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ABSTRACT

In this work, we show the computational potential of MEMS
devices by predicting the dynamics of a 10" order nonlinear
auto-regressive moving average (NARMA10) dynamical
system. Modeling this system is considered complex due to its
high nonlinearity and dependency on its previous values. To
model the NARMA10 system, we used a reservoir computing
scheme by utilizing one MEMS device as a reservoir, produced
by the interaction of 100 virtual nodes. The virtual nodes are
attained by sampling the input of the MEMS device and
modulating this input using a random modulation mask. The
interaction between virtual nodes within the system was
produced through delayed feedback and temporal dependence.
Using this approach, the MEMS device was capable of
adequately capturing the NARMA 10 response with a normalized
root mean square error (NRMSE) = 6.18% and 6.43% for the
training and testing sets, respectively. In practice, the MEMS
device would be superior to simulated reservoirs due to its ability
to perform this complex computing task in real time.

INTRODUCTION

In the age of the internet of things (IoT), processors are expected
to perform complex computational processes on large amounts
of data in real time. These processes, such as classification,
clustering and image processing were typically performed
through artificial neural networks (ANN), simulated using
digital computers. While successful in some of these tasks,
ANNSs reacted to each of their inputs separately without
considering the inputs past values. Recurrent neural networks
(RNNs) [1] were introduced as means to incorporate memory in
ANNSs by altering ANNs from functions to dynamical systems,
where the current state is influenced by the network inputs and
the network past states.

While RNNs offer the benefit of implementing colocalized
memory and computation in the system, they are much harder to
train than simple ANNs. This complexity arises from the
bifurcations in the system due to parameter changes in training
[2] and the ineffectiveness of the gradient descent method in
systems with long-term dependencies [3]. Reservoir computing
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(RC) [4] was introduced as a means to utilize RNNs while
bypassing their training dilemma.

A classical reservoir computing scheme is composed of a
network of interconnected nonlinear neurons (like RNNs),
coupled through random coupling weights, as shown in Fig.1.
The RNN network is named a reservoir. Using this reservoir,
inputs are nonlinearly transformed into higher dimensional space
to produce the reservoir output signal in form of a vector
quantity. This vector is multiplied with a weight matrix to
produce the system outputs. The nonlinear transformation within
the reservoir offers great nonlinear richness in the system and
can be used for computational problems, such as classification
[5]. Because of this dynamical richness, RCs are much easier to
train than classical RNNs as the only weights in need of training
in the system are located in the external weight matrix, which
can be trained via simply linear regression.

Classical RCs found great success as approximators of chaotic
systems [6] and as biologically-inspired controllers in insect
inspired robots [7,8]. However, despite their great potential,
reservoir computers are computationally expensive to simulate,
due to the large number of nonlinear components in the reservoir.
Recent works have shown the potential to solve this problem by
introducing a reservoir of virtual nodes using a single dynamical
device [9] such as a MEMS resonator [10]. In this work, we
utilize an electrostatic MEMS device to simulate the response of
a 10" order nonlinear auto-regressive moving average
(NARMAI10) to investigate the potential of MEMS reservoirs as
dynamical system approximators in a prediction task rather than
a classification task.

The organization of this paper is as follows: first, we introduce
the concept of a reservoir of virtual nodes. Next, we introduce
the NARMA10 benchmark followed by the mathematical model
of the MEMS reservoir and its parameters. Afterwards, we
discuss the system training and its results. Finally, we discuss the
results and offer our concluding remarks.
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Figure 1. Classical reservoir computing scheme.

RESERVOIR OF VIRTUAL NODES
RC reservoirs may be formed using a single nonlinear dynamical
systems by creating temporal virtual nodes rather than physical
nodes. To achieve this, the network requires two additions:

1. Modulating the input signal to actuate the temporal

nodes.
2. Utilizing a delayed feedback to couple the temporal
nodes.

Modulating the input signal, u(z), is achieved through the
following process (Fig.2): first, the signal is sampled and held
with a sampling time 7. This produces the discretized input
signal /(z). Next, at each 7, the input is modulated using a
randomly initialized weight mask m(). The weight mask
contains N weights, each related to a virtual node within the
reservoir. The temporal separation between the random mask
inputs is 8 = T/N. It is essential that the system remains transient
to maintain coupling between adjacent modes. Therefore, 8 is
chosen such that it is close to be lower than the system’s time
constant (or characteristic time), 7. The discretized input signal
is finally multiplied by the random weight mask to produce the
modulated input, J(¢), which represents the input to the
individual nodes.

The signal transformations of Fig.2 are shown in Fig.3,
demonstrating the original signal, /(?),in Fig.2(a), the sampled
input, u(?), in Fig.2(b), the modulation mask, m(t), in Fig.2(c) and
the modulated input, J(?) in Fig.2(d). The modulated input J(?) is
used as a part of the MEMS driving signal [9, 10] within the
computational stage of the RC scheme (Fig.4). The MEMS
deflection, x(), represents the response of the reservoir. Because
J(t) is modulated using a mask with a temporal separation of 0,
the MEMS deflection at intervals multiple of 6 represents the
response of a temporal node with a total of N nodes distributed
within a time span of 7. The virtual nodes are coupled together
using a delayed feedback in the system. Here, the MEMS
deflection is delayed by 7 and multiplied by a feedback gain, a.
The feedback offers interactions between the different MEMS
nodes and offers additional memory for the system.

As MEMS device may be driven quasi-statically, at or around
the primary resonance or at secondary resonances. The
operational regime is controlled by using an AC voltage at the

chosen resonance. The signal modulator in Fig.4 is used to
facilitate the use of the MEMS within the operational range and
to maintain transience. Thus, the overall effective DC voltage
Vpc acting on the MEMS device is given by (1):

Vpe = Vp +ax(t —T) +J(t) (1)

where V), is some bias voltage signal and « is the delayed
feedback gain.
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Figure 2. Input stage of the reservoir computing setup.
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Figure 3. Signal transformation within the input stage of the RC
scheme. (a) Analog input u(t). (b) Discretized input (). (c)
Modulation mask m(t). (d) Modulated input J(t).
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Figure 4. Computational stage of the MEMS reservoir computing
setup.

Finally, after all inputs are processed, the deflections matrix X is
formed by sampling the MEMS response, x(?), a rate of one
sample per 6 seconds in the output stage of the RC scheme
(Fig.5). This matrix has a size MXN where N is the number of
virtual nodes and M is the number of time steps.

The RC output matrix S (MXR) is produced by multiplying the
deflection matrix and the weights matrix W, as shown in (2):
S=XWw 2)

Here, W is an NXR matrix and R is the number of outputs in the
system. We note here that, for an appropriately large reservoir, W
is the only matrix that requires training in the system. Moreover,
W can simply be trained using linear regression, following (3)
[11]:

W=X"'X+kDtx(X1Y) 3)
Where k= 0 is a constant used for regularization, / = &;;, i,j =
1,2, ... N is the identity matrix, Y is the expected output matrix
with a size MXR and the (.)T operator is the transpose operator.

TEST BENCH MARK: NARMA10

As a case study for the MEMS reservoir computer, we study the
potential of predicting the response of a tenth order discrete time
NARMA (nonlinear auto-regressive moving average) dynamical
system [12] using a simple MEMS reservoir. A NARMAI10
dynamical system is modelled using (4):

Yierr = 0.3y, + 0.05y, [X7_0 yie—i] + 1.5wyuye—g + 0.1 (4)

Where yy is the k¥ NARMA state and uy is the input at the k" time
step. Following [9], u is chosen to be a random number such that

U, € [0,0.2]. yx is complicated to fit due to the influence of past
values on future responses, which makes this problem a
compelling benchmark for nonlinear approximators.
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Figure 5. output stage of the MEMS reservoir computing setup.

MEMS RESERVOIR COMPUTER FOR NARMA10
APPROXIMATION

In this work, a commercial double-cantilever electrostatic
MEMS device was used to create the system reservoir. The
parameters of this MEMS device are found in Table 1 and a
schematic of this MEMS is found in Fig.6. The MEMS in-plane
dimensions are quite large for a MEMS device. However,
because of its relatively small electrode separation gap (d), the
MEMS device retains the same characteristics as smaller MEMS
devices, as was shown in a previous work [13].

The deflection of the MEMS device due to electrostatic forcing

is given by (5):

miE() + c(x) #(0) + k x(t) = LV )
2(d—x(6))’

where x(?) is the MEMS deflection as a function of time (¢), ¢(x)

is the nonlinear squeeze film damping coefficient and Vieums is

the voltage across the MEMS device, given by (6):

Viems = VacCos(2rft) + Vpe (6)

Cantilever beams

Attachment point 1

MEMS device

Proof mass

Lower electrode

Figure 6. MEMS side-view schematic.
where V¢ is the amplitude of the AC voltage fis the AC driving
frequency and Vpc is the DC voltage amplitude, given by (1) in
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our setup. The nonlinear squeeze film damping can be calculated
using (7)-(11) by adapting the Blech model [14, 15]:

Aa = /‘{OPO/Pa (7)
ey = ¢ ®)
Nerr =1/(1 4 9.638Kn'15%) o
(x) = ZL0@nerf §
g\xX) = P, (d—x)2 ( )
2
C(x) — 640 (x)PgLb 1+8 (11)

2

mow(d—x) (1_|,!32)2_|_Z_4

Where 1, and A, are the mean free path of gas modelcules at the

ambient pressure P, and atmospheric pressure P,, respectively,

K, is the Knudsen number, n and 7.¢; are the nominal and

effective viscosities of air, respectively, w = 2nf is the MEMS

vibrational angular rate, § = b/L is the microbeam aspect ratio,
set to unity following [13] and o (x) is the squeeze number.

Table 1: MEMS parameters

Parameter Value Definition

L 9 mm Microbeam length

b 4.4 mm Microbeam width

m 143 mg MEMS effective mass

k 215 N/m Microbeam linear stiffness
d 42 um Unactuated gap seperation
€ 8.85x102F/m  Electrical permittivity

In this work, the MEMS device is operated at a pressure of 20 Pa
using V;, = 30 V with no AC voltage. The delay value, T was
chosen to be 0.9s and the feedback gain o = 0.1 V/um was used.
The modulation mask was chosen to be composed of a random
sequence of 0.5 and 0. To ensure sensitivity to inputs, J(z) was
linearly scaled linearly 5 times. The reservoir in this work was
composed of N = /00 virtual nodes with 8 = 0.002 ms.

The NARMA10 simulation in this work were carried out using a
sequence of 6000 random inputs (M= length(u) = 6000). To
ensure good linear fitting, the number of time steps, M, must be
chosen such that M > N.

TRAINING AND RESULTS

We use the sequence of 6000 random inputs u to construct the
NARMAI10 response Y, which represents the target response for
the system. The random input is also fed to the MEMS device
after modulation to drive the system. The MEMS response to a
random input array is shown in Fig.7. The response loses its
periodicity due to the input modulation and delayed feedback,
which is desirable to perform calculations. The response of the
MEMS device is sampled at a period of 8 = 2 ms and stored in
a matrix X. This matrix is split into a training matrix and testing

matrix as follows: the first 2000 rows of X are discarded to
eliminate the effect of initial conditions, the next 2000 rows of X
are chosen as the training set and the final 2000 rows of X are
chosen as the testing set. The training set is used to train the
Weight Matrix, W, through linear regression. Equation 3 was
used in the training process while setting k = 110

The performance is evaluated by calculating the normalized root
mean square error (NRMSE) as shown in (12):

M g
NRMSE = \/(%M> (12)

()2

where s; and y; are the i element of the concatenated RC output
matrix S and expected output matrix Y, respectively, and y is
the mean of the vector Y.

Using linear regression (3) to train the weights of the MEMS
reservoir using the training set yields NRMSE = 6.18%. The
fitting results are shown in Fig.8 by comparing the results of
NARMALIO to the results of the MEMS reservoir using the
training set again as a test set. Next, the trained weights matrix
was tested using the test set (Fig.9). The result of the test set is
NRMSE = 6.43% which is predictably higher than NRMSE from
the training set. However, it remains within an acceptable range.
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Figure 7. (a) sample MEMS response to a random input, u(t). (b)
zoomed view of response.

DISCUSSION AND CONCLUSION

We show the use of a single MEMS as a reservoir to approximate
the response of a NARMA10 system. NARMAI10 is considered
a standard benchmark for nonlinear approximators due to its
complexity and high dependence on its time history information.
Therefore, the nonlinear approximator requires memory.
Dynamical systems retain memory as their future inputs rely on
their past state. Here, we utilize a dynamical system (A MEMS
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device) to model another complex dynamical system
(NARMAL10).
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Figure 8. NARMA 10 approximation (training set). (a) Full view. (b)
Zoomed view.
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The MEMS device operates as a reservoir of N nodes by creating
temporally separated virtual nodes. This is achieved using the
modulation mask m(2). The interaction between nodes occurs due
to the delayed feedback used in the reservoir circuit, which also
allows past states to visibly influence the MEMS response.
Another means of interaction between adjacent nodes occurs
automatically through the reliance of each node on the
information of previous nodes by virtue of the time-dependence
of dynamical systems. We note here that MEMS devices reach a
stable limit cycle when actuated, using moderate AC and DC
voltages excitation, after passing through a brief transient state.
If the MEMS device is allowed to reach the stable periodic
region, the system loses its time dependence, which decouples
adjacent modes. To avoid this issue, the separation time between
nodes (8) is chosen such that it is smaller than the characteristic
time (time constant) of the MEMS (8 < 7).

In this work, using a MEMS device to form a reservoir with 100
nodes resulted in a NARMAIO0 fitting with NRMSE = 6.18%
using the training set and 6.43% using the testing set.

We note here that simulating a virtual reservoir is extremely
computationally expensive due to the complexity of the delayed
differential equation of the MEMS device. However, using a real
MEMS device would theoretically allow us to perform this
computation in real time, which is not possible using digital
computing currently.

MEMS devices can offer further attractive properties that allow
them to serve as excellent reservoirs such as the existence of
multiple states that can be accessed simultaneously within the
MEMS device by relying on each of the MEMS modeshapes as

a state rather than simply studying the deflection of the MEMS
device. MEMS devices are also capable of sensing external
inputs. This may enable MEMS devices to perform as dedicated
sensing-and-computing units simultaneous. We aim to explore
these concepts in a future work.
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Figure 9. NARMA 10 approximation (test set). (a) Full view. (b)

Zoomed view.
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