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ABSTRACT 
 In this work, we present the use of an array of electrostatic 

Microelectromechanical systems (MEMS) sensors to perform 

colocalized sensing and computing. The MEMS network is 

operated around the pull-in regime to access the instability jump 

and the hysteresis available in this regime. Within this regime, 

the MEMS network is capable of emulating the response of the 

continuous-time recurrent neural network (CTRNN) 

computational scheme. The network is shown to be successful at 

classifying a quasi-static input acceleration waveform into 

square or triangle signals in the absence of digital processors.  

 

INTRODUCTION 
The miniaturization of transistors and sensors has enabled the 

development of extremely compact wearable devices. These 

devices offer great potential to improve the quality of life of 

humans by monitoring operator health and performing 

diagnostics [1]. The potential of wearable devices is nonetheless 

hampered by the size and power limitations in commercial and 

research designs. Wearable devices are expected to perform 

complex classification tasks in real time while operating at 

extremely low power as to seldom require recharging or rely 

completely on energy harvesting as a power source. 

 

Computational power limitation is often tackled by out-sourcing 

computation via clouding computing. This approach, while 

successful, is extremely power consuming [2,3] and may pause 

to some security concerns [4]. Recent works address these 

problems by focusing on optimizing the hardware of wearable 

devices by using energy-efficient components [5] or by 

optimizing the sampling rate of sensor data and the wireless 

communication rate with external devices [6]. These approaches 

serve to alleviate energy consumption problems. However, they 

do not address the energy inefficiency introduced in the analog-

to-digital conversion (ADC) and wireless communication 

processes. Moreover, lowering the rates of data sampling reduces 

the accuracy of algorithms that require fast processing rate such 

as heart rate monitoring and fall detection. 

 

Therefore, to reduce the need for the computationally expensive 

ADC and digital processing, there is a great need for analog 

sensors capable of performing computation on the edge and can 

easily be interfaced with digital computing devices. 

Microelectromechanical systems (MEMS) devices are prime 

candidates for utilization in this scheme as they are already used 

as sensory elements in wearable devices and smart systems. 

Moreover, individual MEMS devices were shown to have 

computationally attractive features that resemble those of 

continuous-time recurrent neurons (CTRNs) [7,8]. 

 

This work tackles the problem of performing energy-efficient 

computation by relying on the highly energy-efficient smart 
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MEMS networks to perform high-level computational tasks in 

situ, and then sending the processing units the pre-processed unit 

at a significantly lower rate. This work is inspired by the use of 

MEMS sensors as threshold switches [9] and digital 

accelerometers [10], which may be viewed as early examples of 

computation at the sensor level. However, in this work, more 

intensive computing is required. 

 

The organization of this paper is as follows: first, we introduce 

the formulation of the MEMS computing scheme by providing a 

computational model of coupled MEMS dynamics. Next, we 

optimize a small network of MEMS devices to classify an 

acceleration waveform into square and triangle signals. We then 

show the classification results using the MEMS network. Finally, 

we discuss our results and conclude the paper. 

   

NETWORK FORMULATION 
 

The dynamics of a single electrostatic some MEMS device can 

be modeled as a single degree-of-freedom spring-mass-damper 

system, as shown in Fig.1. When placed in a network of 𝑁 

MEMS devices, the equation of motion of the 𝑖𝑡ℎ MEMS device 

is given by (1): 

 

𝑚𝑖𝑥𝑖̈(𝑡) + 𝑐𝑖𝑥𝑖̇(𝑡) + 𝑘𝑖𝑥𝑖(𝑡) =
𝜀𝐴𝑖(𝑉𝑖(𝑡))

2

2(𝑑𝑖−𝑥𝑖(𝑡))
2 −𝑚𝑖𝑦̈(𝑡)  

𝑖 = 1,2, … ,𝑁 (1) 

 

where 𝑚𝑖, 𝑐𝑖 and 𝑘𝑖 are the effective mass, damping constant and 

linear stiffness of the ith MEMS device in the assembly of N 

MEMS devices, respectively. 𝑥𝑖(𝑡) is the deflection the MEMS 

device at time t, 𝜀 is the electrical permittivity, 𝐴𝑖 is the 

overlapping electrode area, 𝑑𝑖 is nominal separation distance 

between MEMS electrodes, 𝑉𝑖(𝑡) is the effective voltage acting 

on MEMS i, and 𝑦̈(𝑡) is the base acceleration.  

 

The electrostatic forcing in (1) results in a singularity when the 

two MEMS electrodes come in contact, or when 𝑥𝑖(𝑡) = 𝑑𝑖, 
named the pull-in instability. This instability, represented by a 

sudden response jump, has been shown to be useful when 

operating a MEMS sensor as a threshold switch. The pull-in 

regime is also known to have hysteresis; the pull-in voltage is 

higher than the release voltage. Switching instability and 

memory retention via hysteresis has been shown two of the most 

important properties of a class of artificial neurons named 

continuous-time recurrent neurons (CTRNs), which form the 

building block of a non-conventional computing scheme named 

continuous-time recurrent neural networks (CTRNNs) [7.8]. As 

these features inherently exist within the pull-in regime, this 

work focuses on operating a MEMS network around the pull-in 

regimes. 

To eliminate the pull-in singularity in simulation and avoid 

electrical contact in practice, stoppers are installed in each 

MEMS device at a distance 𝑥𝑠,𝑖. As such, (1) is overridden to 

𝑥𝑖(𝑡) = 𝑥𝑠,𝑖  and 𝑥̇𝑖(𝑡) = 0 if it was found that 𝑥𝑖(𝑡) > 𝑥𝑠,𝑖.   

 

 
 

Figure 1. MEMS model as a single degree-of-freedom spring-

mass-damper system. 

 
Figure 2. A MEMS network example. Each numbered node 

represents a MEMS device. Here, 𝑖 = 1,2, … , 7. The figure 

contains some connection labels. The network contains two 

inputs, 𝐼1 and 𝐼2 and 2 outputs 𝑂6 and 𝑂7. 

 

Coupling MEMS devices is essential to emulate the behavior of 

a CTRNN and to complete the network. Here, MEMS devices 

are coupled electrically via the term 𝑉𝑖(𝑡) as shown in (2): 

 

𝑉𝑖(𝑡) = 𝑉𝑏𝑖𝑎𝑠,𝑖 + ∑ 𝑤𝑖𝑗𝑉𝑜𝑢𝑡,𝑗(𝑡)
𝑁
𝑗=1,𝑗≠𝑖   (2) 

 

where 𝑉𝑏𝑖𝑎𝑠,𝑖 is the DC bias voltage for MEMS 𝑖, 𝑤𝑖𝑗  is the 

coupling weight between MEMS 𝑖 and MEMS 𝑗, noting that 

𝑤𝑖𝑗 ≠ 𝑤𝑗𝑖  necessarily, and 𝑉𝑜𝑢𝑡,𝑗 is the output voltage of MEMS 

𝑗 given by (3): 

 

 𝑉𝑜𝑢𝑡,𝑗(𝑡) = 𝑉𝑏𝑖𝑎𝑠,𝑗𝑈(𝑥𝑗(𝑡) − 𝑥𝑠,𝑗)   (3) 

 

where 𝑈(. ) is a unit step function. We note here that self-

connection, typically given by 𝑤𝑖𝑖 , is essential for computation. 

While implicit, this recurrent connection is observed in the pull-

in regime as evidenced by hysteresis. Here, the MEMS 

connections are forward and unidirectional (aside from the 

implicit self-feedback connection). Therefore, 𝑤𝑖𝑗 = 0 if 𝑗 > 0, 
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forming layers in the network, much like simulated CTRNNs, as 

shown in Fig.2.   

 

We note here that, while the MEMS dynamics are continuous in 

nature, the state of the MEMS neuron is only interpreted as a 

binary state in this work due to operation in the pull-in regime. 

It is still possible to assume that the MEMS state is analog in 

nature. However, this requires a means of measurement for the 

response of each MEMS device, defeating the purpose of using 

MEMS devices as sensors and computing elements 

simultaneously. 

 

COMPUTATIONAL TASK AND NETWORK STRUCTURE 
 

Classification is one of the most popular tasks in the machine 

learning literature. For this work, we consider a simple 

classification task as a test for computational potential of a 

network of MEMS devices. The task here involves classifying 

an input waveform into either ‘Square’ signal or ‘Triangle’ 

signal, as shown in Fig.3. The input waveforms are supplied as 

acceleration waveforms. We note here that, unlike other physical 

implementations of neural networks where inputs are electrical 

signals, the MEMS network used simultaneously performs 

sensing and computing simultaneously. For the MEMS CTRNN  

to perform the computational task properly, the size of the 

network and the connection weights between the MEMS devices 

are optimized. Optimization was performed manually by starting 

from a ladder diagram optimization scheme, assuming each 

MEMS device is a relay. Under that assumption, 5 MEMS 

devices are required to perform the computational task. The 

number of MEMS devices required is reduced to 3 by taking 

advantage of the dynamics of MEMS devices, namely inertia and 

hysteresis. 

 

The bias voltages were chosen such that 𝑉𝑏,1 > 𝑉𝑏,2 to force 

MEMS1 to pull-in ahead of MEMS2 when supplied by a ramped 

signal. MEMS1 and MEMS2 pull-in nearly simultaneously 

when a square acceleration signal acts on the CTRNN. The 

connection weights between the MEMS devices in the network 

are also optimized manually by taking advantage of the 

‘selection properties’ of a network of a network of CTRNs 

[12,13]. Because of selection, the influence of input signals 

depends on the amplitude of the input signals as well as their 

temporal order. We note here that, due to our chosen method of 

weight optimization, the MEMS CTRNN will be able to classify 

any quasi-static acceleration signal. However, at acceleration 

frequencies close to the natural frequencies of MEMS1 and 

MEMS2, this method fails. Other optimization methods would 

be required to enable classification of such signals. 

 

 
(a) 

 
(b) 

Figure 3. Classification task considered in this work. (a) 

Visualization of the binary classification problem. (b) MEMS 

network used for classification. The network is composed of 

three identical devices. Two devices receive an input 

acceleration signal and one device performs classification. 

 

 

CLASSIFICATION TASK USING A MEMS CTRNN 
 
For our task, a network of identical MEMS accelerometer 

devices was used. The parameters of the MEMS devices are 

presented in table 1. Additional information about the sensors 

used can be found in [14]. The MEMS devices are assumed to 

be electrically coupled using operational amplifiers to 

incorporate connection weights. Here, it is assumed that MEMS1 

and MEMS2 are input neurons, directly influenced by the 

acceleration signal. MEMS3, however, is in the computing layer, 

thus, it is oblivious to the acceleration signal. This can be 

achieved by rotating MEMS3 such that the acceleration signal is 

perpendicular to the MEMS motion. This can also be achieved 

by reducing the mass of MEMS3 such that the inertial forces are 

significantly reduced. In this work, the former approach is 

assumed.  
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The MEMS CTRNN is subjected to a sequence of a square and 

triangle signal with an amplitude 𝑦̈ =  −5𝑔. The results of the  

MEMS CTRNN are shown in Fig.4. The shock signal excites 

both MEMS1 and MEMS2 (Fig.4,a and b, respectively). 

Initially, when a triangle signal is observed, MEMS1 pulls-in (at 

around -2g) first due to its higher bias voltage. Consequently, 

MEMS3 pull-in. When the acceleration signal ramps to -3g, 

MEMS2 pull-in. Since MEMS2 has a negative connection 

weight, it reduces 𝑉3(𝑡). However, this reduction is insufficient 

to release MEMS3. Thus, MEMS3 remains pulled-in until the 

acceleration amplitude is reduced to below -2g. 

 

Alternatively, when a square signal is encountered, MEMS1 and 

MEMS2 experience a sudden and immediate change in 

amplitude, which results in them pulling-in (nearly) 

simultaneously. In this case, the voltage acting on MEMS3 is 

immediately equal to 𝑤31𝑉𝑏,1 + 𝑤3,2𝑉𝑏,2 + 𝑉𝑏,3. By design, this 

voltage is insufficient to pull-in MEMS3. Therefore, the output 

of MEMS3 remains low and square classification is performed. 

Interestingly, MEMS inertia is beneficial in this computing 

scheme as inertia prevents MEMS3 from pulling-in if MEMS1 

pulled in momentarily prior to MEMS2. Moreover, inertia 

allows this scheme to be performed to classify imperfect square 

signals, such as signals generated from a shakers which tend to 

be trapezoidal in shape, assuming the signal ramp is sufficiently 

steep, since the MEMS devices will slightly lag the input signal. 

 

Table 1: MEMS parameters. 

MEMS Parameter Value 

l 9 mm 

b 5.32 mm 

𝜀  8.85×10-12 F/m 

d 42 𝜇m 

k 215 N/m 

𝑚  143 mg 

𝑐  0.351 N.s/m 

𝑉𝑏,1  50 V 

𝑉𝑏,2  50 V 

𝑉𝑏,3  50 V 

𝑤31  1.5 

𝑤32  -1 

𝑥𝑠  30 𝜇𝑚 

 

The results from Fig.4 also clearly demonstrate the importance 

of hysteresis in a MEMS CTRNN as inputs of equal amplitudes 

may lead to significantly different behaviors depending on past 

(a) (b) (c)

(d) (e)

Figure 4. Classification test results showing the response of MEMS1 (a), MEMS2 (b) and MEMS3 (c). (d) The effective votlage acting 

on MEMS3 𝑉3(𝑡). (e) The state of MEMS3 when subject to a triangle or a square signal. Note: the points marked by red and black 

circles in (a-d) represent points with similar MEMS1 and MEMS2 states but different MEMS3 states, indicating the importance of 

memory in a MEMS CTRNN. 



 5 Copyright © 20xx by ASME 

information. (see the areas marked by the red circle and black 

dashed circle in Fig.4a-d, in which MEMS1 and MEMS2 are 

simultaneously pulled-in, yet MEMS3 can assume two different 

configurations). 

  

DISCUSSION AND CONCLUSION 
 
This work presents a new class of MEMS sensory arrays capable 

of performing non-trivial computational tasks at the sensor level. 

The designed sensory array exploits the inherent nonlinear 

dynamics of MEMS devices in the pull-in regime to mimic the 

behavior of a special class of artificial neurons, named 

continuous-time recurrent neurons (CTRNs). Coupling MEMS 

within an array enables non-conventional computing using the 

MEMS dynamics, in an analog fashion, thus eliminating the need 

for some analog-to-digital conversion. 

 

For simple tasks, training such a binary MEMS network is 

simple using ladder logic as a starting point. Additional 

modifications by considering MEMS dynamics can reduce the 

size of the network. The computational task considered in this 

work involves a simple binary classification of quasi-static 

square and triangle acceleration signals. We show that the trained 

MEMS network is capable of classifying the input signal even in 

regimes in which the states of the input-layer MEMS devices 

(MEMS1 and MEMS2) are identical due to memory retention at 

the pull-in regime. 

 

This work represents a simple application of intelligent sensory 

arrays that go beyond simple analog and digital sensing into the 

domain of classification. Such sensory arrays are expected to 

significantly reduce the computational load on processors in two 

ways: perform some computational tasks internally, and allow 

processors to sleep until a high-level signal of interest triggers an 

event (such as detecting a triangle signal, rather than relying on 

a simple signal threshold to trigger the event). 
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