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The shape of a microchannel during flow through it is instrumental to understanding the physics
that govern various phenomena ranging from rheological measurements of fluids to separation of
particles and cells. Two commonly used approaches for obtaining a desired channel shape (for a
given application) are (i) fabricating the microchannel in the requisite shape and (ii) actuating the
microchannel walls during flow to obtain the requisite shape. However, these approaches are not
always viable. We propose an alternative, passive approach to a priori tune the elastohydrodynamics
in a microsystem, towards achieving a pre-determined (but not pre-fabricated) flow geometry when
the microchannel is subjected to flow. That is to say, we use the interaction between a soft solid
layer, the viscous flow beneath it and the shaped rigid wall above it, to tune the fluid domain’s
shape. Specifically, we study a parallel-wall microchannel whose top wall is a slender soft coating
of arbitrary thickness attached to a rigid platform. We derive a nonlinear differential equation
for the soft coating’s fluid–solid interface, which we use to infer how to achieve specific conduit
shapes during flow. Using this theory, we demonstrate the tuning of four categories of microchannel
geometries, which establishes, via a proof-of-concept, the viability of our modeling framework. We
also explore slip length patterning on the rigid bottom wall of the microchannel, a common technique
in microfluidics, as an additional ‘handle’ for microchannel shape control. However, we show that
this effect is much weaker in practice.

I. INTRODUCTION

An ubiquitous component of micro-electro-mechanical
systems (MEMS) [1], which finds place in applications
spanning miniaturized chemical analysis systems [2, 3]
(in micro-total analysis systems, or µ-TAS [4, 5]) to com-
plex fluid rheometry [6–8], is the microchannel. Having
a requisite shape of the microchannel under flow is in-
strumental for studies on morphology and detection of
cells/particles/bubbles [3, 9, 10], viscoelasticity of com-
plex fluids [6–8, 11], nano- and micro-particle segregation
[12], amongst other applications [13]. A constriction in
a blood vessel often leads to accumulation of plaque on
the vessel wall, and therefore obtaining a constricted mi-
crochannel shape in an ex vivo analysis on a lab-on-a-chip
device is of interest [14–16]. Narrowing of a microchan-
nel can have a ‘stretching’ effect on cells, vesicles and the
like, an aspect of their behavior that is actively being re-
searched [17–20]. A microchannel’s shape has significant
bearing on the internal flow’s extensional rate, a crucial
variable in the characterization of the viscoelasticity of
complex fluids [11, 21]. Going further, the expansion of
microchannels due to the hydrodynamic forces within can
be used to control the polydisperisty of emulsions created
by co-flow [22, 23] and for segregating particles of differ-
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ent sizes via ‘nano-sieves’ [12], by simply controlling the
inlet pressure to tune the flow geometry in real time.

However, obtaining a desired shape for a microchannel
under flow conditions is a non-trivial task due to, in no
small part, the potential for flow-induced deformation of
a soft wall [24]. Two approaches are typically employed
in practice: (i) fabricating a close-to-rigid microchannel
with a pre-determined shape [11, 25–27], and (ii) fabri-
cating a soft microchannel that is then actuated by ex-
ternal stimulation during flow to achieve a desired shape
for the channel [28–32]. While these approaches are use-
ful and elegant, they are not always viable. For instance,
actuating the microchannel at the time of flow can be
challenging if the application requires the microchannel
to be undergoing motion when it is subject to flow, for
example, in a lab-on-a-CD device [33, 34].

A third approach, which has often been overlooked,
is: (iii) a priori attunement of the elastohydrodynam-
ics (EHD) of a microchannel to induce a desired shape
upon achieving steady flow. The prime advantage of this
approach, over (i), is that the channel can be fabricated
with simplistic geometry (like constant-gap slit geome-
try or a constant-radius cylindrical geometry), but will
assume requisite shape due to EHD when subjected to
flow. Likewise, the prime advantage of this approach,
over (ii), is that there is no requirement to physically
access and handle the microchannel setup when it is in
operation, i.e., the operation is hands-off. These advan-
tages make approach (iii) viable and useful alternative
to approaches (i) and (ii), in certain situations. Possi-
bly, the reason that a gap in the literature pertaining to
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this third approach exists is that the discipline of EHD
[35] in microsystems, of which fluid–structure interac-
tions at low Reynolds number is but one example [36],
is in an inchoate stage. Therefore, beyond the aforemen-
tioned studies that have focussed on actively actuating
microchannels, EHD in microchannels has been studied
only to account for its influence [37, 38], rather than to
exploit its presence for a desired outcome. Nevertheless,
there is significant interest in such soft interface prob-
lems, from a fundamental transport phenomena perspec-
tive [39]. Furthermore, recently, ‘peeling’ mechanisms of
EHD have been demonstrated to allow for shape con-
trol of elastic membranes actuated by fluid flow [40, 41].
The passive approach to a priori attunement of EHD is
particularly relevant within the scope for tunability of
common microfluidics materials, such as hydrogels [42–
46]. Hydrogels are an emerging class of material for
biomimetics and artificial tissue engineering, a common
application area of elastohydrodynamics [42–44]. In the
last decade, the question of what is the shape of a soft
microchannel wall that has been deformed by a steady
viscous fluid flow has been explored [47]: from studies
based on scaling correlations [24, 48, 49], to solving the
fluid–structure interaction problem in two-dimensional
and axisymmetric configurations [50–52], to solution of
three-dimensional problems that determine the effect of
lateral clamping of the channel walls [53, 54], to studies
accounting for non-Newtonian fluid rheology [48, 52, 55].

Here, we propose to harness this new understanding
provided by the latter fundamental studies to enable a
priori attuning of EHD in microsystems to recover a de-
sired shape for the flow passage in a microchannel, under
steady flow. To this end, we study an infinite parallel
plate (two-dimensional) microchannel whose top wall is
a soft coating of arbitrary thickness attached to a rigid
platform. We propose to achieve a desired axial variation
of the microchannel top wall (i.e., the fluid–solid inter-
face) due to the hydrodynamic forces under imposed flow
by controlling the thickness of the soft coating via the
bounding rigid platform’s shape.

In addition, we assess slip length patterning on the
rigid bottom wall, as is common in microfluidics [56, 57],
as another ‘handle’ to control the system’s behavior.
Although we will show that slip length patterning has
limited use for controlling the microchannel shape un-
der flow, it is a promising approach to modulating the
bottom-wall shear rate, which has significant influence on
particle migration and physiological processes in flow [58–
61]. For example, the shear rate is known to have an
impact on behavior of biological cells under flow, lead-
ing to phenomena like detachment from the wall, chem-
ical release from cells, alterations in platelet function,
etc. [20, 62, 63]. For instance, it can be desirable to
enhance bacterial cell detachment in therapy based on
displacement by antibodies [63]. On the other hand, in
a bio-mimetic studies of cell migration for angiogenesis
in tumor micro-environments, it is crucial that the shear
rate does not play a role (i.e., that it does not affect the

migration of cells), so that their response to chemical
gradients can be delineated [64].
To these ends, the remainder of this work is organized

as follows. In section II, we describe the physical problem
that we are studying, including the requisite notation for
its mathematical treatment. In section III, we formulate
the problem mathematically. Specifically, starting from
governing equations and boundary conditions (given in
appendix A), a scaling analysis (section IIIA) leads to the
lubrication approximation, and the model is simplified
asymptotically to two coupled equations (section III B)
— an ODE for the fluid pressure and a linear algebraic
expression for the wall deflection. A set of inverse so-
lutions is formulated in section III C. We briefly discuss
the numerical approach for solving the obtained system of
equations in section IIID. In section IV, we present our
numerical results on passive control, focussing on four
desired canonical shapes under flow. We conclude our
study in section V, highlighting its salient features and
avenues for future work.
The major outcome of our study, which also demon-

strates the application-worthiness of our theoretical
framework, is comprised by two complementary compo-
nents. The first component is a simplified mathematical
description of the system behavior in terms of an ordinary
differential equation (ODE) for the pressure. The second
component is the accompanying detailed characterization
of ‘inverse problems’ based on this ODE, which take in
the desired microchannel fluid–solid interface shape and
bottom wall shear-rate as the input, and return the re-
quired solid layer profiling and slip length patterning,
respectively, as the output.

II. MODEL SETUP

The physical setup for this study is presented in Fig-
ure 1. The ‘into-the-paper’ width of the geometry is con-
sidered to be substantially larger than its length in the
flow-wise, x∗, direction, such that the setup is effectively
two-dimensional (2D). We consider the flow of an incom-
pressible Newtonian fluid of density ρ and dynamic vis-
cosity µ in the initially-rectangular microchannel. The
bottom wall of the microchannel has been patterned to
generate hydrodynamic slip, which is captured by the lin-
ear Navier model [65, 66] with slip length b(x∗), which
varies along the flow-wise direction (i.e., along the chan-
nel’s length). The region between the rigid bottom wall
and the deformed elastic interface (which represents the
top wall of the microchannel) is referred to as the ‘fluid
domain’. The top wall of the channel constitutes the in-
terface with a layer of linearly elastic solid material with
first Lamé parameter λ and shear modulus G. The solid
layer is attached to a rigid platform on top. The interface
of the solid layer with the rigid platform varies with x∗,
i.e., the solid layer has a varying thickness along the flow-
wise direction. This variable-thickness layer is referred to
as the ‘solid domain’.
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FIG. 1. (Color online.) Schematic representation of the phys-
ical problem setup. The blue region is the flow conduit (fluid
domain), the grey region is the elastic layer (solid domain),
and the black region is the confining rigid platform. The
solid domain has an initial variable thickness along the flow-
wise, x∗, direction. Due to fluid–structure interaction, each
domain’s thickness varies with x∗ upon achieving steady con-
ditions.

Two co-ordinate systems, O and Ō, are employed to
avoid ambiguity: one for the fluid domain, (x∗, y∗) at-
tached to the rigid bottom wall, and one for the solid
domain, (x∗, ȳ∗) attached to the undeformed fluid–solid
interface. Note that the vertical axis is y∗ in the fluid do-
main and ȳ∗ in the solid domain. The horizontal axis is
denoted by x∗ for both domains. We denote the flow ve-
locity field by v⃗∗(x∗, y∗) and the solid displacement field
by u⃗∗(x∗, ȳ∗), with the individual components expressed
employing appropriate subscripts. The horizontal extent
of both the domains is from x∗ = −L at the inlet (on
the left) to x∗ = L at the outlet (on the right). The un-
deformed thickness of the fluid domain is H, such that
H/L = γ is the aspect ratio. The undeformed thickness
of the solid layer is ∆(x∗) such that maxx∗ ∆(x∗)/L = β.
The volumetric flow rate per unit width is Q, and the
hydrodynamic pressure at the outlet is p∗0. We restrict
our analysis to infinitesimal strains in the solid. We as-
sess the steady-state response of the system, which corre-
sponds to steady flow in the fluid domain and a suitably
equilibrated deformation in the solid domain.

III. MATHEMATICAL FORMULATION

The flow in the fluid domain is governed by the 2D
continuity and incompressible Navier Stokes equations,
subject to Navier slip and no penetration conditions at
the rigid bottom wall, no-slip and no-penetration condi-

TABLE I. Pertinent dimensionless quantities describing the
system and their definitions.

Parameter Definition

γ H/L

β max
x∗

∆(x∗)/L

κ x∗
c/L

ϕ0
βκ

γ3

µQ

(λ+ 2G)L2

ξ(x) = 1/ϕ̄(x)
∆(x∗)

maxx∗ ∆(x∗)
=

∆(x)

maxx ∆(x)

tions at the deformed fluid–solid interface, and imposed
pressure at the outlet. At steady state, the continuity
equation requires that the flow rate is equal across any
two axial cross-section and equal to the imposed flow
rate at the inlet. The deformation of the solid domain
is governed by the equilibrium equations of linear elas-
ticity, subject to a zero-displacement condition at the
solid–platform interface and a traction-balance condition
at the fluid–solid interface. All the governing equations
and requisite boundary conditions and constraints are
given in appendix A.

A. Scaling Analysis

Since the fluid domain is subjected to slip length pat-
terning at the bottom wall, and the solid domain’s thick-
ness varies axially as well, the x∗-scale will be the small-
est of the three available length scales. Since the geo-
metric axial scale of the system is L, we take the scales
for x∗ to be x∗

c = κL, where κ is to be determined for
each physical situation, depending on the particular slip
length patterning and solid layer profiling imposed.

The scale for y∗ is H = γL, and the scale for ȳ∗ is
βL. Importantly, we assume that the solid domain’s
thickness, over the entire axial length, is substantially
smaller that the axial scale of the system, i.e., β ≪ κ.
The v∗x-scale is given by the mean axial speed at in-
let, i.e., Q/(γL). Subsequently, the v∗y-scale is found to
be Q/(κL) by balancing the continuity equation (A1).
From lubrication theory [39, 67], we expect that the ax-
ial pressure gradient balances the viscous forces in this
microflow. Then, scaling the pressure and viscous terms
in equation (A2) gives us (κ/γ3)(µQ/L2) as the p∗-scale.
In this scaling, (γ/κ)(ρQ/µ) plays the role of the (re-
duced, or lubrication) Reynolds number, and γ/κ ≪ 1 is
the slenderness parameter for the fluid mechanics prob-
lem. We take the scale for u∗

x, u
∗
y and h∗ to all be ϕ0L,

where ϕ0 is obtained self-consistently from equation (1)
below from the traction balance (A16). The expressions
of the pertinent dimensionless quantities are summarized
in table I.
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In appendix B, we make the governing equations and
boundary conditions (from appendix A) dimensionless
with the characteristic scales discussed above. The di-
mensionless variables retain the same notation as the di-
mensional variables, but with the superscript ∗ dropped.

B. Lubrication Approximation and Asymptotic
Reduction

As is common in microfluidics [13], we make the lu-
brication approximation [39, 67]. This slenderness as-
sumption works the same way in both the fluid and solid
domains. This approximation allows us, as we will see
ahead, to obtain a generalized Winkler-like relation be-
tween pressure on the solid layer and the layer’s defor-
mation. To further justify the approximations made, we
give a concise discussion, in appendix D, on the validity
of our proposed modeling framework.

Noting that the fluid–solid interface deflection is pri-
marily in the y-direction (or, equivalently, ȳ-direction),
it follows that the ȳ-component of the traction balance
condition (equation (B13)), re-iterated below,

∂uȳ

∂ȳ
+

β

κ

[(
λ

λ+ 2G

)
∂ux

∂x

+

(
G

λ+ 2G

)(
ϕ0

κ

∂uȳ

∂x
+

ϕ0

β

∂ux

∂ȳ

)
∂h

∂x

]
= − βκ

γ3ϕ0

µQ

(λ+ 2G)L2

×
[
p− γ

κ

{
2γ

κ

∂vy
∂y

+
ϕ0

κ

(
∂vx
∂y

+
γ2

κ2

∂vy
∂x

)}]
,

at y = 1− ϕ0h(x)

γ
, ȳ = −ϕ0h(x)

β
≈ 0. (1)

should be balanced asymptotically. In other words, the
force from the fluid domain and the force from the solid
domain should scale the same way. Hence, we scale
the leading-order contribution of the left-hand and right-
hand sides of equation (1) equally, and obtain

ϕ0 =
βκ

γ3

µQ

(λ+ 2G)L2
. (2)

Now, under the lubrication approximation, we retain
only the leading-order terms and obtain the simplified
version of equations (B2), (B3), (B9), (B10), (B12)
and (B13):

0 = −∂p

∂x
+

∂2vx
∂y2

, (3)

0 = −∂p

∂y
. (4)

∂2ux

∂ȳ2
= 0, (5)

∂2uȳ

∂ȳ2
= 0, (6)

∂ux

∂ȳ

∣∣∣∣
ȳ=0

= 0, (7)

∂uȳ

∂ȳ

∣∣∣∣
ȳ=0

= −p. (8)

Equations (B1), (B4), (B5), (B7) (B8), (B6) and (B11)
remain unchanged by this approximation.
Now, equation (3) can be integrated and subjected to

the boundary conditions in (B4) and (B6) to yield:

vx(x, y) =
1

2

dp

dx

y2 −
(
1− ϕ0h(x)

γ

)2 (
y + b(x)

γL

)
(
1− ϕ0h(x)

γ + b(x)
γL

)
 . (9)

Note that equation (4) implies that p is no longer explic-
itly dependent on y; thus, p = p(x) only in equation (9)
as well as the rest of the analysis ahead.
From equation (9), we also obtain expressions for shear

rate in the flow:

∂vx
∂y

=
1

2

dp

dx

2y −
(
1− ϕ0h(x)

γ

)2
(
1− ϕ0h(x)

γ + b(x)
γL

)
 . (10)

Substituting the expression for vx from equation (9)
into equation (B8), we obtain a first-order ordinary dif-
ferential equation (ODE) for the pressure:(

1− ϕ0h(x)

γ

)3(
1− ϕ0h(x)

γ
+

4b(x)

γL

)
dp

dx

+ 12

(
1− ϕ0h(x)

γ
+

b(x)

γL

)
= 0. (11)

Next, equations (5) and (6) are integrated and sub-
jected to the boundary conditions (B11), (7) and (8) to
yield:

ux(x, ȳ) = 0, (12)

uȳ(x, ȳ) =
(
ξ(x)− ȳ

)
p(x). (13)

These equations provide us with the relationship between
the fluid–solid interface deflection h(x), which is equal to
−uȳ evaluated at ȳ = 0, and the hydrodynamic pressure
p(x) as,

h(x) = −ξ(x)p(x) =⇒ p(x) = −ϕ̄(x)h(x), (14)

where we have introduced the notation ϕ̄(x) ≡ 1/ξ(x).
Generalizing previous results [50, 51] to the case of
axially-varying confinement, equation (14) is essentially
with a Winkler-like pressure–deformation relation [68]
with an axially-varying dimensionless stiffness ξ(x).
Now, substituting h from equation (14) into equation

(11) yields our final governing equation,(
1 +

ϕ0p(x)

γϕ̄(x)

)3(
1 +

ϕ0p(x)

γϕ̄(x)
+

4b(x)

γL

)
dp

dx
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+ 12

(
1 +

ϕ0p(x)

γϕ̄(x)
+

b(x)

γL

)
= 0, (15)

which captures all the physics of the system. This equa-
tion, which is a first-order ODE for p(x), is subject to
the outlet boundary condition in equation (B7). Equa-
tion (15) is the key mathematical result that we employ
below to formulate the forward and inverse problems for
controlling the microchannel shape.

C. Inverse Problems and Solutions

We can define an inverse problem, ‘Inverse Problem
A,’ for which we are asked to find a function b(x) that
would yield a prescribed wall deflection shape h = h̄(x).
To obtain a solution to this inverse problem, we first
substitute p from equation (14) into (11) and re-arrange
to obtain

b(x) = −
[
γ − ϕ0h̄(x)

]
L

4

×

{
12γ3 −

[
γ − ϕ0h̄(x)

]3 d
dx

[
ϕ̄(x)h̄(x)

]
3γ3 −

[
γ − ϕ0h̄(x)

]3 d
dx

[
ϕ̄(x)h̄(x)

] } . (16)

Similarly, we substitute p(x) from equation (14) into
equation (B7) to get:

p̄0 = −
[
ϕ̄(x)h̄(x)

]
x=1/κ

, (17)

as the boundary condition. Equations (16) and (17) rep-
resent the first ‘inverse solution’ obtained by our math-
ematical approach. Essentially, we compute what b(x)
and p̄0 (equivalently p∗0, see equation (B7)) should be
imposed in order to obtain the desired deflection shape
h = h̄(x), for a pre-set thickness variation ϕ̄(x) (equiva-
lently, a pre-set ξ(x)).
We can also define another inverse problem, ‘Inverse

Problem B,’ in which we seek a ϕ̄(x) (equivalently, a ξ(x))
that would yield a prescribed wall deflection shape h =
h̄(x). To obtain a solution for this inverse problem, we
first substitute p(x) from equation (14) into (11) and re-
arrange to obtain an ODE for ϕ̄(x):

d
(
ϕ̄h̄
)

dx
=

12
(
1− ϕ0h̄(x)

γ + b(x)
γL

)
(
1− ϕ0h̄(x)

γ + 4b(x)
γL

)(
1− ϕ0h̄(x)

γ

)3 , (18)

Equation (18) is a first-order ODE in ϕ̄(x), whose so-
lution gives us ξ(x) = 1/ϕ̄(x). To solve equation (18),
we require one boundary condition, which we take to be
at the outlet, ξ(1/κ) = 1. After a solution is obtained,
equation (17) gives us the outlet pressure.

It is well known that solutions to inverse problems may
not be unique (or physically valid), often requiring a reg-
ularization. Thus, solving each of the proposed inverse
problems requires some care to ensure a valid solution.
Specifically, given a desired wall deflection shape, it is

possible that the solution to equation (16) or (18) will
yield negative values of b or ξ, respectively, which is un-
physical. Therefore, in the event that we obtain negative
values, we offset the obtained solution up by the magni-
tude of the most negative value, which generates a new
guess for the solution, now having a minimum value of
zero. Now, however, the patterned slip length b∗(x∗) can
have values that are significantly higher than the unde-
formed channel height H. In such a case, we scale the
obtained b∗(x∗) so that the slip length maximizes to a
value on the order of 10H. Similarly, we scale the solid
layer profile ξ(x) so that it has a maximum value of 1
along the channel length, i.e., ξ(x) 7→ 1

maxx ξ(x) ·ξ(x). We

also re-scale β 7→ maxxξ(x) · β so that the dimensional
solid layer profile is as close as possible to what is desired.
This procedure ensures that we converge to a physically
relevant solution to the inverse problem. Whenever these
rescalings become necessary, it is indicative that the de-
sired wall deflection h̄(x) is unrealistic. Nevertheless, in
such situations, we still expect that the obtained shape
(via the regularization just explained) would be similar
to the desired shape.

For a setup in which we have utilized attuning of the
solid layer profiling to obtain a desired wall deflection, we
can additionally utilize the slip length patterning b(x) to
target a desired bottom wall shear rate axial variation.
This amounts to another inverse problem: ‘Inverse Prob-
lem C’, for b(x), with h̄(x) already known. Evaluating
equation (10) at the bottom wall, y = 0, substituting
dp/dx from equation (11) into the latter, and performing
further algebraic manipulations yields the sought-after
expression for b as:

b(x) = −γL

4

(
1− ϕ0h(x)

γ

)[
1− 6(∂vx/∂y)|y=0

(1− ϕ0h(x)/γ)
2

]−1

,

(19)
where (∂vx/∂y)|y=0 is the desired axial variation of the
shear rate along the bottom wall of the fluid domain,
which could be specified based on physiological consid-
erations (for, say, cells) in a microfluidic experiment (as
discussed in section I).

D. Forward Problem and Numerical Scheme

Equation (15), subject to the boundary condition in
equation (B7), represents the ‘forward’ problem mathe-
matically. Once the solution for p(x) is obtained, h(x)
is found from equation (14). Thus, to solve equations
(15) and (B7), we discretize the derivatives in equation
(15) using finite-differences, except at x = 1/κ, where
equation (B7) is applied. We solve the resulting nonlin-
ear algebraic system of equations using the multivariable
Newton–Raphson method (described in appendix C).



6

(a) (b)

FIG. 2. (Color online.) The ‘slow-converging’ deformed channel shape; description of individual panels is provided in the text.
Here, (a) is obtained using slip length patterning, keeping the solid layer uniform constant: ξ(x) = 1; (b) is obtained using
solid layer profiling without slip: b(x) = 0. The dimensionless parameter values used are: γ = 2× 10−4, κ = 0.2, β = 0.02 (a)
and 0.11 (b), ϕ0 = 2.85× 10−6 (a) and 1.53× 10−5 (b), p̄0 = 35 (a) and 5.9 (b); the description of variables presented in the
plots is available in the first paragraph of section IVA.

IV. RESULTS

With the theory formulated in section III in hand, our
objective now is to achieve desired shapes for the mi-
crochannel, i.e., to obtain pre-determined fluid–solid in-
terface deflection shapes during flow. We demonstrate
four types of wall shapes. We first discuss, in section
IVA, these general categories of geometric shape varia-
tions, specifically presenting two versions of each. For
each set, the first shape is obtained predominantly us-
ing slip length patterning by solving Inverse Problem A,
where, either we do not use any solid layer profiling (fig-
ures 2(a) and 3(a) ahead) or we use simplistic solid layer
profiling to complement the slip length patterning as slip
length patterning alone falls short in recovering the de-
sired channel shape (figures 4(a) and 5(a) ahead). The
second shape for each set is an exaggerated version of the
first shape, which is obtained by solely attuning the solid

layer profiling (by solving Inverse Problem B), without
considering any slip. Thus, we show that attunement
of the solid layer profiling is a significantly more effective
tool for controlling the fluid–solid interface’s shape. Sub-
sequently, in section IVB, we present the consequence of
the extent of implementation of the obtained slip length
patterning (by solving Inverse Problem A) and the ob-
tained solid layer profiling (by solving Inverse Problem
B) on the recovered channel shape under flow, for one of
the canonical shapes. Lastly, in section IVC, we discuss
the necessary pressure drop across the channel required
to maintain a given flow rate.

A. Canonical Channel Shapes

The four sets of canonical shapes are presented in and
discussed using figures 2 to 5. For each set, the solu-
tions obtained using slip length patterning are presented
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(a) (b)

FIG. 3. (Color online.) The ‘fast-converging’ deformed channel shape; description of individual panels is provided in the text.
Here, (a) is obtained using slip length patterning, keeping the solid layer profiling uniform: ξ(x) = 1; (b) is obtained using solid
layer profiling without slip: b(x) = 0. The dimensionless parameter values used are: γ = 2× 10−4, κ = 0.2, β = 0.02 (a) and
0.06 (b), ϕ0 = 2.85× 10−6 (a) and 8.24× 10−6 (b), p̄0 = 35 (a) and 3.5 (b); the description of variables presented in the plots
is available in the first paragraph of section IVA.

in subfigures (a) (on the left), while those obtained by us-
ing solid layer profiling are presented in subfigures (b) (on
the right). In each subfigure (a), we plot four quantities.
The bottom-most plot shows the patterned slip-length
made dimensionless by the undeformed channel height,
i.e., the variation of b(x)/H with x. The curve second
from the bottom is the dimensionless deformed height of
the channel, i.e., the variation of 1 − ϕ0h(x)/γ with x.
For reference, the top channel wall in the absence of any
deformation is presented as the thin grey line. In the
plot third from bottom, we present a ‘heat map’ of the
dimensionless shear rate in the deformed fluid domain,
i.e., a heat map of ∂vx/∂y in the deformed fluid domain.
On top of this heat map, we have also presented the fluid
velocity profile using the arrows as depicted. Finally,
in the topmost plots, we show a greyscale heat map of
the ratio of ȳ-deformation referenced to local solid layer

thickness, i.e. the ratio
uȳ∗(x∗,ȳ∗)

∆∗(x∗)
, whose dimension-

less version reads
ϕ0ϕ̄uȳ

β
. We emphasize that this heat

map, which has been presented in the deformed solid do-
main, remains identical in the undeformed solid domain
(not presented), a consequence of being restricted to the
infinitesimal-strain regime of deformation. Each of sub-
figures (b) shows three plots, which convey the same vari-
ations as in the second, third and fourth plots from the
bottom in subfigure (a). Lastly, in figure 6, variants for
two of the canonical shapes have been presented (where
the solution has been obtained using Inverse Problem C),
and the scheme of plots for both subfigures of figure 6 is
the same as subfigures (a) of figures 2 to 5.

The first two example shapes, which are converging
along the channel length and ‘slow–converging’ near the
middle of the channel, are presented in figure 2. The
shape in figure 2(a) is obtained using slip length pattern-
ing, keeping the solid layer profiling uniform: ξ(x) = 1.
This shape exhibits a slower variation of the deformed top
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(a) (b)

FIG. 4. (Color online.) The converging-diverging deformed channel shape; description of individual panels is provided in the
text. Here, (a) is obtained using slip length patterning aided by solid layer profiling, and (b) is obtained using solid layer
profiling without slip. The dimensionless parameter values used are: γ = 2 × 10−4, κ = 0.2, β = 0.02 (a) and 0.02 (b), ϕ0 =
2.85× 10−6 (a) and 2.85× 10−6 (b), p̄0 = 35 (a) and 137.0 (b); the description of variables presented in the plots is available
in the first paragraph of section IVA.

wall of the channel near the center, with faster variations
near the inlet and outlet. This variation is accomplished
by a patch of slip flow near the centre of the channel,
with no-slip for the rest. The central region of the fluid
domain exhibits significantly lower shear rate due to slip,
with the shear rate being large on either side. The shape
presented in figure 2(b) is obtained by solid layer profil-
ing without considering slip. Now, we observe significant
deflection of the upper boundary of the fluid domain, un-
like in figure 2(a). Similarly, the variations near the inlet
and the outlet are more pronounced in figure 2(b) than
in figure 2(a).

The next two example shapes, which are converging
along the channel length and ‘fast–converging’ near the
middle of the channel, are presented in figure 3. The
shape in figure 3(a) is obtained using slip length pattern-
ing, keeping the solid layer profiling uniform: ξ(x) = 1.
This shape exhibits faster variation of the deformed top
wall of the channel near the center, with slower varia-

tions near the inlet and outlet. This variation is accom-
plished by having two patches of slip near the inlet and
the outlet of the channel, with no-slip in the middle. The
central region of the fluid domain exhibits a high shear
rate in the rapidly converging channel shape. The shear
rate is lower on either side, due to slip there. The shape
presented in figure 3(b) is obtained using solid layer pro-
filing without considering slip. Like the slow–converging
example above, we observe significant deflection of the
fluid domain’s top boundary in figure 3(b) compared to
figure 3(a).

The next two example shapes generated by our passive
control strategy, which are ‘converging-diverging’ shapes,
are presented in figure 4. The shape in figure 4(a) is ob-
tained using slip length patterning with simplistic solid
layer profiling to complement. At first, a solution for ξ(x)
with no-slip is obtained such that when subjected to flow,
the fluid domain’s height bulges and assumes a linearly-
convergent shape, i.e., 1 − ϕ0h(x)/γ decreases linearly
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(a) (b)

FIG. 5. (Color online.) The diverging–converging-diverging deformed channel shape; description of individual panels is provided
in the main text. Here, (a) is obtained using slip length patterning aided by solid layer profiling, and (b) is obtained using
solid layer profiling without slip. The dimensionless parameter values used are: γ = 2× 10−4, κ = 0.2, β = 0.02 (a) and 0.03
(b), ϕ0 = 2.85× 10−6 (a) and 3.90× 10−6 (b), p̄0 = 31.6 (a) and 70.3 (b); the description of variables presented in the plots is
available in the first paragraph of section IVA.

from 1.62 at the inlet to 1.5 at the outlet. Subsequently,
upon applying slip length patterning as presented in the
bottom panel of figure 4(a), the shape exhibits a dip near
the channel center, i.e., the deformed fluid domain has
a converging-diverging shape. This is accomplished by
having no-slip for the first half of the channel length and
enhanced slip for the second half. The channel exhibits a
converging shape with high shear rate near the inlet, and
significantly lower shear rate and a diverging shape near
the outlet. The shape presented in figure 4(b) is obtained
using solid layer profiling without considering slip. Like
the former two sets, we observe significant deflection of
the fluid domain’s top boundary. Furthermore, the fluid
domain (channel) is practically undeformed near the cen-
tre (x = 0). Nevertheless, we emphasize that the channel
is overall bulged in both figures 4(a) and 4(b), i.e., the
deformed top wall position at any point is higher than
the undeformed state.

The next two example shapes, which have the

‘diverging-converging-diverging’ shape, are generated by
our passive control strategy and are presented in figure
5. The shape in figure 5(a) is obtained using slip length
patterning with simplistic solid layer profiling to com-
plement. At first, a solution for ξ(x) with no-slip is ob-
tained such that when subjected to flow, the fluid do-
main’s height bulges and assumes a linearly-convergent
shape, i.e., 1 − ϕ0h(x)/γ decreases linearly from 1.5 at
the inlet to 1.45 at the outlet. Subsequently, we apply
two patches with slip near the inlet and the outlet of the
channel, with no-slip in the middle (i.e. the slip length
patterning along the bottom panel of figure 5(a), which is
very similar to the slip length patterning in the bottom
panel of figure 3(a)). With this slip length patterning
implemented, the channel shape we obtain under flow
is a wavy one. It is evident that the ‘rotation’ of the
deflected wall shape from the fast-converging of figure 3
to the diverging-converging-diverging one here is the out-
come of attuning the solid layer profiling. The shape pre-
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(a) (b)

FIG. 6. (Color online.) Analogous solutions of (a) fast-converging (figure 3(b)) and (b) converging-diverging (figure 4(b))
shapes, now using slip length patterning to maintain a low shear along the rigid bottom wall of the fluid domain; description of
individual panels is provided in the main text The dimensionless parameter values used are: γ = 2× 10−4, κ = 0.2, β = 0.18
(a) and 0.02 (b), ϕ0 = 2.60× 10−5 (a) and 2.85× 10−5 (b), p̄0 = 3.56 (a) and 137 (b); the description of variables presented in
the plots is available in the first paragraph of section IVA.

sented in 5(b) is obtained using solid layer profiling with-
out slip. As with the three example sets of shapes above,
we observe significant deflection of the fluid domain’s top
boundary. Furthermore, the fluid domain (channel) is
practically undeformed at x = 2.5. Again, we emphasize
that the channel is overall bulged for both (a) and (b).

Two features are common to the four sets of example
shapes presented above. First, for each of the shapes pre-
sented in (b), the shape that is its mirror image about
x = 0 is also obtainable using solid layer profiling without
considering slip. Second, when we apply the slip length
patterning of (a) on the solution from (b), the shear rate
variation in (a) is superimposed onto the shear-rate vari-
ation in (b), without significant change in the top wall
shape. This observation leads us to conclude that the slip
length patterning is a weak mechanism when it comes to
controlling the channel shape under flow, but it is effec-
tive for controlling the shear rate in the flow.

Next, we present two shapes that have been obtained

using solid layer profiling without considering slip, and
subsequently, slip length patterning has been obtained
(by solving Inverse Problem C) to target a desired axial
variation of bottom wall shear rate. Specifically, we ob-
tain analogues of the fast-converging (figure 3(b)) and
converging-diverging (figure 4(b)) setups for this pur-
pose. These analogues are presented in figure 6. The
deformed channel shape for each analogue is the same as
the original. However, we have applied slip length pat-
terning for each, such that the shear rate at the bottom
wall has a low magnitude, as well as a smaller gradient—
observe the bottom region (at and near y = 0) of the heat
map of the shear rate, presented in the second panel from
top in figures 6(a) and 6(b) each.

Lastly, in figure 7, we present some key aspects of
the flow in the converging-diverging channel. The solid
curves correspond to no slip at bottom wall (correspond-
ing to figure 4(b)) and the dashed-dotted curves corre-
spond to slip patterning at bottom wall targeted at ar-
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FIG. 7. (Color online.) Axial variation of (a) pressure (top) and axial velocity at y = (1 − ϕh/γ)/2 (bottom), and, (b) flow
shear rate at y = 0 (top panel) and flow extensional rate at y = (1 − ϕh/γ)/2 (bottom panel), for the converging-diverging
channel without slip (corresponding to figure 4(b), represented by solid curves here) and the converging-diverging channel with
bottom wall slip length patterning to reduce the shear rate (corresponding to figure 6(b), represented by dashed-dotted curves
here); the subscript ‘c.l.’ stands for central-line and the subscript ‘bot.’ stands for bottom wall. Note that the central line,
represented by y = (1− ϕh/γ)/2, is actually not a straight line but a curve because of the top wall deformation.

resting the flow shear rate (corresponding to figure 6(b)).
The channel shape control is done by solid layer profiling
for both line types. The axial flow velocity and the flow
extensional rate as presented in the bottom panels of fig-
ure 7, for either of the slip-patterning situations, exhibit
appreciable qualitative similarity to the targeted varia-
tions of these variables by Zografos et al. [11] in their
study on designing of converging-diverging microchan-
nels. Given the non-dimensional nature of our analy-
sis, appreciable quantitative similarity is also expected
to be obtainable on a per-application basis, with a suit-
able choice of materials, geometry and flow conditions.
Additionally, it can be observed that, as we introduce
slip to arrest bottom wall shear rate (transitioning from
solid curves to dashed-dot curves), the axial velocity and
the flow extensional rate, although decreased in magni-
tude, retain their general form. However, the shear rate
transitions from being finite to infinitesimal. This indi-
cates that the design of a converging-diverging channel
as presented in figure 6(b) can be useful for applications
in which a hyperbolic flow behavior is desired near the
channel center, even while we may want the shear rate
at the bottom wall to be arrested in magnitude.

B. Implementation of Obtained Solid Layer
Profiling and Slip Length Patterning

In figure 8, we present the parametric variation of de-
formed shape of the fluid domain’s top boundary, for the
converging-diverging shape (figure 4). In figure 8(a), we
show the shape change with increasing slip magnitude
(b0/H), as obtained from Inverse Problem A. The slip

length has the same x-dependence as in figure 4(a) but
the magnitude of the slip is varied. The solid layer pro-
filing is also the same as presented in 4(a). We see that
augmenting slip leads to a converging-diverging shape,
compared to a monotonically decreasing one without slip.
However, as is to be expected, the variation is weak; that
is, we cannot achieve an arbitrary deformation with only
slip length patterning of the bottom rigid wall.
Meanwhile, in figure 8(b), we show the shape change

with increasing extent of solid layer profiling (quantified
by m). We have applied a solid layer profiling:

ξ(x) = 1 +m[ξobtained(x)− 1], (20)

where ξobtained(x) is the solution to Inverse Problem B
for the converging-diverging shape. We vary m from 0.01
to 1, which is equivalent to implementing the ξobtained
incrementally on the solid layer. Significant deformation
can be achieved for m ≈ 1. This result indicates that the
deformed channel shape is stongly sensitive to variations
in ξ and, therefore, a sufficiently accurate implementation
of the obtained ξ is needed to recover a deformed fluid
domain shape that is appreciably close to the desired one.

C. Pressure Drop Across the Channel

For many microscale applications, the pressure drop
across the microchannel is one of the key measurables,
as it can be determined noninvasively [69]. We can eval-
uate the pressure drop from our mathematical model. In
figure 9, we present dimensionless pressure drop versus
flow rate curves for the canonical channel shapes from
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(a) (b)

FIG. 8. (Color online.) Parametric variation (note the logarithmic scale) of the dimensionless deformation shape of the fluid
domain’s top boundary with (a) slip length patterning (controlled via b0/H) and (b) via solid layer profiling (controlled via
m), for the converging-diverging case (figure 4).

Color Channel shape Linetype Solution category

slow-converging (figure 2) undeformable top wall (rigid solid layer)

fast-converging (figures 3 and 6(a)) actual solution (as presented in the respective figures)

converging-diverging (figures 4 and 6(b)) constant thickness solid (replacing ξ by 1
κ

∫ 1/κ

−1/κ
ξ(x) dx)

diverging-converging-diverging (figure 5)
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FIG. 9. (Color online.) Normalized pressure drop, ∆p∗/∆p∗des (where ∆p∗des = (κ/γ3)(µQdes/L
2)), versus normalized flow

rate, Q/Qdes, as the flow rate is increased from a hundredth of the design flow rate (Q = 0.01Qdes) to the design flow rate
(Q = Qdes); we have defined ∆p∗ as ∆p∗ = p∗|x=−1/κ−p∗|x=1/κ; panels (a,b) correspond to panels (a,b) of figures 2 to 5; panel
(c) corresponds to figure 6; in (b), all solid curves overlap and are represented by the black curve; the legend above the figure
associates the channel shape to color combinations, as well as the solution categories to the linetype combinations used.

section IVA. Dimensional counterparts can be obtained
by simply scaling the curves shown.

First, in figure 9(a), we present the situations for which
slip length patterning leads to the desired channel shapes
(panels (a) of figures 2 to 4). It is clear that the pres-
sure drop is significantly smaller for deformable channels
(dashed-dotted curves) than for rigid ones (solid curves).

This is the expected situation (see, e.g., [24]) as the chan-
nel can bulge by 40–80% (see panels (a) of figures 2 to 4).
Second, in figure 9(b), we present the situations for which
solid layer profiling is used to obtain the desired channel
shapes (panels (b) of figures 2 to 4). Again, softness of
the top wall leads to much smaller pressure drop com-
pared to the rigid case, which is again expected because
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TABLE II. Dimensional parametric values for two representative systems for the microchannel fluid domain shapes presented
in section IV and appendix D.

Material Property Value Geometry & Flow 1st Rep. Syst. 2nd Rep. Syst.

µ 1 mPa·s L 5 cm 50 cm

ρ 1 g/cm3 H 10 µm 100 µm

EY =
3λG+ 2G2

λ+G
9.5 kPa maxx ∆(x) ∼ 1 cm ∼ 5 cm

ν =
λ

2(λ+G)
0.46 Qdes 6.25× 10−10 m3/s 6.25× 10−8 m3/s

TABLE III. Dimensional parametric values for another two representative systems, having nearly-incompressible solid layer
material, for the microchannel fluid domain shapes presented in section IV and appendix D.

Material Property Value Geometry & Flow 1st Rep. Syst. 2nd Rep. Syst.

µ 1 mPa·s L 5 cm 50 cm

ρ 1 g/cm3 H 10 µm 100 µm

EY =
3λG+ 2G2

λ+G
9.695 kPa maxx ∆(x) ∼ 1 cm ∼ 5 cm

ν =
λ

2(λ+G)
0.49 Qdes 3.7× 6.25× 10−10 m3/s 3.7× 6.25× 10−8 m3/s

the channel can bulge by as much as 200% (see panels (b)
of figures 2 to 4). The pressure drop for a rigid top wall,
represented by the black solid line, follows the relation:

∆p∗rigid =
24µQL

H3
=⇒ ∆prigid =

24

κ
. (21)

Lastly, in figure 9(c), we present the pressure drop–flow
rate curves for the situations in which solid layer profil-
ing is used to obtain the desired channel shapes, while
slip length patterning is used to control the bottom wall
shear rate (figure 6). The inferences are identical to those
discussed regarding panels (a) and (b).

From the analysis in this subsection, we highlight two
key conclusions. First, no clear pattern or correlation
emerges between the pressure drops for the four channel
shapes. Second, for any of the canonical shapes studied,
the trends are distinct for each of the three situations
— rigid solid layer, constant-thickness solid layer, and
profiled solid layer. Both these inferences are an out-
come of the individual nature of the complex interplay
of slip length patterning, solid layer profiling and im-
posed outlet pressure. Nevertheless, as shown in figure
9, the the pressure drop (a practical figure of merit for
microsystem design) can be quantified by the mathemat-
ical framework proposed in our study, specifically equa-
tion (15), which captures the key details of this coupled
multiphysics problem.

V. CONCLUSION

In this study, we have presented a theoretical frame-
work for designing passive control of the shape of a the
flow conduit inside of a compliant microchannel. Specifi-
cally, we demonstrated how the fluid–soft solid interface,
between the fluid domain and a compliant wall coating,
can be tuned under flow in a ‘slit’ setup commonly used
in modeling. To this end, we modeled the top wall of the
microchannel as a soft coating of given axially-varying
thickness, attached to a rigid platform above it. The
variation of thickness, and its coupling to the viscous
fluid flow via low Reynolds number fluid–structure inter-
action [36], allowed us to tune the flow conduit passively.
Additionally, we incorporated patterned hydrodynamic
slip along the rigid bottom wall, which is commonly used
in microfluidics (enabled by nano-patterning of the chan-
nel surfaces), to manipulate the magnitude of the shear
rate in the flow. The latter is desirable when dealing
with cells and biofluids in labs-on-a-chip [61]. Within the
broad context of passive shape control, we presented ‘In-
verse Problems,’ in which we fed-in the desired axial up-
per wall shape variation and the bottom wall axial shear
rate variation as inputs, and then we solved for a suitable
solid layer profile and a slip length pattern. Specifically,
these calculations were enabled by the central mathemat-
ical result of this work, equation (15), which connects
the hydrodynamic pressure, the fluid–solid interface de-
formation, and the slip length variation, all in a single
ordinary differential equation.
Using this passive elastohydrodynamics (EHD) ap-

proach, we demonstrated several categories of possible
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axial fluid–solid interface shapes that can be achieved
under steady flow, starting from a profiled (but unde-
formed) configuration. The first pair of canonical shapes
have decreasing channel height in the flow-wise direc-
tion. Specifically, the first shape exhibits faster decrease
in channel height (i.e., larger axial gradient of channel
height) near the inlet and outlet, and slower decrease
in channel height (i.e., smaller axial gradient of chan-
nel height) in the middle. The second canonical shape
exhibits slower decrease in channel height near the in-
let and outlet, and faster decrease in channel height in
the middle. In particular, the second shape is useful for
applications in which flow-focussing is desired [70]. The
third type of canonical shape presented is converging-
diverging, which can find applications in rheological stud-
ies [11]. The fourth type of canonical shape exhibits a
diverging shape near the inlet and outlet and a converg-
ing shape in the middle. Using slip length patterning
at the bottom wall, we controlled the shear rate magni-
tude at the bottom wall for the ‘flow-focusing’ and the
‘converging-diverging’ shapes.

Since our model is dimensionless, it follows that the
canonical shapes described above can arise in a multi-
tude of practical systems, in terms of system geometry,
flow rate and material properties. As an illustration, in
each of tables II and III, we present two representative
physical systems, separated in geometric scale by one or-
der of magnitude, for which the solutions presented in
this study would be applicable.

Having showcased passive EHD (termed approach (iii)
in section I and the focus of this study) as a useful design
tool for controlling microchannel conduit shape under
flow, we highlight two disadvantages it has in compar-
ison to active EHD (termed approach (ii) in section I).
First, implementation of passive EHD requires an a pri-
ori theoretical analysis because the approach is ‘hands-
off’ during operation (it should however be noted that
implementation of active EHD can also require signifi-
cant efforts in calibrating the force–deformation relation-
ships [31]). Second, on a per-setup basis, passive EHD
offers less versatility compared to active EHD — while
active EHD allows actuating a particular microchannel
setup to obtain multiple kinds of shapes, passive EHD
enables only a pre-specified shape designing a priori. In
this study, we have provide the theory for passive EHD,
thus it is now available as an alternative to active EHD
in situation in which the latter is not available. Indeed,
it might also be of interest to couple the two approaches
in the future.

Our passive EHD theory can be used to obtain pre-
determined fluid domain shapes in compliant microchan-
nels. These shapes can find applications in multiple ar-
eas of microfludics research. An example is the use of
converging-diverging channel shapes towards replicating
extensional flows [11] (as discussed at the end of section
IVA as well) for studies on, e.g., dynamics of DNA dur-
ing flow focusing [9]. This shape can also be utilized to
obtain a desired extent of constriction in the flow conduit,

finding use for mimicking stenosis [15] and manipulating
polydispersity of droplet generation using softness of the
microchannel [22]. On the other hand, the diverging-
converging-diverging geometry can be attuned further to
obtain slow divergence followed by sudden convergence
and subsequently sudden divergence again [18] or even
a chain of such configurations [19], which can find use
in studies of red blood cell dynamics in blood vessels.
The converging (fast and slow) channel shapes can be
utilized to optimize cell capture and release [3] and par-
ticle trapping strategies [12]. Extensions of this work
could include consideration of axial variation of the soft
coating’s elasticity parameters [16], thick structures and
the absence of a platform on top of the solid layer [54],
shear-dependent viscosity of a non-Newtonian fluid pass-
ing through the conduit [55, 71], electrokinetic effects and
non-hydrodynamic forces [72], amongst others.
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Appendix A: Governing Equations

The flow in the fluid domain satisfies the continuity
equation,

∂v∗x
∂x∗ +

∂v∗y
∂y∗

= 0, (A1)

and the steady 2D incompressible Navier–Stokes equa-
tions,

ρ

(
v∗x

∂v∗x
∂x∗ + v∗y

∂v∗x
∂y∗

)
= −∂p∗

∂x∗ + µ

(
∂2v∗x
∂x∗2 +

∂2v∗x
∂y∗2

)
,

(A2)

ρ

(
v∗x

∂v∗y
∂x∗ + v∗y

∂v∗y
∂y∗

)
= −∂p∗

∂y∗
+ µ

(
∂2v∗y
∂x∗2 +

∂2v∗y
∂y∗2

)
.

(A3)
The system is closed by the Navier slip and no-
penetration boundary condition at the rigid bottom wall:

v∗x|y∗=0 = b(x∗)
∂v∗x
∂y∗

∣∣∣∣
y∗=0

, (A4)

v∗y
∣∣
y∗=0

= 0, (A5)
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respectively, in addition to the no-slip and no-penetration
boundary condition at the deformed fluid–solid interface:

v∗x|y∗=H−h∗(x∗) = v∗y
∣∣
y∗=H−h∗(x∗)

= 0. (A6)

The pressure at the outlet is imposed:

p∗|x∗=L = p∗0, (A7)

and the flow rate of Q per unit width, at any given cross-
section of the channel, is∫ y∗=H−h∗(x∗)

y∗=0

v∗x dy
∗ = Q. (A8)

The deformation of the soft elastic layer (the solid do-
main) is governed by the elastostatic equilibrium equa-
tions:

∇∗ · σ∗ = 0⃗. (A9)

The solid’s Cauchy stress tensor is given in terms of the
displacement gradient as,

σ∗ = λ (∇∗ · u⃗∗) I +G
(
∇∗u⃗∗ + (∇∗u⃗∗)⊤

)
, (A10)

where I is the identity tensor and a ⊤ superscript denotes
the transpose. Substituting equation (A10) into equation
(A9) yields the two components of the mechanical equi-
librium equation:

(λ+ 2G)
∂2u∗

x

∂x∗2 +G
∂2u∗

x

∂ȳ∗2
+ (λ+G)

∂2u∗
ȳ

∂x∗∂ȳ∗
= 0,

(A11a)

G
∂2u∗

ȳ

∂x∗2 + (λ+ 2G)
∂2u∗

ȳ

∂ȳ∗2
+ (λ+G)

∂2u∗
x

∂x∗∂ȳ∗
= 0.

(A11b)

This system is closed by zero-displacement boundary con-
ditions at the solid-platform interface:

u∗
x|ȳ∗=∆(x∗) = u∗

ȳ

∣∣
ȳ∗=∆(x∗)

= 0, (A12)

and the traction balance condition at the fluid–solid in-
terface,

σ∗ · n̂∗ = σf∗ · n̂∗. (A13)

Here, σf∗ is the Newtonian fluid’s stress tensor:

σf∗ = −p∗I + µ
(
∇∗v⃗∗ + (∇∗v⃗∗)⊤

)
, (A14)

and n̂∗ is the normal to the fluid–solid interface:

n̂∗ =
∂h∗

∂x∗ î+ ĵ. (A15)

Thus, the traction balance condition, at y∗ = H−h∗(x∗)
and ȳ∗ = −h∗(x∗), can expressed in component form as(

(λ+ 2G)
∂u∗

x

∂x∗ + λ
∂u∗

ȳ

∂ȳ∗

)
∂h∗

∂x∗ +G

(
∂u∗

x

∂ȳ∗
+

∂u∗
ȳ

∂x∗

)
=

(
−p∗ + 2µ

∂v∗x
∂x∗

)
∂h∗

∂x∗ + µ

(
∂v∗x
∂y∗

+
∂v∗y
∂x∗

)
, (A16a)

G

(
∂u∗

x

∂ȳ∗
+

∂u∗
ȳ

∂x∗

)
∂h∗

∂x∗ + (λ+ 2G)
∂u∗

ȳ

∂ȳ∗
+ λ

∂u∗
x

∂x∗

= −p∗ + 2µ
∂v∗y
∂y∗

+ µ

(
∂v∗x
∂y∗

+
∂v∗y
∂x∗

)
∂h∗

∂x∗ . (A16b)

Appendix B: Dimensionless Governing Equations

a. Fluid domain:

∂vx
∂x

+
∂vy
∂y

= 0, (B1)

γ

κ

ρQ

µ

(
vx

∂vx
∂x

+ vy
∂vx
∂y

)
= −∂p

∂x
+

∂2vx
∂y2

+
γ2

κ2

∂2vx
∂x2

, (B2)

γ3

κ3

ρQ

µ

(
vx

∂vy
∂x

+ vy
∂vy
∂y

)
= −∂p

∂y
+

γ2

κ2

(
∂2vy
∂y2

+
γ2

κ2

∂2vy
∂x2

)
, (B3)

subject to:

vx|y=0 =
b(x)

γL

∂vx
∂y

∣∣∣∣
y=0

, (B4)

vy|y=0 = 0, (B5)

and

vx|y=1−ϕ0h(x)/γ
= vy|y=1−ϕ0h(x)/γ

= 0, (B6)

as well as,

p|x=1/κ =
γ3

κ

p∗0L
2

µQ
= p̄0, (B7)∫ y=1−ϕ0h(x)/γ

y=0

vx dy = 1. (B8)

b. Solid Domain:

∂2ux

∂ȳ2
+

β
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(
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λ

G

)
∂2uȳ

∂x∂ȳ
+

β2
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(
2 +

λ
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(B9)(
2 +

λ

G

)
∂2uȳ

∂ȳ2
+

β

γ

(
1 +

λ

G

)
∂2ux

∂x∂ȳ
+

β2

γ2

∂2uȳ

∂x2
= 0,

(B10)

subject to

ux|ȳ=ξ(x)=∆(x)/βL = uȳ|ȳ=ξ(x)=∆(x)/βL = 0, (B11)

as well as
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Appendix C: Newton–Raphson Method for Equation (15)

We discretize the x-axis into n points as xi = −1/κ+ 2(i− 1)/
(
(n− 1)κ

)
, i = 1, . . . , n. We used n = 1001 points

in the implementation of the numerical scheme, having verified this number is sufficient to ensure grid-independence

of solutions. The components Ri of the residual vector R⃗ and Ji,j of the requisite Jacobian matrix J are defined as:

Ri =

(
1 +

ϕ0pi
ϕ̄iγ

)3(
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ϕ0pi
ϕ̄iγ

+
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)3 j=2∑
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)
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, i = 2 to n− 1;
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κ
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2
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(C1)
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i = 1, j = 0 to 2,

Ji,i = 1, i = n.

(C2)

where pi ≈ p(xi), ϕ̄i ≈ ϕ̄(xi) and bi ≈ b(xi) are the
nodal value approximations. Here, asi,j represents the
coefficients for the node i+ j corresponding to the finite-
difference approximation of the derivative d/dx at the
node i, the superscript ‘s’ is ‘CD’ for central-difference
and ‘FD’ for forward difference; δi,j is the Kronecker-
delta symbol, i.e., δi,j = 1 when j = i and δi,j = 0 when
j ̸= i.

To obtain the numerical solution, we iterate p⃗ 7→
p⃗ − J−1R⃗ until ∥R⃗∥ becomes smaller than a prescribed

tolerance, which we took to be 10−5.
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FIG. 10. (Color online.) Dimensionless deformed shape of the fluid domain as obtained from 3D COMSOL simulations, 2D
COMSOL simulations, and the solution of equation (15). Panels (a) and (b) correspond to figures 3(b) and 6(a), respectively.
The legend in (a) applies to both panels. In each panel, the solid curves and circle markers represent the solution based on
parameter values in tables II and III, respectively. For the 3D COMSOL simulations, the axial variation of the gap height
(presented as the main plot in the panels) is at the midplane z∗ = 0. The insets represent the span-wise dimensionless deformed
shape of the fluid domain, across the x = 0 plane, from the 3D COMSOL simulations.

Appendix D: Exploring the Validity of the 2D Model

In this study, several simplifications have been made
towards reducing the complete system behavior to the
single ODE, equation (15). While some of the assump-
tions are standard to the research area of flows through
microchannels (including deformable ones), some as-
sumptions warrant extra examination to ascertain the
validity of our model. We identify 3 concerns:

1. We have considered the setup to be sufficiently wide
in the plane perpendicular to the flow, i.e., we have
considered a 2D setup. While this ‘slit’ setup is
commonly assumed when modeling microchannels
[24], the mathematical expression of this assump-
tion, W ≫ L, where 2W is the width ‘into-the-
paper’, might not always be realizable.

2. Aggressive solid layer profiling leads to variations in
the solid layer thickness over short axial distances.
The characteristic length over which the solid do-
main varies is then liable to be smaller than its
physical axial length. This indicates that the pres-
sure at a point on the fluid–solid interface can affect
deflection of not only that point but also its neigh-
boring points. This effect is not captured by the
Winkler-like relation (equation (14)).

3. We have obtained the Winkler-like relation (equa-
tion (14)) by an asymptotic reduction of the gov-
erning equations and boundary conditions for the
solid domain. This calculation rests on the scal-
ing assumption that both uy and ux scale as ϕ0L,
which is admissible only when λ and G are of the
same scale, i.e., the solid layer is appreciably com-

pressible (see appendix B in [72] and the fourth
paragraph of section II in [73]).

Towards addressing these potential limitations, we
have conducted 2D as well as 3D COMSOL simulations of
the fluid-structure interactions for two situations (which
are the most extreme ones in the context of the con-
cerns listed above), corresponding to figures 3(b) and
6(a), which were discussed in section IV. The consoli-
dated results of these simulations are presented in figure
10.
We first address concern 1. To investigate whether

W ≫ L must be strictly satisfied for the validity of our
theory, we have conducted 3D numerical simulations cor-
responding to the 2D systems from figures 3(b) and 6(a),
taking the two situations of W = L and W = L/10.
We emphasize that these simulations solve the complete
3D elastostatic equations, two-way coupled to the steady
incompressible Navier–Stokes equations, without any as-
sumptions of slit-like geometry and slenderness. We have
additionally conducted simulations for the 2D system as
well (i.e., the slit-like geometry is assumed but slender-
ness is not assumed). Figure 10 shows that the numer-
ical solutions (2D simulations and 3D simulations with
W = L) and the solution of our proposed model all
match well. Even the results from the 3D simulations
with W = L/10 are appreciably close. Furthermore, ex-
amining the insets, we observe that, for the 3D systems,
the edge effects are restricted to a small region near the
edge planes (z∗ = −W and z∗ = W ), and the solid layer
deformation close to the central plane z∗ = 0 is not ap-
preciably affected by edge effects. Hence, we deduce that
our framework captures the solid layer deformation be-
havior well for 3D setups, even the ones for which the
width is comparable to the axial length.
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Next, concerns 2 and 3 are about the applicability of
the Winkler-like relation, equation (15). The Winkler
mattress model is a simple yet effective model, which
was designed to study the deformation behavior of beams
and plates resting on elastic foundations. In this model,
the elastic foundation was a forteriori likened to a col-
lection of springs, with each spring responding to the
load applied only on its point of attachment with the
beam/plate. The spring constant is expected to be
a function of the solid layer elastic properties. This
model, with some refinements and generalizations, has
been found to be fruitful for analyzing many mechanics
problems [68]. On the other hand, the Winkler-like re-
lation we obtained, although having the same functional
form, is derived starting from the complete elastostatic
equations, and hence, it is not based on an assumption
like the original Winkler mattress model. Nevertheless,
the derived Winkler-like relation’s validity rests on two
conditions — (a) the solid layer should be slender, and
(b) the solid layer should be sufficiently compressible.
Thus, concerns 2 and 3 are really about whether and
when conditions (a) and (b), respectively, break down.

Addressing first concern 2, we observe that the slen-
derness of the solid layer, for our setup, is represented
by β/κ. For the cases we have studied in section IV, the
maximum value of β/κ occurs for the case of figure 6(b)
(β/κ ≈ 1). However, as we can see in figure 10(b), even
for this case, the solution from our framework (blue) and
the solution from COMSOL (red and green) match. In
other words, our framework is able to represent the solu-
tion of the complete elastostatic equations (as found by
numerical simulations using COMSOL). Hence, even for
β/κ ≈ 1, the assumption of slenderness of the solid layer
remains admissible.

Addressing concern 3 next, we recall that some of the
materials commonly used in microfluidics, an example
being polydimethylsiloxane (PDMS) [13, 74], are often

considered incompressible, with ν ≈ 0.499 being one
commonly used value. However, it has long been conjec-
tured that such materials are bound to have some com-
pressibility (“[a] definitive value for the Poisson’s ratio ...
is not readily available in the literature” [75, p. 6]), and
more recent measurements have suggested that the Pois-
son’s ratio can be as low as ν ≈ 0.46 [52, 76]. Keeping
this fact in mind, we have considered the solid layer to
be ‘sufficiently’ compressible, and we took ν = 0.46 in
table II and ν = 0.49 in table III.
Here, we observe that a condition for the applicabil-

ity of the classical Winkler mattress model, which is also
expected to apply to our Winkler-like relation derived as
equation (14), is that (1−2ν) ≳ (β/κ)2. This condition is
obtained based on scaling principles applied to the com-
plete elastostatic equations — see last paragraph of sec-
tion 2 in [77] and appendix B in [72]. For the cases stud-
ied in section IV and with dimensional parameter values
taken from either of tables II and III, the example pre-
sented in figure 3(b) satisfies this condition, whereas the
example presented in figure 6(a) is the most adverse in
terms of fulfillment of this condition. Therefore, we have
compared the solution from our model with the solution
from COMSOL simulations of these two cases in figure
10(a,b), respectively. The match between our model and
simulations, especially in panel (b), indicates that even
when the condition (1−2ν) ≳ (β/κ)2 is not strictly satis-
fied, the prediction of equation (15) is reasonably close to
the numerical solution of the fluid–structure interaction
problem. This indicates that our framework can apply
to solid layer materials that are close to incompressible.
However, we caution that for materials that are ex-

tremely close to being incompressible, i.e., (1 − 2ν) ≪
(β/κ)2, the deflection is expected to be O(β2) smaller
and proportional to the Laplacian of the pressure (see
appendix A in [77] and appendix B in [72]). This case
was not considered in this study, and is beyond the scope
of the present work.
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