria in

order to enhance the computational speedup, 2) applying our

algorithm to more higher-dimensional spatiotemporal data,

and 3) studying the effect of varying batch sizes between

resolutions as in (Wu et al., 2019).
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