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Purpose: The purpose of this study was to evaluate the ability to align two types of
retinal images taken on different platforms; color fundus (CF) photographs and infrared
scanning laser ophthalmoscope (IR SLO) images usingmathematical warping and artifi-
cial intelligence (AI).

Methods: We collected 109 matched pairs of CF and IR SLO images. An AI algorithm
utilizing two separate networks was developed. A style transfer network (STN) was used
to segment vessel structures. A registration network was used to align the segmented
images to each. Neither network used a ground truth dataset. A conventional image
warping algorithm was used as a control. Software displayed image pairs as a 5 × 5
checkerboard grid composedof alternating subimages. This techniquepermitted vessel
alignment determination by human observers and 5 masked graders evaluated align-
ment by the AI and conventional warping in 25 fields for each image.

Results:Our new AImethodwas superior to conventional warping at generating vessel
alignment as judged by masked human graders (P < 0.0001). The average number of
good/excellent matches increased from 90.5% to 94.4% with AI method.

Conclusions: AI permitted a more accurate overlay of CF and IR SLO images than
conventional mathematical warping. This is a first step toward developing an AI that
could allow overlay of all types of fundus images by utilizing vascular landmarks.

Translational Relevance: The ability to align and overlay imaging data from multiple
instruments andmanufacturers will permit better analysis of this complex data helping
understand disease and predict treatment.

Introduction

As retinal treatments advance and imaging becomes

more important, it will be critical to be able to

scientifically analyze and interpret a large amount of

information from different instruments, manufactur-

ers, and diagnostic sources.1 Many investigators have

also found that imaging with different instruments or

optics is useful in improving diagnosis and prognos-

tic information.2–4 These clinical tools, however, have

multiple models, generations of software, and device

specific algorithms used to output data. Ideally, all

of this information could be organized by aligning

such data by retinal location, which could then be

interpreted using artificial intelligence (AI).5 It will be

important for an AI agent to overlay data from a given

retinal region that is procured from different imaging

and function analysis instruments.

Previous studies have usedAI as amultimodal regis-

tration method.6–9 Hervella et al. proposed a hybrid

methodology for the multimodal registration of color
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fundus retinal imaging and fluorescein angiography

data that exploits the presence of the retinal vascu-

lar tree in retinal images.6 Mahapatra et al. applied

the generative adversarial network to register multi-

modal images with the supervision of registration files,

which are obtained from other conventional methods.7

However, in both studies, the overlay approach was

limited to retinal images taken with the identical

camera and the same field of view, just with different

wavelengths (fluorescein angiography and color fundus

images taken with a standard camera).

Additionally, AI has been used in analyzing single

modality image analysis to categorize or detect

disease,10–12 but there is no current method to co-

localize and analyze multiple imaging and functional

data. For this reason, as a preliminary step to apply-

ing AI to analyze multi-instrument imaging and

functional studies, we attempted to overlay images

from a scanning laser platform onto a fundus camera

platform. These imaging platforms utilize different

optical pathways as well as different types of illumi-

nation (scanning laser versus flood illumination). We

chose to use an infrared scanning laser ophthalmo-

scope (IR SLO) image as a prototypical SLO image

to overlay onto color fundus (CF). Photographs were

taken with a fundus camera because such imaging

is done on all patients undergoing optical coherence

tomography (OCT) scans, also the optics and aspects

ratio of infrared images are expected to be similar to

and thus apply to autofluorescence (AF) or multicolor

(MC) images taken with SLO so these results may be

applicable to many types of images. We note that the

SLO image is taken using different optics and instru-

ments than is the CF image, so this appeared to be a

good first step to determine if an AI agent can accom-

plish such overlaying by examining vessel locations.

The novelty of this work is that we have conducted a

rigorous, masked study of the performance of a novel

AI algorithm for the alignment of multimodal retinal

images. Our algorithmwas able to perform image align-

ment without the need for a large set of manually

annotated ground truth image sets.

Methods

This study was conducted according to the princi-

ples of the Helsinki Declaration. Institutional review

board (IRB) approval was acquired from the Univer-

sity of California SanDiego for the review and analysis

of patient’s data. The study complied with the Health

Insurance Portability and Accountability Act of 1996.

Consecutive 50 degrees of diagonal field-of-view

(FOV) CF images (TRC-50DX color fundus images,

Topcon, Oakland, NJ) and 30 degrees × 30 degrees

FOV (equal to 42 degrees diagonal) infrared images

Scanning Laser Ophthalmoscope images (HRA +
OCT Spectralis, Heidelberg Engineering, Heidelberg,

Germany) were obtained between January 2017 and

November 2018. We evaluated 1742 de-identified

images from healthy eyes as well as eyes with retinal

diseases, such as diabetic retinopathy, wet and dry

macular degeneration, and retinovascular occlusion, in

patients from our tertiary retina center (Jacobs Retina

Center, Shiley Eye Institute, University of Califor-

nia San Diego, San Diego, California). The inclusion

criteria were eyes with good quality images in CF

photographs and IR SLO, taken on the same day.

We selected 1388 consecutive series of cases with

good quality images taken with both a conventional

fundus camera and IR SLO on the same day. One

hundred thirty-eight images were excluded because

they were not taken on the same day and pathology

could have changed over time altering vessel position or

focus plane, 216 images, which could not be evaluated

properly due to poor focus, reflection, darkness, overex-

posure, or other artifacts made it difficult to identify

vessels in one or both image types.

From the total of selected images, 1170 were used to

train the AI, 667 healthy eyes and 503 eyes with retinal

diseases and 218 different images were saved to be

used after training to evaluate the overlay systems, 124

healthy eyes and 94 eyes with retinal disease. Two differ-

ent overlaying algorithms were applied. One algorithm

was a conventional warping - modality independent

neighborhood descriptor (MIND) algorithm and the

other an AI algorithm. Human graders masked to the

method determined accuracy of overlay of the vessels.

Both methods involved overlay of region images with

cropping and rotations as needed to have both images

on the same position.

The conventional alignment method or MIND

proposed deformablemultimodal registration based on

human-engineered feature descriptor, which is based

on the self-similarity of multimodal images.13 MIND

was originally applied to register computed tomogra-

phy andmagnetic resonance imaging and was extended

later to register retina images.14 This method uses

mathematical warping algorithms to align vascular

landmarks and is not an AI-based method.15 Such

locally deformable registration can give a better estima-

tion of transformations compared to affine registra-

tion but multimodal retinal image registration is still

a challenge due to the modality dependent resolution,

contrast, and luminosity variation between different

modalities.14,16,17
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Figure 1. Diagram of the style transfer network (STN).18 (A) Shows the pretraining of the CNN using a single pair of fundus image and
segmented vessel diagram. This imagewas not part of our dataset andwas used to train our STN to detect tree-like structures, continuously
stretching and branching vessel paths with decreasing width, etc. We only assume that both the style image and our retinal images share
vessel structure styles. (B) Shows the application of the STN to our set of roughly aligned retinal images. Our network has an independent
part and shared part. In the independent part the network calculates a feature tensor while removing the spatial information and only the
summaries of styles is preserved. Multiple layers of increasing level of the network are used to detect patterns. In the shared part, the last
layer of the network with sigmoid function is shared to guide the transform of the multimodal images into consistent representation of
similar modalities. More details are found in our prior publication.18

Our AI overlay strategy consisted of a joint vessel

segmentation and a deformable registration model

based on the convolutional neural network because

retina vessels are key landmarks even for different

imaging modalities.18,19 The proposed learning scheme

utilized two learning networks. First, a style trans-

fer network was applied20 to train a vessel segmenta-

tion without ground truth such that it would extract

mutual patterns between multimodal retinal images

to find good correspondences.21 We used one previ-

ously published vessel segmentation as initial train-

ing set and experimentally chose one vessel from the

image to get the best performance. One segmented

image, which is described as a style image, was used

for all data (Fig. 1).18 The style transfer network

transformed input retina images to target style images

(segmented vessel images) as shown in Figure 1. The

style transfer network (STN) uses a pre-trained convo-

lutional neural network (CNN) to model the global

vessel structure with an outside dataset (represented

by the image in Figure 1). The segmentation map

was labeled by hand from the DRIVE dataset.22 This

outside dataset was used as the style target. We only

assumed that this style target and our retinal images

share similar vessel structural styles (tree-like struc-

ture, continuously branching, and stretching vessels

with decreasing width, for example). The STN has

an independent and shared segmentation network. In

the independent part, the network calculates a feature

tensor while removing the spatial information and

only the summaries of styles is preserved. Multiple

layers of increasing levels of the network are used

to detect patterns. In the shared part, the last layer

of the network with sigmoid function is shared to

guide the transform of the multimodal images into

consistent representation of similar modalities. The

deformable registration network was trained to find

dense correspondence based on consistent vessel repre-

sentations and wrapped image alignment.23 The regis-

tration network provides the alignment information
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Figure 2. The structure of the proposed neural network to overlaymultimodal retina images. The input images are the color fundus image
and the SLO image shown on the left. The style transfer network (STN) is explained in more detail in Figure 1. The output of the STN is
two vessel segmentations, as shown in the figure. The Registration Network consists of the super-point network35 for key point detection
and description, the outlier rejection network36 for reliable matching points selection, and the refinement network18 for sub-pixel level
adjustment. The super-point network determines the key points on the segmented vessel (denoted yellow points) and the corresponding
descriptions. Next, key points of CF and ones of IR are matched with the nearest neighbor criterion, which is depicted as connection with
yellow lines. More robust matching key points are derived with the outliner rejection network and inliers denoted as green connections are
used for alignment. The refinement network provides sub-pixel level alignment information of which image represents the direction and
magnitude of the localized image shift needed to achieve congruence between the source image (color fundus) and target image (SLO).
The final image on the right shows the overlap of the color fundus image onto the SLO image in an arbitrary 5 × 5 square pattern.

from a source image (CF image) to a target image (SLO

image and aligned both segmented vessel images of

two modalities and original retina images. The Regis-

tration Network consists of the super-point network24

for key point detection and description, the outlier

rejection network25 for reliable matching points selec-

tion, and the refinement network18 for sub-pixel level

adjustment. The registration network was also trained

without any labeled data because it is impossible to

obtain dense correspondences for retina images. These

two networks were cascaded and trained via end-to-

end learning in Figure 2. More details on the network

or reports to replicate the results have previously been

published for us.18,19 We used 109 datasets to train the

algorithm, 20 datasets for validation and 89 datasets for

testing.

A software was developed to show 436 evalua-

tions, recorded as a result of 109 unique image pairs

multiplied by 2 as block replicates, overlying both the

techniques – with and without AI - each image was

divided into 25 squares (5 × 5), which means a total

of 5450 squares were compared. Each image was a

checkerboard composed of alternating infrared and

CF pictures. Each image was graded two times in

each technique, and each individual square was graded

based on the alignment of the vessels. Graders were

masked because they could not identify which images

were aligned by AI or MIND as they were presented in

the same configuration.

The images were graded independently by two

retina specialists and three medical students based on

the longest vessel traversing the image zone (25 image

zones or boxes per fundus photograph). First, each

of the 5 graders scored 10 images and these images

were subjected to the interclass correlation coefficient

(ICC) using SPSS, and the ICC average among all

the 5 graders was 0.903, which is considered excellent.

The grading was performed in each zone by evaluat-

ing the vessel overlap in the area closest to the optic

nerve. The alignment of the 2 images was graded 0 to

5, where 5 is a perfect alignment, 4 is less or equal to

one-third the vessel width difference in continuity of

the vessels, 3 is more than one third or equal to one-

half the vessel width difference in continuity between

the 2 vessels, 2 is more than one half and less than 1

vessel width difference in continuity between vessels,

1 is more than 1 vessel width difference in continuity

between vessels, and 0 is ungradable due to absence of

vessels (Fig. 3). For the analysis, we considered only

regions where visible vessels were included. Grades 1

and 2 were considered a bad match, 3 reasonable, and

4 and 5 good/excellent matches.

After this result, a total of 5450 pairs of images

zones were analyzed and compared (Fig. 4). We

performed the Wilcoxon Signed Rank Test compari-

son between both methods using SPSS (IBM, version

26). Non-parametric statistics were used because of the

categorical nature of the grading system.
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Figure 3. Examples of images analyzed using the checkerboard comparison method of grades 1 to 5 (0 ungradable, not shown). (A, B)
The “mosaic,”overlying color fundus image and infrared SLO image. Each square was graded following the largest vessel closest to the optic
nerve. (C,D, E, F,G) Are examples of classifications 1, 2, 3, 4, and 5, respectively, the yellow circles show the areas where the vessels’alignment
was scored in each square.

Results

We performed the Wilcoxon Signed Rank Test

comparison between both methods. The AI overlay

method was statistically significantly better than the

conventional warping grading score as judged by

masked grading by the experienced human graders

(Z = −8.467, P < 0.0001).

There were 5.450 squares analyzed (25 squares per

eye). Themean score of the conventionalMINDproce-

dure was 4.45 ± 1.228 and the mean score of the

proposed new method was 4.58 ± 1.078 (Table). Even

though the data are categorical ordinal and the proper

statistical expression would be the median score, we

decided to calculate the mean score and add this infor-

mation to the table to show a difference. The statis-

tical test found a highly statistical difference but the

median scores of both procedures were identical at

the value “5” and therefore meaningless. In partic-

ular, the number of bad matches was reduced by

approximately 75% using the AI (proposed) agent

and there was also an increase in the proportion of

good/excellent matches. In general, the assessors did

not notice any systematic bias in images for regions

that were consistently misaligned, although this was

not formally assessed in this study. It was clear from the

image alignment results that such alignment was nearly

pixel to pixel using the AI (good/excellent matches)

and the AI achieved this in 94.4% of cases, which

was higher than the 90.5% achieved by the conven-

tional warping method. Perhaps more importantly,

the AI bad mismatch rate was 0.97% versus conven-

tional warping of 3.8%. Thus, the AI can more closely

overlay CF and IR SLO images analyzing lesions more

precisely using the two modalities.

Discussion

The use of AI, in particular, deep learning, has

been limited in retinal analytics but does show promise.

A group in Germany analyzed predictors and visual
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Figure 4. (A, B) The “mosaic,”overlying CP and IR using the AI and the conventional (MIND) methods, respectively, in the same eye. On the
border between squares 11 and 12, following the largest vessel closest to the optic nerve, it is possible to see the difference between both
methods. (C) The border on the AImethod, the vessel alignment classification (yellow circle) was 4, almost perfect. In (D) we can see the same
border using the MINDmethod, the classification was 1, the poorest one.

outcomes of anti-vascular endothelial growth factor

(VEGF) therapy and noted that analysis of raw

imaging data would enhance predictive ability.9 Most

analyses of retinal images evaluate only one type of

imaging modality, a major problem in scientific rigor,

and use human graders or AI algorithms analyzing

only one modality, such as OCT layers.26 As a prelimi-

nary step to using AI to overlay the plethora of differ-

ent types of retinal images and functional tests, we

evaluated overlay methods using AI and conventional

warping algorithms from different imaging modali-

ties, optics, and cameras. Our eventual goal is to be

able to overlay multiple platforms. We are interested

in this because numerous studies have suggested that

analysis of OCT and other imaging and functional

data may offer better ways to predict vision outcomes

after choroidal neovascularization (CNV) treatment,

but quantification of OCT raster scans, fluorescein

leakage dynamics, volumes of retinal pigment epithe-

lium (RPE) detachment, and subretinal fluid, fundus

tessellation, and wide field angiography are difficult

to perform without machine learning.27,28 In addition,

our grading system was fine enough to detect vascular

structures and misalignment down to 20 to 30 microns.

This would encompassmost retinal vascular abnormal-

ities.

As a first step toward multi-instrument and modal-

ity image registration, we chose to develop an AI

algorithm that would permit an overlapping of images

from CF and scanning laser platforms. These are

two completely different platforms for retinal imaging

and do not readily overlay because of different

optical pathways and light sources and illumination

techniques. The FOV of the IR is 30 × 30 degrees

and the CF is 50 degrees diagonal, our algorithm

is very robust to different images conditions. Proba-

bly the main advantage of our approach is the

ability to use CNN to alignment different retinal

images without a ground truth (GT). There are very

few GT databases available for training (DRIVE,22

and VARIA29). Therefore, we wanted to develop an

algorithm that does not require a GT database. In the

absence of GT, we validated the results of the overlay

with expert human observers using a grading system.

We chose to evaluate the ability to overlay CF

images onto IR SLO because color imaging has been

the standard for retinal evaluation for close to a century

and does give the images that are the most similar

to that of a clinical ophthalmoscopic examination.

On the other hand, infrared images are a prototypi-

cal reference fundus image for SLO images and OCT

scans and have similar optics and aspect ratio to AF
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and multicolor scanning laser images. New SLO and

other imaging systems allowwavelength and SLO selec-

tive imaging and are often done in combination with

OCT. Confocal imaging is often used in SLO imaging

to selectively image certain outer retinal or choroidal

structures.30 In addition, other imaging modalities, like

AF imaging, utilize the principle of the property of

AF to determine the size and activity of lesions.31

Different AF wavelengths may selectively image differ-

ent photophores and or tissues as has been shown

in Stargardt’s disease, where infrared AF, which is

commonly imaged with fundus cameras, picks up a

larger size of the lesion as it reflects the AF from

the RPE, as compared to the short wave AF imaging,

which reflects the lesion at the level of the outer retina

more than the RPE.32 Multicolor images recreate a CF

image but differ in the ability to detect lesion features,

particularly regarding retinal and choroidal patholo-

gies.33 Indeed, choroidal Nevi may appear larger and

more prominent in fundus camera based near infrared

imaging than SLO short wavelength AF imaging.34,35

We recognize that SLO imaging instruments are expen-

sive but we chose to use them because it has the

potential to deliver many types of useful imaging data.

Furthermore, IR imaging of the retina is the standard

for almost all OCT imaging instruments, including

three of the four leading OCT manufacturer Heidel-

berg Engineering, Optovue, and Zeiss.

Our study shows the superior ability of AI

as compared to conventional mathematical image

warping programs to permit accurate overlaying and

registration of images of the same fundus taken with

two different imaging systems. The AI system was

superior to conventional methods. We were careful to

use a different data set to “train” the AI than what

was used to evaluate it compared to both techniques.

Because this has been demonstrated with two different

systems (conventional wide-field flood camera fundus

imaging and monochromatic scanning laser imaging)

our results demonstrate the potential utility of AI

in improving the problem of analysis of multimodal

and multicamera (and functional) imaging in the field

of retinal diseases, likely the modest but significant

improvement in overlay byAIwill becomemore impor-

tant when widefield and/or more than two imaging

modalities are analyzed. Future analytic techniques

may allow the ability to simultaneously analyze angiog-

raphy, OCT angiography, OCT, nerve fiber layer analy-

sis data, microperimetry, wide-field imaging, and other

techniques, such as adaptive optical imaging. Such

analytics will improve our ability to better under-

stand the parameters that best predict outcomes and

help us understand retinal diseases. Features typically

taken on SLO instruments, such as imaging of the

photoreceptor integrity, will potentially be able to be

co-localized with multi wavelength AF images, OCT

angiography, and conventional fluorescein or indocya-

nine green angiography and adaptive optical imaging.

Once it is possible to co-localize structural imaging

and functional imaging, such as SLO microperime-

try,36 such data can be combined with visual acuity,

drug treatment, disease, and other information to help

understand retinal disease better and also help predict

outcomes to treatment. We recognize that our work

was done in the central 30 degrees of the fundus where

there is less distortion of images than when viewing the

periphery. Further workwill be needed to study periph-

eral retinal images and the ability to overlay those using

different types of imaging techniques.
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