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ABSTRACT

In this work, we present the use of an array of electrostatic
Microelectromechanical systems (MEMS) sensors to perform
colocalized sensing and computing. The MEMS network is
operated around the pull-in regime to access the instability jump
and the hysteresis available in this regime. Within this regime,
the MEMS network is capable of emulating the response of the
continuous-time  recurrent neural network (CTRNN)
computational scheme. The network is shown to be successful at
classifying a quasi-static input acceleration waveform into
square or triangle signals in the absence of digital processors.

INTRODUCTION

The miniaturization of transistors and sensors has enabled the
development of extremely compact wearable devices. These
devices offer great potential to improve the quality of life of
humans by monitoring operator health and performing
diagnostics [1]. The potential of wearable devices is nonetheless
hampered by the size and power limitations in commercial and
research designs. Wearable devices are expected to perform
complex classification tasks in real time while operating at
extremely low power as to seldom require recharging or rely
completely on energy harvesting as a power source.

Computational power limitation is often tackled by out-sourcing
computation via clouding computing. This approach, while
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successful, is extremely power consuming [2,3] and may pause
to some security concerns [4]. Recent works address these
problems by focusing on optimizing the hardware of wearable
devices by using energy-efficient components [5] or by
optimizing the sampling rate of sensor data and the wireless
communication rate with external devices [6]. These approaches
serve to alleviate energy consumption problems. However, they
do not address the energy inefficiency introduced in the analog-
to-digital conversion (ADC) and wireless communication
processes. Moreover, lowering the rates of data sampling reduces
the accuracy of algorithms that require fast processing rate such
as heart rate monitoring and fall detection.

Therefore, to reduce the need for the computationally expensive
ADC and digital processing, there is a great need for analog
sensors capable of performing computation on the edge and can
easily be interfaced with digital computing devices.
Microelectromechanical systems (MEMS) devices are prime
candidates for utilization in this scheme as they are already used
as sensory elements in wearable devices and smart systems.
Moreover, individual MEMS devices were shown to have
computationally attractive features that resemble those of
continuous-time recurrent neurons (CTRNs) [7,8].

This work tackles the problem of performing energy-efficient
computation by relying on the highly energy-efficient smart
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MEMS networks to perform high-level computational tasks in
situ, and then sending the processing units the pre-processed unit
at a significantly lower rate. This work is inspired by the use of
MEMS sensors as threshold switches [9] and digital
accelerometers [10], which may be viewed as early examples of
computation at the sensor level. However, in this work, more
intensive computing is required.

The organization of this paper is as follows: first, we introduce
the formulation of the MEMS computing scheme by providing a
computational model of coupled MEMS dynamics. Next, we
optimize a small network of MEMS devices to classify an
acceleration waveform into square and triangle signals. We then
show the classification results using the MEMS network. Finally,
we discuss our results and conclude the paper.

NETWORK FORMULATION

The dynamics of a single electrostatic some MEMS device can
be modeled as a single degree-of-freedom spring-mass-damper
system, as shown in Fig.1. When placed in a network of N
MEMS devices, the equation of motion of the i** MEMS device
is given by (1):
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where m;, ¢; and k; are the effective mass, damping constant and
linear stiffness of the i MEMS device in the assembly of N
MEMS devices, respectively. x;(t) is the deflection the MEMS
device at time ¢, € is the electrical permittivity, A4; is the
overlapping electrode area, d; is nominal separation distance
between MEMS electrodes, V;(t) is the effective voltage acting
on MEMS i, and J(t) is the base acceleration.

The electrostatic forcing in (1) results in a singularity when the
two MEMS electrodes come in contact, or when x;(t) = d;,
named the pull-in instability. This instability, represented by a
sudden response jump, has been shown to be useful when
operating a MEMS sensor as a threshold switch. The pull-in
regime is also known to have hysteresis; the pull-in voltage is
higher than the release voltage. Switching instability and
memory retention via hysteresis has been shown two of the most
important properties of a class of artificial neurons named
continuous-time recurrent neurons (CTRNs), which form the
building block of a non-conventional computing scheme named
continuous-time recurrent neural networks (CTRNNSs) [7.8]. As
these features inherently exist within the pull-in regime, this
work focuses on operating a MEMS network around the pull-in
regimes.

To eliminate the pull-in singularity in simulation and avoid
electrical contact in practice, stoppers are installed in each
MEMS device at a distance xg;. As such, (1) is overridden to
x;(t) = x5, and x;(t) = 0 if it was found that x; (t) > xg ;.
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Figure 1. MEMS model as a single degree-of-freedom spring-
mass-damper system.

Figure 2. A MEMS network example. Each numbered node
represents a MEMS device. Here, i = 1,2,...,7. The figure
contains some connection labels. The network contains two
inputs, I, and I, and 2 outputs Og and O,.

Coupling MEMS devices is essential to emulate the behavior of
a CTRNN and to complete the network. Here, MEMS devices
are coupled electrically via the term V;(t) as shown in (2):

Vi) = Viiasi + Xi=1j2i WijVour,; (1) 2

where Vj;qs,; is the DC bias voltage for MEMS i, w;; is the
coupling weight between MEMS i and MEMS j, noting that
w;; # wy; necessarily, and V,,,. ; is the output voltage of MEMS

J given by (3):
Vout,j(t) = Vbias_jU(xj ®) - xs.j) 3)

where U(.) is a unit step function. We note here that self-
connection, typically given by wy;, is essential for computation.
While implicit, this recurrent connection is observed in the pull-
in regime as evidenced by hysteresis. Here, the MEMS
connections are forward and unidirectional (aside from the
implicit self-feedback connection). Therefore, w;; = 0 if j > 0,
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forming layers in the network, much like simulated CTRNNS, as
shown in Fig.2.

We note here that, while the MEMS dynamics are continuous in
nature, the state of the MEMS neuron is only interpreted as a
binary state in this work due to operation in the pull-in regime.
It is still possible to assume that the MEMS state is analog in
nature. However, this requires a means of measurement for the
response of each MEMS device, defeating the purpose of using
MEMS devices as sensors and computing elements
simultaneously.

COMPUTATIONAL TASK AND NETWORK STRUCTURE

Classification is one of the most popular tasks in the machine
learning literature. For this work, we consider a simple
classification task as a test for computational potential of a
network of MEMS devices. The task here involves classifying
an input waveform into either ‘Square’ signal or ‘Triangle’
signal, as shown in Fig.3. The input waveforms are supplied as
acceleration waveforms. We note here that, unlike other physical
implementations of neural networks where inputs are electrical
signals, the MEMS network used simultaneously performs
sensing and computing simultaneously. For the MEMS CTRNN
to perform the computational task properly, the size of the
network and the connection weights between the MEMS devices
are optimized. Optimization was performed manually by starting
from a ladder diagram optimization scheme, assuming each
MEMS device is a relay. Under that assumption, 5 MEMS
devices are required to perform the computational task. The
number of MEMS devices required is reduced to 3 by taking
advantage of the dynamics of MEMS devices, namely inertia and
hysteresis.

The bias voltages were chosen such that V},; >V, , to force
MEMSI to pull-in ahead of MEMS2 when supplied by a ramped
signal. MEMS1 and MEMS?2 pull-in nearly simultaneously
when a square acceleration signal acts on the CTRNN. The
connection weights between the MEMS devices in the network
are also optimized manually by taking advantage of the
‘selection properties’ of a network of a network of CTRNs
[12,13]. Because of selection, the influence of input signals
depends on the amplitude of the input signals as well as their
temporal order. We note here that, due to our chosen method of
weight optimization, the MEMS CTRNN will be able to classify
any quasi-static acceleration signal. However, at acceleration
frequencies close to the natural frequencies of MEMSI1 and
MEMS?2, this method fails. Other optimization methods would
be required to enable classification of such signals.
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Figure 3. Classification task considered in this work. (a)
Visualization of the binary classification problem. (b) MEMS
network used for classification. The network is composed of
three identical devices. Two devices receive an input
acceleration signal and one device performs classification.

CLASSIFICATION TASK USING A MEMS CTRNN

For our task, a network of identical MEMS accelerometer
devices was used. The parameters of the MEMS devices are
presented in table 1. Additional information about the sensors
used can be found in [14]. The MEMS devices are assumed to
be electrically coupled wusing operational amplifiers to
incorporate connection weights. Here, it is assumed that MEMS1
and MEMS2 are input neurons, directly influenced by the
acceleration signal. MEMS3, however, is in the computing layer,
thus, it is oblivious to the acceleration signal. This can be
achieved by rotating MEMS3 such that the acceleration signal is
perpendicular to the MEMS motion. This can also be achieved
by reducing the mass of MEMS3 such that the inertial forces are
significantly reduced. In this work, the former approach is
assumed.
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Figure 4. Classification test results showing the response of MEMS1 (a), MEMS?2 (b) and MEMS3 (c). (d) The effective votlage acting
on MEMS3 V5(t). (e) The state of MEMS3 when subject to a triangle or a square signal. Note: the points marked by red and black
circles in (a-d) represent points with similar MEMSI and MEMS? states but different MEMS3 states, indicating the importance of

memory in a MEMS CTRNN.

The MEMS CTRNN is subjected to a sequence of a square and
triangle signal with an amplitude y = —5g. The results of the
MEMS CTRNN are shown in Fig.4. The shock signal excites
both MEMS1 and MEMS2 (Fig.4,a and b, respectively).
Initially, when a triangle signal is observed, MEMS1 pulls-in (at
around -2g) first due to its higher bias voltage. Consequently,
MEMS3 pull-in. When the acceleration signal ramps to -3g,
MEMS?2 pull-in. Since MEMS2 has a negative connection
weight, it reduces V;(t). However, this reduction is insufficient
to release MEMS3. Thus, MEMS3 remains pulled-in until the
acceleration amplitude is reduced to below -2g.

Alternatively, when a square signal is encountered, MEMSI and
MEMS2 experience a sudden and immediate change in
amplitude, which results in them pulling-in (nearly)
simultaneously. In this case, the voltage acting on MEMS3 is
immediately equal to w31V}, ; + w3 ,V} 5 + V), 3. By design, this
voltage is insufficient to pull-in MEMS3. Therefore, the output
of MEMS3 remains low and square classification is performed.
Interestingly, MEMS inertia is beneficial in this computing
scheme as inertia prevents MEMS3 from pulling-in if MEMSI
pulled in momentarily prior to MEMS2. Moreover, inertia
allows this scheme to be performed to classify imperfect square
signals, such as signals generated from a shakers which tend to

be trapezoidal in shape, assuming the signal ramp is sufficiently
steep, since the MEMS devices will slightly lag the input signal.

Table 1: MEMS parameters.

MEMS Parameter Value

/ 9 mm

b 5.32 mm

£ 8.85x10"'2 F/m
d 42 um

k 215 N/m

m 143 mg

c 0.351 N.s/m
Vs 50V

Vi 50V

Via 50V

W31 1.5

W3, -1

Xg 30 um

The results from Fig.4 also clearly demonstrate the importance
of hysteresis in a MEMS CTRNN as inputs of equal amplitudes
may lead to significantly different behaviors depending on past
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information. (see the areas marked by the red circle and black
dashed circle in Fig.4a-d, in which MEMS1 and MEMS?2 are
simultaneously pulled-in, yet MEMS3 can assume two different
configurations).

DISCUSSION AND CONCLUSION

This work presents a new class of MEMS sensory arrays capable
of performing non-trivial computational tasks at the sensor level.
The designed sensory array exploits the inherent nonlinear
dynamics of MEMS devices in the pull-in regime to mimic the
behavior of a special class of artificial neurons, named
continuous-time recurrent neurons (CTRNs). Coupling MEMS
within an array enables non-conventional computing using the
MEMS dynamics, in an analog fashion, thus eliminating the need
for some analog-to-digital conversion.

For simple tasks, training such a binary MEMS network is
simple using ladder logic as a starting point. Additional
modifications by considering MEMS dynamics can reduce the
size of the network. The computational task considered in this
work involves a simple binary classification of quasi-static
square and triangle acceleration signals. We show that the trained
MEMS network is capable of classifying the input signal even in
regimes in which the states of the input-layer MEMS devices
(MEMS1 and MEMS?2) are identical due to memory retention at
the pull-in regime.

This work represents a simple application of intelligent sensory
arrays that go beyond simple analog and digital sensing into the
domain of classification. Such sensory arrays are expected to
significantly reduce the computational load on processors in two
ways: perform some computational tasks internally, and allow
processors to sleep until a high-level signal of interest triggers an
event (such as detecting a triangle signal, rather than relying on
a simple signal threshold to trigger the event).
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