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ABSTRACT 
In this work, we show the computational potential of MEMS 

devices by predicting the dynamics of a 10th order nonlinear 

auto-regressive moving average (NARMA10) dynamical 

system. Modeling this system is considered complex due to its 

high nonlinearity and dependency on its previous values. To 

model the NARMA10 system, we used a reservoir computing 

scheme by utilizing one MEMS device as a reservoir, produced 

by the interaction of 100 virtual nodes. The virtual nodes are 

attained by sampling the input of the MEMS device and 

modulating this input using a random modulation mask. The 

interaction between virtual nodes within the system was 

produced through delayed feedback and temporal dependence. 

Using this approach, the MEMS device was capable of 

adequately capturing the NARMA10 response with a normalized 

root mean square error (NRMSE) = 6.18% and 6.43% for the 

training and testing sets, respectively. In practice, the MEMS 

device would be superior to simulated reservoirs due to its ability 

to perform this complex computing task in real time.    

 

INTRODUCTION 
In the age of the internet of things (IoT), processors are expected 

to perform complex computational processes on large amounts 

of data in real time. These processes, such as classification, 

clustering and image processing were typically performed 

through artificial neural networks (ANN), simulated using 

digital computers.  While successful in some of these tasks, 

ANNs reacted to each of their inputs separately without 

considering the inputs past values. Recurrent neural networks 

(RNNs) [1] were introduced as means to incorporate memory in 

ANNs by altering ANNs from functions to dynamical systems, 

where the current state is influenced by the network inputs and 

the network past states.  

 

While RNNs offer the benefit of implementing colocalized 

memory and computation in the system, they are much harder to 

train than simple ANNs. This complexity arises from the 

bifurcations in the system due to parameter changes in training 

[2] and the ineffectiveness of the gradient descent method in 

systems with long-term dependencies [3]. Reservoir computing 

(RC) [4] was introduced as a means to utilize RNNs while 

bypassing their training dilemma. 

 

A classical reservoir computing scheme is composed of a 

network of interconnected nonlinear neurons (like RNNs), 

coupled through random coupling weights, as shown in Fig.1. 

The RNN network is named a reservoir. Using this reservoir, 

inputs are nonlinearly transformed into higher dimensional space 

to produce the reservoir output signal in form of a vector 

quantity. This vector is multiplied with a weight matrix to 

produce the system outputs. The nonlinear transformation within 

the reservoir offers great nonlinear richness in the system and 

can be used for computational problems, such as classification 

[5]. Because of this dynamical richness, RCs are much easier to 

train than classical RNNs as the only weights in need of training 

in the system are located in the external weight matrix, which 

can be trained via simply linear regression. 

 

Classical RCs found great success as approximators of chaotic 

systems [6] and as biologically-inspired controllers in insect 

inspired robots [7,8]. However, despite their great potential, 

reservoir computers are computationally expensive to simulate, 

due to the large number of nonlinear components in the reservoir. 

Recent works have shown the potential to solve this problem by 

introducing a reservoir of virtual nodes using a single dynamical 

device [9] such as a MEMS resonator [10]. In this work, we 

utilize an electrostatic MEMS device to simulate the response of 

a 10th order nonlinear auto-regressive moving average 

(NARMA10) to investigate the potential of MEMS reservoirs as 

dynamical system approximators in a prediction task rather than 

a classification task. 

 

The organization of this paper is as follows: first, we introduce 

the concept of a reservoir of virtual nodes. Next, we introduce 

the NARMA10 benchmark followed by the mathematical model 

of the MEMS reservoir and its parameters. Afterwards, we 

discuss the system training and its results. Finally, we discuss the 

results and offer our concluding remarks. 

mailto:falsaleem2@unl.edu
mailto:alsaleem2@unl.edu


 2 Copyright © 20xx by ASME 

 
Figure 1. Classical reservoir computing scheme. 

 

RESERVOIR OF VIRTUAL NODES 
RC reservoirs may be formed using a single nonlinear dynamical 

systems by creating temporal virtual nodes rather than physical 

nodes. To achieve this, the network requires two additions: 

1. Modulating the input signal to actuate the temporal 

nodes. 

2. Utilizing a delayed feedback to couple the temporal 

nodes. 

Modulating the input signal, u(t), is achieved through the 

following process (Fig.2): first, the signal is sampled and held 

with a sampling time T. This produces the discretized input 

signal I(t). Next, at each T, the input is modulated using a 

randomly initialized weight mask m(t). The weight mask 

contains N weights, each related to a virtual node within the 

reservoir. The temporal separation between the random mask 

inputs is 𝜃 = T/N. It is essential that the system remains transient 

to maintain coupling between adjacent modes. Therefore, 𝜃 is 

chosen such that it is close to be lower than the system’s time 

constant (or characteristic time), 𝜏. The discretized input signal 

is finally multiplied by the random weight mask to produce the 

modulated input, J(t), which represents the input to the 

individual nodes. 

 

The signal transformations of Fig.2 are shown in Fig.3, 

demonstrating the original signal, I(t)¸in Fig.2(a), the sampled 

input, u(t), in Fig.2(b), the modulation mask, m(t), in Fig.2(c) and 

the modulated input, J(t) in Fig.2(d). The modulated input J(t) is 

used as a part of the MEMS driving signal [9, 10] within the 

computational stage of the RC scheme (Fig.4). The MEMS 

deflection, x(t), represents the response of the reservoir. Because 

J(t) is modulated using a mask with a temporal separation of 𝜃, 

the MEMS deflection at intervals multiple of 𝜃 represents the 

response of a temporal node with a total of N nodes distributed 

within a time span of T. The virtual nodes are coupled together 

using a delayed feedback in the system. Here, the MEMS 

deflection is delayed by T and multiplied by a feedback gain, 𝛼. 

The feedback offers interactions between the different MEMS 

nodes and offers additional memory for the system.   

 

As MEMS device may be driven quasi-statically, at or around 

the primary resonance or at secondary resonances. The 

operational regime is controlled by using an AC voltage at the 

chosen resonance. The signal modulator in Fig.4 is used to 

facilitate the use of the MEMS within the operational range and 

to maintain transience. Thus, the overall effective DC voltage 

𝑉𝐷𝐶 acting on the MEMS device is given by (1): 

𝑉𝐷𝐶 = 𝑉𝑏 + 𝛼𝑥(𝑡 − 𝑇) + 𝐽(𝑡)   (1) 

where 𝑉𝑏 is some bias voltage signal and 𝛼 is the delayed 

feedback gain. 

 

 
Figure 2. Input stage of the reservoir computing setup. 

 

 
Figure 3. Signal transformation within the input stage of the RC 

scheme. (a) Analog input u(t). (b) Discretized input I(t). (c) 

Modulation mask m(t). (d) Modulated input J(t). 
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Figure 4. Computational stage of the MEMS reservoir computing 

setup. 

 

Finally, after all inputs are processed, the deflections matrix X is 

formed by sampling the MEMS response, x(t), a rate of one 

sample per 𝜃 seconds in the output stage of the RC scheme 

(Fig.5). This matrix has a size M×N where N is the number of 

virtual nodes and M is the number of time steps. 

The RC output matrix S (M×R) is produced by multiplying the 

deflection matrix and the weights matrix W, as shown in (2): 

𝑆 = 𝑋 𝑊     (2) 

Here, W is an N×R  matrix and R is the number of outputs in the 

system. We note here that, for an appropriately large reservoir, W 

is the only matrix that requires training in the system. Moreover, 

W can simply be trained using linear regression, following (3) 

[11]: 

𝑊 = (𝑋𝑇𝑋 + 𝑘  )−1 ∗ (𝑋−1𝑌)   (3) 

Where k≅ 0 is a constant used for regularization, I = 𝛿𝑖𝑗, i,j = 

1,2, … N is the identity matrix, Y is the expected output matrix 

with a size M×R and the (.)T operator is the transpose operator. 

 

TEST BENCH MARK: NARMA10 
As a case study for the MEMS reservoir computer, we study the 

potential of predicting the response of a tenth order discrete time 

NARMA (nonlinear auto-regressive moving average) dynamical 

system [12] using a simple MEMS reservoir. A NARMA10 

dynamical system is modelled using (4): 

 

𝑦𝑘+1 = 0.3𝑦𝑘 + 0.05𝑦𝑘[∑ 𝑦𝑘−𝑖
9
𝑖=0 ] + 1.5 𝑘 𝑘−9 + 0.1 (4) 

 

Where yk is the kth NARMA state and uk is the input at the kth time 

step. Following [9], u is chosen to be a random number such that 

 𝑘  ∈ [0,0.2].  yk  is complicated to fit due to the influence of past 

values on future responses, which makes this problem a 

compelling benchmark for nonlinear approximators.  

 

 

 
Figure 5. output stage of the MEMS reservoir computing setup. 

 

MEMS RESERVOIR COMPUTER FOR NARMA10 
APPROXIMATION 
In this work, a commercial double-cantilever electrostatic 

MEMS device was used to create the system reservoir. The 

parameters of this MEMS device are found in Table 1 and a 

schematic of this MEMS is found in Fig.6. The MEMS in-plane 

dimensions are quite large for a MEMS device. However, 

because of its relatively small electrode separation gap (d), the 

MEMS device retains the same characteristics as smaller MEMS 

devices, as was shown in a previous work [13]. 

 

The deflection of the MEMS device due to electrostatic forcing 

is given by (5): 

 𝑥̈(𝑡) + 𝑐(𝑥) 𝑥̇(𝑡) + 𝑘 𝑥(𝑡) =
𝜀𝐿𝑏𝑉𝑀𝐸𝑀𝑆

2

2(𝑑−𝑥(𝑡))
2   (5) 

where x(t) is the MEMS deflection as a function of time (t), c(x) 

is the nonlinear squeeze film damping coefficient and VMEMS is 

the voltage across the MEMS device, given by (6): 

 

𝑉𝑀𝐸𝑀𝑆 = 𝑉𝐴𝐶𝐶𝑜𝑠(2𝜋𝑓𝑡) + 𝑉𝐷𝐶   (6) 

 

 
Figure 6. MEMS side-view schematic. 
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our setup. The nonlinear squeeze film damping can be calculated 

using (7)-(11) by adapting the Blech model [14, 15]: 

𝜆𝑎 = 𝜆0𝑃0/𝑃𝑎     (7) 

𝐾𝑛 = 𝜆𝑎/𝑑     (8) 

𝜂𝑒𝑓𝑓 = 𝜂/(1 + 9.638𝐾𝑛1.159)     (9) 

𝜎(𝑥) =
12𝐿𝑏𝜔𝜂𝑒𝑓𝑓

𝑃𝑎 (𝑑−𝑥)
2     (10) 

𝑐(𝑥) =
64𝜎(𝑥)𝑃𝑎𝐿𝑏

𝜋6𝜔(𝑑−𝑥)

1+𝛽2

(1+𝛽2)2+
𝜎2

𝜋4

    (11) 

Where 𝜆𝑎 and 𝜆0 are the mean free path of gas modelcules at the 

ambient pressure 𝑃𝑎 and atmospheric pressure 𝑃𝑜, respectively, 

𝐾𝑛 is the Knudsen number, 𝜂 and 𝜂𝑒𝑓𝑓 are the nominal and 

effective viscosities of air, respectively, 𝜔 = 2𝜋𝑓 is the MEMS 

vibrational angular rate, 𝛽 = 𝑏/𝐿 is the microbeam aspect ratio, 

set to unity following [13] and 𝜎(𝑥) is the squeeze number.   

 

Table 1: MEMS parameters 

Parameter Value Definition 

𝐿  9 mm Microbeam length 

𝑏  4.4 mm  Microbeam width 

   143 mg MEMS effective mass 

𝑘  215 N/m Microbeam linear stiffness 

𝑑  42 𝜇m  Unactuated gap seperation 

𝜀  8.85×10-12 F/m Electrical permittivity 

 

In this work, the MEMS device is operated at a pressure of 20 Pa 

using 𝑉𝑏 = 30 V with no AC voltage. The delay value, T was 

chosen to be 0.9s and the feedback gain 𝛼 = 0.1 V/𝜇m was used. 

The modulation mask was chosen to be composed of a random 

sequence of ±0.5 and 0. To ensure sensitivity to inputs, J(t) was 

linearly scaled linearly 5 times. The reservoir in this work was 

composed of N = 100 virtual nodes with 𝜃 = 0.002 ms.  

 

The NARMA10 simulation in this work were carried out using a 

sequence of 6000 random inputs (M= length(u) = 6000). To 

ensure good linear fitting, the number of time steps, M, must be 

chosen such that M > N.  

 

TRAINING AND RESULTS 
We use the sequence of 6000 random inputs   to construct the 

NARMA10 response 𝑌, which represents the target response for 

the system. The random input is also fed to the MEMS device 

after modulation to drive the system. The MEMS response to a 

random input array is shown in Fig.7. The response loses its 

periodicity due to the input modulation and delayed feedback, 

which is desirable to perform calculations. The response of the 

MEMS device is sampled at a period of 𝜃 = 2 ms and stored in 

a matrix 𝑋. This matrix is split into a training matrix and testing 

matrix as follows: the first 2000 rows of 𝑋 are discarded to 

eliminate the effect of initial conditions, the next 2000 rows of 𝑋 

are chosen as the training set and the final 2000 rows of 𝑋 are 

chosen as the testing set. The training set is used to train the 

Weight Matrix, W, through linear regression. Equation 3 was 

used in the training process while setting k = 1×10-21. 

 

The performance is evaluated by calculating the normalized root 

mean square error (NRMSE) as shown in (12): 

𝑁𝑅𝑀𝑆𝐸 = √(
1

𝑀

∑ (𝑠𝑖−𝑦𝑖)
2𝑀

𝑖=1

(𝑦̅)2
)     (12) 

where si and yi are the ith element of the concatenated RC output 

matrix S and expected output matrix Y, respectively, and 𝑦̅ is 

the mean of the vector 𝑌. 

Using linear regression (3) to train the weights of the MEMS 

reservoir using the training set yields NRMSE = 6.18%. The 

fitting results are shown in Fig.8 by comparing the results of 

NARMA10 to the results of the MEMS reservoir using the 

training set again as a test set.  Next, the trained weights matrix 

was tested using the test set (Fig.9). The result of the test set is 

NRMSE = 6.43% which is predictably higher than NRMSE from 

the training set. However, it remains within an acceptable range. 

 

 

 
Figure 7. (a) sample MEMS response to a random input, u(t). (b) 

zoomed view of response. 

 

 

DISCUSSION AND CONCLUSION 
We show the use of a single MEMS as a reservoir to approximate 

the response of a NARMA10 system. NARMA10 is considered 

a standard benchmark for nonlinear approximators due to its 

complexity and high dependence on its time history information. 

Therefore, the nonlinear approximator requires memory. 

Dynamical systems retain memory as their future inputs rely on 

their past state. Here, we utilize a dynamical system (A MEMS 

(a)

(b)
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device) to model another complex dynamical system 

(NARMA10).  

 
Figure 8. NARMA10 approximation (training set). (a) Full view. (b) 

Zoomed view. 

 

The MEMS device operates as a reservoir of N nodes by creating 

temporally separated virtual nodes. This is achieved using the 

modulation mask m(t). The interaction between nodes occurs due 

to the delayed feedback used in the reservoir circuit, which also 

allows past states to visibly influence the MEMS response. 

Another means of interaction between adjacent nodes occurs 

automatically through the reliance of each node on the 

information of previous nodes by virtue of the time-dependence 

of dynamical systems. We note here that MEMS devices reach a 

stable limit cycle when actuated, using moderate AC and DC 

voltages excitation, after passing through a brief transient state. 

If the MEMS device is allowed to reach the stable periodic 

region, the system loses its time dependence, which decouples 

adjacent modes. To avoid this issue, the separation time between 

nodes (𝜃) is chosen such that it is smaller than the characteristic 

time (time constant) of the MEMS (𝜃 < 𝜏).  

 

In this work, using a MEMS device to form a reservoir with 100 

nodes resulted in a NARMA10 fitting with NRMSE = 6.18% 

using the training set and 6.43% using the testing set.  

 

We note here that simulating a virtual reservoir is extremely 

computationally expensive due to the complexity of the delayed 

differential equation of the MEMS device. However, using a real 

MEMS device would theoretically allow us to perform this 

computation in real time, which is not possible using digital 

computing currently. 

 

MEMS devices can offer further attractive properties that allow 

them to serve as excellent reservoirs such as the existence of 

multiple states that can be accessed simultaneously within the 

MEMS device by relying on each of the MEMS modeshapes as 

a state rather than simply studying the deflection of the MEMS 

device. MEMS devices are also capable of sensing external 

inputs. This may enable MEMS devices to perform as dedicated 

sensing-and-computing units simultaneous. We aim to explore 

these concepts in a future work. 

 

 
Figure 9. NARMA10 approximation (test set). (a) Full view. (b) 

Zoomed view. 
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