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The goal of patient-specific treatment of diseases requires a connection between clinical observations
with models that are able to accurately predict the disease progression. Even when realistic models are
available, it is very difficult to parameterize them and often parameter estimates that are made using early
time course data prove to be highly inaccurate. Inaccuracies can cause different predictions, especially
when the progression depends sensitively on the parameters. In this study, we apply a Bayesian data
assimilation method, where the data are incorporated sequentially, to a model of the autoimmune disease
alopecia areata that is characterized by distinct spatial patterns of hair loss. Using synthetic data as
simulated clinical observations, we show that our method is relatively robust with respect to variations in
parameter estimates. Moreover, we compare convergence rates for parameters with different sensitivities,
varying observational times and varying levels of noise. We find that this method works better for
sparse observations, sensitive parameters and noisy observations. Taken together, we find that our data
assimilation, in conjunction with our biologically inspired model, provides directions for individualized
diagnosis and treatments.

Keywords: personalized medicine; data assimilation; autoimmunity; alopecia areata.

1. Author summary

Overall goals for personalized medicine include adjusting disease treatments for individual patients and
based on observations obtained during the disease progression and treatment. This requires predictive
models that can rapidly be tuned to specific patients during the course of disease and treatment regimen.
One of the difficulties is that many models use parameters that are not directly measurable and must
be estimated. Moreover, observations are typically incomplete and do not provide estimates of all
variables in a mathematical model. In this study, we describe how to assimilate partial observations
using a recently developed direct filter data assimilation (Bao et al., 2021, 2019). We use synthetic data
to show how this method can be used to overcome difficulties that are specific to biological models

© The Author(s) 2021. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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including parameters that are sensitive to measurements, noisy and incomplete data and data that may
be sporadically observed, longitudinally.

2. Introduction/background

Alopecia areata (AA) is the most common, chronic inflammatory human hair loss disease. It affects all
age groups and types of hair follicles (HFs) (e.g. scalp, facial, etc.) as well as both genders. With few
exceptions (i.e. diffuse AA), this disease shows a pathognomonic hair loss pattern that is characterized
by progressive patches of hair loss in seemingly normal, visibly non-inflamed skin, the presence of
broken-off or tapered hair shafts (‘cadaver hairs’, ‘exclamation mark hairs’) and/or the regrowth of white
hair shafts within an alopecic lesion (Gilhar et al., 2012). Depending on a variety of parameters, such as
the age of first AA onset, the presence of associated autoimmune diseases, atopy or Down syndrome, or
a positive family history for AA, there is tremendous variation in patient prognosis (Gilhar ez al., 2012;
Strazzulla et al., 2018).

Clinicians managing patients with AA face several vexing problems. There are few satisfactory
treatments available and the response of AA patients to any kind of therapy is linked to their relative
prognosis. There are no reliable methods to predict how fast AA lesions will progress in this specific
patient, and how he/she will respond to therapy (Gilhar er al., 2012). With the recent introduction of
JAK inhibitors (Wang et al., 2018; Phan & Sebaratnam, 2019), this therapeutic dilemma has improved
greatly. However, there is still a need for a tool to classify the state of the disease within a patient.

Given these challenges in the management of AA, it would be of substantial clinical and
pharmacological interest to develop a mathematical method for predicting how fast and extensively
the hair loss lesions seen in a given patient will expand and coalesce over time and/or will be replaced
by active hair regrowth. This would finally empower physicians to inform and educate their AA patients
regarding their individual hair loss and disease prognosis. Additionally, such a predictive model would
be most welcome for calculating whether a rather mild AA therapy (e.g. relatively safe and inexpensive
topical glucocorticosteroids) will likely suffice for halting hair loss progression and for promoting hair
regrowth in a given patient or whether it is advisable to opt for a more aggressive form of therapy
(e.g. systemic JAK inhibitor) in a patient with a poor prognosis and high likelihood of rapid disease
progression. Theoretically, such a model could then replace the rough empirical prognostic estimates
that physicians have to rely on today.

Systematically building upon our previous modelling approaches to AA (Dobreva et al., 2020, 2015,
2017), the current study explores and proposes a pathway to achieve exactly this. We first review
pertinent biological hypotheses that form the basis for our model formulation. We then describe the
model, mainly to provide context for the presentation of the assimilation method and to keep this
manuscript self-contained. We then describe the data assimilation method used here followed by detailed
numerical exploration/prediction examples.

2.1 Biological hypotheses

Alopecia is a cell-mediated autoimmune disease of the HF, which results from an interferon-gamma
(IFNg)-driven attack of CD8+ T lymphocytes on growing (anagen) HFs that have lost their unique
immuno-inhibitory milieu (‘immune privilege collapse’). The HFs then present HF-derived autoantigens
via MHC class Ia molecules to autoreactive CD8+ T cells (Gilhar et al., 2012; Paus et al., 2006). In
recent years, it has become increasingly understood that innate immunocytes, such as natural killer cells
(Gilhar et al., 2013; Tto et al., 2008; Petukhova et al., 2010) and mast cells (Bertolini et al., 2014),
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also play an important role in the immune pathogenesis of AA. Autoantigen-independent pathological
activities of these cells can also suffice to induce the clinical hair loss phenomena (Pratt ez al., 2017).
Moreover, it is appreciated that AA occurs in distinct sub-types, which may reflect differences in AA
pathogenesis (Gilhar ef al., 2012; Tkeda, 1965).

All this has invited the concept that AA does not necessarily and always represent a classical
autoimmune disease, but primarily is a stereotypic response pattern of otherwise healthy anagen HFs
that (a) have lost their immune privilege (for various reasons) and (b) become the target of an IFNg-
dominated immunocyte attack. This then leads to HF damage (HF dystrophy), abrupt termination of
anagen (i.e. premature catagen development) and thus hair shaft shedding and ultimately alopecia
with typical patterned hair loss (Solomon, 2015). In some AA patients, this can indeed result from a
classical, HF autoantigen- and CD8+ T cell-dependent autoimmune response. Yet in other patients, the
characteristic AA type of hair loss may result from pathogenic activities of innate immunocytes that
secrete excessive amounts of IFNg, which alone suffice to induce all hallmarks of AA, i.e. immune
privilege collapse, HF dystrophy and premature catagen induction, but fail to meet the criteria of a
classical autoimmune disease. Thus, AA is not necessarily a disease but always a distinct response
pattern of the HF to immunological damage (Solomon, 2015).

2.2 Mathematical background

Previously, we used ordinary differential equations (ODEs) and partial differential equations (PDEs)
to model the development of AA. Our ODE models describe the temporal immune attack dynamics in
anagen HFs (Dobreva et al., 2015) and cycling HFs (Dobreva et al., 2017) and capture states of health,
disease and treatment. In alignment with the medical consideration that AA is driven by sufficient clonal
expansion and aggregation of immunocytes in HFs (Gilhar ef al., 2012), our findings reveal that HFs
in anagen become diseased if the populations of immune cells launching the attack, orchestrated by
IFNg, grow significantly large (Dobreva et al., 2015). In the model where we incorporated HF cycling
(Dobreva et al., 2017), our components for immune players interact with equations for the human
hair cycle (Al-Nuaimi et al., 2012). This enhanced ODE system enabled us to accurately show that in
response to the immunological insult against hair-producing cells, the process of hair growth is abruptly
stopped, and the regression phase catagen is prematurely induced (Dobreva et al., 2017).

Our PDE model for AA is 1D and reflects the changes in time and in space of the key immune
components involved in the disease development, IFNg (IFN), CD8' T-cells (7'8) and CD4* T-cells
(T4). The dynamics of IFNg consist of production by T-cells (p;py (T4 + T8)), degradation (—8;zyIFN)

and diffusion (D, AIFN). IFNg activates CD8" T-cells (O‘IF N ) and CD4™" T-cells (m) The CD4+

1+s 1+s
T-cell population expands and helps CD8™" T-cells to proliferate (’%ﬁm .

The lymphocyte activation and clonal expansion are inhibited by immuno-supressive substances
produced in the HF environment, called immune privilege guardians. This inhibitory effect on the
immune cell dynamics is captured through the parameter s. Rather than posit specific mechanisms,
we treat the immune privilege as a parameter. This is consistent with the immune privilege guardian
hypotheses (Gilhar et al., 2012; Ito et al., 2008) and allows us to investigate the consequence of the state
of the guardianship, potentially providing clinically verifiable insight.

Both immunocyte populations experience natural (—8;78), (—8;74) and concentration-dependent
(—k7(T8)?), (—k7(T4)?) cell death. Also, they move randomly (DyqATS), (D74 AT4) and exhibit
chemotactic movement up the concentration gradient in IFNg (—xV - (T8VIFN)), (—xV - (T4VIFN)).
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TABLE 1  Base parameters used in this manuscript

Parameter Meaning Value
DIFN IFN production 0.115 pg day™!
Pr T-cell production 0.004 day™!
Dipy Diffusion rate of IFN 10~2cm?day™!
Dyjand Dyg Diffusion rate of T4 and T8 10 3cm?day™!
81N Decay rate of IFN lday™!

d74 and d7¢ Death rate of T4 and T8 0.05day~!

y Recruitment rate of T4" and T8 0.08pg™!

o Recruitment rate of T8 0.8975pg ™!
X Signalling sensitivity 10~%cm?day=!
s Immune guardian suppression 0.01(dimensionless)

The model equations are given below, and the parameter values, listed in Table 1, are as discussed in our
previous study (Dobreva ef al., 2020).

AIFN
aTs IFN TATS
8 B VIR 5 T8 — ke, TSP
ot 1+s 1+
—xV - (T8VIFN) + D74 ATS Q)
aT4 IFN T4
o _ PIEN  PrT% s 14— ;142
Jat 1+ 1+s
—xV - (T4VIFN) + Dy, AT4. 3)

The boundary conditions are assumed to be periodic with the scale of the domain set by the disease
progression (Dobreva et al., 2020). In this manuscript, we restrict the model to one spatial dimension;
however, the methods are readily extendible to higher dimensions.

The PDE model successfully captures the distinct disease patterns in agreement with experimental
findings. These patterns are linked to the underlying spatio-temporal dynamics of immune cells and
signals involved in the disease development (Dobreva et al., 2020). The results indicate that hairless
lesions are areas where HF immune privilege collapse is induced by sufficiently elevated IFNg,
and the accumulation of activated immunocytes has become large enough to inflict damage on hair-
producing cells. Thus, the disease state observed by hairless patches is determined by distinct regions of
elevated immunocytes. We also explored how different processes reflected in the model impact pattern
emergence and analysed the pattern propagation in a larger domain (Dobreva et al., 2020). Throughout
this manuscript, we use parameters determined in Dobreva et al. (2020) as our nominal set (see Table 1).

2.3 Current study

One of the difficulties in AA is the varied response to treatment and difficulty in classifying the disease
state. How can we use clinical observations to guide treatment, given this variability? It is essentially
impossible to observe or measure the components that are required to understand the details of the
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disease—namely components of the immune system (e.g. CD4" and CD8™ T-cells). Instead, patches
can be measured and the progression of the patches of hair loss can be followed. In this study, we are
interested in using this partial data to provide more precise predictions of the disease course. Using our
previously developed model (Dobreva et al., 2020), we can predict the rate of spread of the pattern—as
long as we know the parameters. Therefore, it is crucial to be able to estimate the parameters accurately
using partial observations. Parameter estimates can also be coupled with sensitivity analysis that was
previously performed to provide a window into treatment and care plans that are individualized and
based on patient observations. Thus, we account for variations both within the patient populations and
within a single patient through the course of the disease and treatment. By combining robust methods
for estimating the parameters and a model that reflects the current understanding of the disease, we are
able to determine estimates of the parameters—and hence classify the disease state and progression.
The parameter estimate is shown to be reasonably accurate with respect to variations in parameters and
positive convergence characteristics with respect to parameter sensitivity, observational frequency and
observational noise.

There are several issues that must be overcome. This is an example of the classical ‘what they
measure, we cannot predict and what we can predict, they cannot measure’ puzzle that confronts the
intersection of theory and applications. In this case, the reduced model that we have developed includes
compartments for one signalling cytokine, interferon y and two components of the active immune
system, CD4" and CD8" T-cells. The disease presentation in our model is implicitly treated as a
threshold in state variables—i.e. we connect the hair-loss patterns directly with the predicted values
of the immune cells.

The timescale of the disease course also presents a challenge. Typical observations are separated
by several months and it is not clear whether more observations are required, and if so, on what
timescale. Therefore, one goal of this study is to determine the timing of observations that allows
for the most accurate and quickest estimation of the parameters, which in turn describes the state
of the disease. A second goal is to determine what effect noise has on the rate of convergence of
parameter estimates since the measurements that we are using may be inaccurate. Finally, we consider
the convergence in terms of observations, both length of observational time and the gap between
observations.

We use a relatively new tool for parameter estimation to obtain biologically, and potentially
clinically, relevant conclusions for our biologically rooted model. While this is still closer to the
theoretical realm (since the data have not been collected and we are using synthetic data), the methods
used and results obtained indicate a very robust method that has direct impact on experimental design
and potential clinical treatment.

3. Data assimilation

The goal of data assimilation is to estimate the state of some stochastic system based on observational
data. In most situations, the data we collect provide only partial information of the state and are
perturbed by some noise. Popular methods for data assimilation include Kalman type filters (Del Moral
et al., 2018; Evensen, 2006, 2009; Tong et al., 2016), particle filters (Andrieu et al., 2010; Gordon
et al., 1993; Kang et al., 2018; Pitt & Shephard, 1999; Morzfeld et al., 2012; van Leeuwen, 2010)
and probability density approximation based methods (Bao & Maroulas, 2017; Bao et al., 2021, 2019;
Zakai, 1969). Although in many situations data assimilation methods are used to estimate hidden states
of dynamical systems, in practice, data assimilation is also a powerful tool to estimate parameters that
govern dynamical models.
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In this approach, we design a computational framework to estimate the unknown parameters in the
AA model (1)—(3) by collecting clinical data from patients as noisy observation to formulate a data
assimilation problem. Specifically, we assume that we can observe features that reflect solutions 7, and

Ty of the (1)-(3), and we design observations (Y, f‘} and {Yé} defined by

Yi): = Tu(x,0 + €, 4)

Yy = Ty(x,0) + el

where €, is time-space noise and {x;}, {x;} are grid points used to discretize equations for 7 and Ty.
Although it is difficult to directly observe the levels of immune components, the model developed above
follows the hypothesis of a direct connection between high levels of immune cells and disease symptoms
of hair loss.

Let 0 be the vector representing the unknown parameters, we aim to find E[0])),.,] as the best
estimate for the quantity of interest (QOL), i.e. 6, where ), := J(Ti(s) \Y, T‘é(s),O < s < 1) is the
o -algebra generated by {Yi} and {Yg} containing all the observational information. We do not provide
synthetic data for IFN, we first approximate solution at the current parameter estimates to (2) and use
this to complete the observational information (e.g. incomplete observations).

We first briefly discuss the general framework of data assimilation, which is usually given by the
following state-space model of a nonlinear dynamical system

Sn-H = F(Sn) + gn’
011 =6, ) + 8p1s

&)

where n > 0 is a time series, {£,} and {¢,} are two sequences of random variables representing noise
that perturbs the system and people typically assume that &, and ¢, are typically assumed to be Gaussian
variables. The stochastic process {S,} is called the ‘state process’, which describes the state of some
mathematical model F with uncertainty £ involved in the model. The process {O,} gives the noisy
partial observations for the state S, through the observation function G, which is called the ‘observation
process’. The goal of the data assimilation is to obtain the best estimate for the state S, given the
observation process {0, }. Mathematically, we need to find the optimal filter for S,, denoted by S‘n with

‘§n = E[Sn|01:n]’

where 0., := 0(04,0,,...,0,).

We formulate the parameter estimation problem that we aim to solve as a data assimilation problem
as first described in Archibald er al. (2019). That is, we use the dynamical system defined in (5) and
then solve the parameter estimation problem using a Bayesian framework. We introduce a time-space
partition 7 x IT,, for the PDE system (1)—(3), where T := {f, < t; < t,,...} is a progressive temporal
partition set with ty = 0; [Ty, := {x; : a = x5 < x| < X, < --- < X3y = b} is the spatial partition and
we let a (or b) be the lower (or upper) boundary of the spatial domain. Over the partition 7 x I1,,, we
write the numerical scheme for solving the PDE system as

X +1 = ¢(Xn,k,9), (6)

n
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where the vector X, := (IFN, f4, fg) represents our approximate solution for IFN, T, and Tg in the AA
model (1)—(3) on all the spatial points in /T at time instant ¢, and @ denotes the numerical approximation
operator that maps X, to X, with a given set of parameters A that we already know and the choice
of unknown parameter vector 6 that we need to estimate. The observations that we collect to help us
estimate 0 are the data from (4), which are received in the discrete form as follows:

Yn+1 = H(Xn+l) + 6n—&—l (7)

where H(X, ) = (T4, Ty) gives the observations for T, and Tg and €, is the noise that perturbs
the observations. In this way, we actually have Y, ., = (Y, Yg) for ¥, and Yg defined in (4). With the
dynamical system (6)—(7), the parameter estimation problem that we are interested in this work is to get
the best estimate of # given the observations Y;.,, i.e. find § = E[0]Y.,].

We introduce the following pseudo parameter process

en—H = en + N> (8)

where 7, is an artificial dynamic noise and 6, is the initial guess of the parameter in the model. Then,
the goal of parameter estimation becomes to obtain a dynamical estimate 8, := E[6,|Y,.,], where Y, is
the observation introduced in (7). In the direct filter, we modify the observation Y, to incorporate the
model information contained in the PDE solver @. Specifically, we let

Yn+l = H((p(Xn’ A, 9n+1)) + €n+1o

where we have represented X, | by @(X,, 2,6, ,) which is derived from (6) by using 6, , | to replace
0. In this way, the above observation process contains both the observation information and the model
dynamics. To create a stronger connection between the model and observation, we use the observation
Y, as our approximation for T, and Ty in the state vector X, and write X, = (IFN,Y,, Yg), where Y, and
Yy are introduced in (4). In this way, we have the following modified observation process:

Ty = H@ 0 0,00)) + €0 ©)

As aresult, we obtain a data assimilation problem by combining (8) and (9). The optimal filter we obtain
in this way is now E[6,|Y,.,]. For the specific numerical implementation to obtain the optimal filtering
that solves the data assimilation problem (8)—(9), we refer to Archibald ez al. (2019).

4. DA: numerical experiments guided by previous model analysis and clinical needs

In this section, we present numerical experiments to demonstrate the performance of the parameter
estimation methodology that we introduced in this paper for the AA model in the online manner. Recall
that we identify patterns of hair loss from high levels of immune cells that are predicted by our model.
Since the parameters themselves are uncertain and are the goal of the DA, it is important to understand
the interaction between sensitivity and estimation. It is typical to argue that sensitive parameters are
the most crucial to estimate since they have the largest effect on the output. Intuition might argue that
these would be the most difficult to estimate; however, we show below that this is not the case. In fact,
sensitivity enhances the convergence of the method.
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T8 behavior x10*

T4 behavior

x10%
8.85805 1.2

8.858045 1 2.208936

8.85804
0.8 2.208934

8.858035
2.208932
8.85803 06

8.858025 0.4 2.20893

8.85802 0.2 2.208928
8.858015
2.208926
8.85801

-0.2

FiG. 1. Using our nominal (e.g. ‘true’) parameters, we simulate the development of the spatial pattern obtained from numerical
simulations of (1)—(3). Parameter values are given in Table 1. (a) Simulated solution 74. (b) Simulated solution 78.

We also consider two situations guided by clinical restrictions. First, because the observations are
difficult to perform in the clinic, we only have partial data that are corrupted by possibly high levels
of noise. Again, intuition would argue that this would affect the convergence of the method. However,
we show below that the rate of convergence is not strongly affected by varying noise. Second, the
observations are taken discretely and the timing is difficult to control since this requires a clinic visit. We
show that increasing the gap between observations leads to fast convergence to the parameter estimate.

The parameter estimation method that we use here is the direct filter as we discussed above. For
the AA model, we use finite difference scheme to discretize the PDE system defined in (1)—(3) and
collect observations for the solutions 74 and 78 for the time period from t = 0 to t = 3. In the
numerical experiments in this section, we study the parameter estimation performance in estimating o
and B which represent T8 activation rate and T4 activation rate, respectively. In this work, we assume
that all the parameters for the AA model are known (Dobreva et al., 2020, 2015, 2017). Specifically,
we use the conclusion in Dobreva ef al. (2015) to fix & = 0.08pg~! and B = 0.8975pg~! as our ‘true’
parameters. To generate observational data, we use the true @ and S to simulate the AA model and
generate synthetic real state of the model. Then we perturb the real state by some observational noise.
We assume that the observational noises {¢,} are generated by random variables following Gaussian
distribution with a given standard deviation o.

In Fig. 1, we plot the simulated solutions for 74 and 78. The timescale presented here is guided
by the convergence of the parameter estimation procedure. The model has been developed to apply
for clinically relevant timescales (see Dobreva er al., 2020). However, part of the goal here is to
determine how fast the parameter estimation converges—which is related to the number and frequency
of observations. Thus, the DA would be unchanged by collecting more observations.

In Fig. 2, we demonstrate the behaviour of our noisy observation of the solution 74 and 78 with
noise level o = 0.05.

Experiment 1: estimating parameters with different sensitivities

A typical interpretation of parameter sensitivity is that sensitive parameters are important and have
a large affect on the output. This means accurate estimates are required for accurate predictions. One
might think that this might make it more difficult to estimate the parameter, but we show here that this
method converges faster for the more sensitive parameter. This is because the direct filter method adjusts
faster for greater discrepancy between the model and the observation.
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FiG. 2. We simulate the development of the spatial pattern obtained from numerical simulations of (1)-(3) with added noise
(0 = 0.05). Parameter values are given in Table 1. (a) Noise perturbed 74. (b) Noise perturbed 7'8.
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FIG. 3. Impact of 10% change in « and S on the dispersion relation. We see that varying B leads to quantitatively larger change
in the peak of the dispersion curve which is an estimate for the observed pattern frequency.

Figure 3 shows how changes in the parameters « and § influence the dispersion relation for the PDE
model and thereby the pattern arising from IFNg and immune cell dynamics. The dispersion relation,
which defines A in terms of &, indicates the relative growth rate of modes with different spatial frequency.
We derive this from classic linear stability analysis of a PDE system by perturbing a stationary solution
and analysing the linearized system (Murray, 2007; Segel, 1984). When the dispersion curve is below
the k-axis (A is negative), this corresponds to no pattern (a uniform steady state), i.e. no AA presentation.
The peak of the dispersion curve indicates the emergence of a most unstable mode, which means that a
pattern arises. The pattern is formed by low and high levels of the immune components, and in the AA
context, this means disease development. In Fig. 3, there is 10% variation applied to both parameters
and we use this to quantify the sensitivity of the pattern (e.g. the wavelength corresponding to the
maximal growth rate). The most basic definition of a sensitivity measure of a QOI with respect to a

parameter, p, is %POI). We approximate this derivative using the 10% variations and estimate that f is
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FiG. 4. Parameter estimation for « and B.

approximately three times more sensitive with respect to the pattern development. Specifically, we find
that e ~ 3.008 and % ~ 1.002.

We assume that the standard deviation of the observational noise is ¢ = 1 and collect observational
data with a given observational gap At = 0.1. Therefore, we have altogether 30 sets of observational
data to estimate the parameters.

In Fig. 4, we plot the parameter estimation results for estimating o and B with respect to the
observation time. In Fig. 4(a), we show the estimation for « and in Fig. 4(b) we show the estimation
for 8. The black straight line in each subplot is the real invariant parameter and the blue curves marked
by crosses show the estimation obtained by using the direct filter method. From this figure, we can see
that the direct filter takes about 5 observations to capture an accurate estimation for the parameter
B while it takes approximately 10 observations to obtain a relatively accurate estimation for the
parameter «.

Since the above experiment presents the accuracy and effectiveness of our parameter estimation
method in processing only one realization of the observational data, in what follows we repeat the
above experiments 100 times with different realizations of observational data, which are generated
from different random samples in observational noise, to examine the robustness of the direct filter
performance. Specifically, we calculate the root mean square errors (RMSEs) in estimating « and § in
the repeated experiments, and the RMSE for the parameter 6 is defined as

1 Mc
RMSEs(n) = | 2= > 10, = 011, (10)
i=1

where én is the estimated parameter at observation step n and MC is the number of random samples,
which is chosen to be MC = 100 in this experiment.

In Fig. 5, we plot the RMSEs for @ and B estimation over the observation time. The blue curves
marked by crosses show the RMSEs in each subplot. We can see from this figure that on average the
direct filter takes about 5 observations to capture the true parameter for 8 and it takes about 10 steps
to obtain a good estimation for «. Therefore, from both the single realization and multi-realization
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experiments, we observe that it is faster to capture more sensitive parameter § and the § estimation is
more accurate.

If we also include stochastic variations in the true parameter values, we can explore how much the
convergence depends on the region in parameter space that we are exploring. We make no broad claims
about convergence throughout all parameter space. We can explore the impact of 10% variations in the
true values of o and . We do this by selecting 100 random pairs of parameters within 10% of the
nominal set and running the data assimilation algorithm. This provides us with samples of the method
where we can assign 95% confidence intervals to the RMSE convergence plots (see Fig. 6).

Experiment 2: effects of noise on parameter estimation

Observations are always contaminated with noise. In observations on the character, extent and spread
of AA lesions by clinical inspection and photodocumentation, we expect the noise to be large since
these non-invasive and at best semi-quantitative observations are difficult to compare and standardize.
Attempts have been made to standardize the severity assessment of AA, e.g. by the Severity of Alopecia
Tool (SALT Score Computation) (Bernardis & Castelo-Soccio, 2018; Bernardis et al., 2018; Olsen
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et al., 2018; Solomon, 2015) and by recording and scoring hair loss in defined scalp surface quadrants
using the Alopecia Areata Progression Index (AAPI) (Jang ef al., 2016). However, there is still no fully
satisfactory, universally accepted and widely employed standardized method for accurately quantifying
the extent and progression of AA lesions, and even the rigorous application of SALT or AAPI scores
generates much observer-to-observer variation and thus considerable noise. One might expect that
increasing noise would make it more difficult to estimate the parameters since standard optimization
methods attempt to minimize the discrepancy between model and data. The residual will typically be
contaminated by the noise. Here we show that this is not the case. Instead, the estimates get better as the
noise level increases.

To demonstrate the influence of the observational noise in the parameter estimation, we examine
the performance of the direct filter in the parameter estimation with various observational noise.
Specifically, we let the standard deviation for the observational noise be o = 0.1, 1, 10. At time r = 3,
the difference in 74 over the simulation interval, i.e. max(74) — min(74), is only 0.4287; the difference
in 78 over the simulation interval, i.e. max(7'8) — min(7'8), is only 0.1293. This indicates that the direct
filter method could provide accurate estimation for the parameters effectively and accurately even when
we have inaccurate observations.

In Fig. 7, we plot the RMSEs corresponding to « estimation and 8 estimation in subplots (a) and (b),
respectively. Although there are some differences in the parameter estimation, our direct filter method
is not very sensitive to the level of observational noise. For the 8 estimation, we can see that we obtain
almost the same results by using observational data with noise levels 0 = 0.1 and ¢ = 1. When the
observational noise is very large, i.e. ¢ = 10, we observe slower convergence for 8 estimation with
higher RMSEs. On the other hand, we can see from Fig. 7(a) that we actually obtain better estimation
for o when the observational noise is larger. Since « is not as sensitive a parameter, it is less affecte
d by noise.

Experiment 3: effect of the gap in observation time on parameter estimation Our next numerical
experiment considers the gap between observations. Intuitively, one might assume that more frequent
observations would provide faster convergence to parameter estimates. From a clinical standpoint, this
creates difficulty since each observation is gathered by an office visit by a patient, so many observations
require many office visits. But again, because the steering used in the direct filter method penalizes
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F1G. 8. Parameter estimation for « with observational gaps 0.05, 0.1, 0.3 and 0.5.

large deviations, rapid observations are not optimal since there is little variation between observations.
Instead larger gaps can provide faster convergence.

In what follows, we carry out parameter estimation experiments for fixed standard deviation
o = 1 in the observational noise. At the same time, we choose the observational gap to be At =
0.05,0.1,0.3,0.5 and process the observational data.

In Figs 8 and 9, we present the parameter estimation performance of the direct filter in estimating
parameters « and B, respectively, with observational gaps At = 0.05,0.1,0.3,0.5 (in subplots (a), (b),
(c) and (d), respectively). In each subplot, the black straight line shows the invariant true parameter and
the blue curve marked by crosses presents the estimation for the parameter. From Fig. 8, we observe
that the direct filter provides smaller errors for the parameter estimation if we use larger observational
gaps. On the other hand, if we take very frequent observations, it does not converge to the true parameter
well. In our data assimilation approach for estimating parameters in the AA model, we use a stochastic
dynamical system to model the target parameters and use observations on states of the AA model as
data to adjust our estimates for the parameters. When incorporating too frequent observations, the data
are more frequently contaminated by noise since the states of the AA model are relatively fixed and the
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level of noise remains the same. Therefore, over-sampling observed data does not provide us enough
effective information to generate narrow likelihoods to derive more accurate estimates. While the model
propagation does not provide sufficient model information, too frequent observations may not collect
enough useful information. From Fig. 9, we observe similar behaviour as we can see in Fig. 8.

To provide more evidence for our discussion on the data collection frequency, we repeat the above
experiment 100 times with different realizations for the random variables and calculate the RMSEs for
each parameter estimation with observational gaps Ar = 0.05,0.1,0.3,0.5. The corresponding RMSEs
are presented in Figs 10 and 11. In Fig. 10, we plot the RMSEs for the « estimations, and in Figure 11,
we plot the § estimations. From the RMSEs, we can see that by repeating the parameter estimation
experiments with different random samples of the observational data, we obtain the same behaviour of
the parameter estimation.

Experiment 4: estimation for various choices of parameters

In our final experiment, we examine the performance of our parameter estimation method by
estimating various parameters. To proceed, we select parameters o; and B;, i = 1,2,---,20, which
are randomly generated as «; ~ 0.3 + N(O, €?) and B; ~ 0.7+ N(O, €?) for a pre-chosen parameter
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noise level € = 0.075. Then, we carry out our parameter estimation method to estimate each pair of
parameters (a;, ;). In Figure 12,
we present the estimation performance for our various choices of parameters, where the colourful
crosses represent real parameters and the colourful circles give our estimated parameters corresponding
to true parameters. From this figure, we can see that the parameter estimation method accurately
captured all 20 randomly selected true parameter values with very small errors.

To further demonstrate the accuracy of our method over the observation period, we plot the RMSEs,
which combine errors across all the randomly selected parameters, in Fig. 13.

We can see from this figure that the RMSEs decrease quickly and could reach very low errors, which
indicates the robust effectiveness of our method in estimating various choices of parameters.

5. Discussion

One goal of personalized medicine is incorporating observational data into treatment plans. Observations
are almost always incomplete and contaminated by noise that enters the system through the obser-
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vational methods and inherent variability within a patient. Data assimilation is a broad methodology
used to incorporate observations into mathematical models to ‘steer’ the model predictions. There is a
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need for methods that can incorporate incomplete and uncertain data into accurate mathematical models
designed to address treatments.

This manuscript demonstrates a recently developed DA method that uses optimal filters to estimate
key parameters that describe patterns observed in a model of AA. We use synthetic data to demonstrate
several non-intuitive aspects of this method in terms of biologically relevant modelling concepts.
The model has been shown to be consistent with the immune privilege collapse explanation of the
progression of AA. The spatial and temporal scale of the developing pattern, which is a hallmark of the
disease, is a key prediction from analysing the model via the immune cell estimates. We use this output,
coupled with noisy, synthetic data to demonstrate some key features of our method. We show that this
method is accurate even with noisy data, infrequent and partial observations. The method exploits higher
variations to guide the parameter estimation so that more less frequent observations and parameters that
are more sensitive with respect to the pattern output provide more information/guidance. We do not
claim that our method of parameter estimation is insensitive to these variations for all models; however,
we are able to conclude that the inverse method provides a unique insight into the disease process. These
results are counter-intuitive since it is commonly assumed that sensitive parameters are the most difficult
to estimate and require complete data. This leads us to believe that our methodology may provide a route
to personalized medicine that can adjust treatments during the progression.
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