
Query Optimization for Faster Deep CNN Explanations

Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou
University of California, San Diego

{snakanda,arunkk,yannis}@eng.ucsd.edu

ABSTRACT
Deep Convolutional Neural Networks (CNNs) now match
human accuracy in many image prediction tasks, resulting
in a growing adoption in e-commerce, radiology, and other
domains. Naturally, “explaining” CNN predictions is a key
concern for many users. Since the internal workings of CNNs
are unintuitive for most users, occlusion-based explanations
(OBE) are popular for understanding which parts of an im-
age matter most for a prediction. One occludes a region of
the image using a patch and moves it around to produce a
heatmap of changes to the prediction probability. This ap-
proach is computationally expensive due to the large num-
ber of re-inference requests produced, which wastes time
and raises resource costs. We tackle this issue by casting
the OBE task as a new instance of the classical incremental
view maintenance problem. We create a novel and compre-
hensive algebraic framework for incremental CNN inference
combining materialized views with multi-query optimization
to reduce computational costs. We then present two novel
approximate inference optimizations that exploit the seman-
tics of CNNs and the OBE task to further reduce runtimes.
We prototype our ideas in a tool we call Krypton. Ex-
periments with real data and CNNs show that Krypton
reduces runtimes by up to 5x (resp. 35x) to produce exact
(resp. high-quality approximate) results without raising re-
source requirements.

1. INTRODUCTION
Deep Convolutional Neural Networks (CNNs) are now the

state-of-the-art machine learning (ML) method for many im-
age prediction tasks [25]. Thus, there is growing adoption of
deep CNNs in many applications across healthcare, domain
sciences, enterprises, and Web companies. Remarkably, even
the US Food and Drug Administration recently approved
the use of deep CNNs to assist radiologists in processing
X-rays and other scans, cross-checking their decisions, and
even mitigating the shortage of radiologists [1].

c©ACM 2019. This is a minor revision of the paper entitled "In-
cremental and Approximate Inference for Faster Occlusion-based Deep
CNN Explanations," published in SIGMOD’19, ISBN 978-1-4503-
5643-5/19/06, June 30-July 5, 2019, Amsterdam, Netherlands. DOI:
https://doi.org/10.1145/3299869.3319874
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
.

1.00
0.95

0.90

0.85

0.80

0.75

0.70

Figure 1: (a) Using a CNN to predict diabetic retinopathy in
an OCT image/scan. (b) Occluding a part of the image changes
the prediction probability. (c) By moving the occluding patch, a
sensitivity heatmap can be produced.

Despite their successes, a key criticism of CNNs is that
their internal workings are unintuitive to non-technical
users. Thus, users often seek an “explanation” for why a
CNN predicted a certain label. Explanations can help users
trust CNNs, especially in high stakes applications such as
radiology [10], and are a legal requirement for machine
learning applications in some countries [27]. How to ex-
plain a CNN prediction is still an active research question,
but in the practical literature, an already popular mech-
anism for CNN explanations is a simple procedure called
occlusion-based explanations [29], or OBE for short.
OBE works as follows. Place a small patch (usually gray)

on the image to occlude those pixels. Rerun CNN inference,
illustrated in Figure 1(b), on the occluded image. The prob-
ability of the predicted class will change. Repeat this process
by moving the patch across the image to obtain a sensitivity
heatmap of probability changes, as Figure 1(c) shows. This
heatmap highlights regions of the image that were highly
“responsible” for the prediction (red/orange color regions).
Such localization of the regions of interest allows users to
gain intuition on what “mattered” for the prediction. For
instance, the heatmap can highlight the diseased areas of a
tissue image, which a radiologist can then inspect more for
further tests. Overall, OBE is popular because it is easy for
non-technical users to understand.
However, OBE is highly computationally expensive. Deep

CNN inference is already expensive; OBE just amplifies it by
issuing a large number of CNN re-inference requests (even
thousands). For example, [31] reports 500,000 re-inference

SIGMOD Record, March 2020 (Vol. 49, No. 1) 61

requests for 1 image, taking 1 hour even on a GPU! Such
long wait times can hinder users’ ability to consume expla-
nations and reduce their productivity. One could use more
compute hardware, if available, since OBE is embarrassingly
parallel across re-inference requests. However, this may not
always be affordable, especially for domain scientists, or fea-
sible in all settings, e.g., in mobile clinical diagnosis. Extra
hardware can also raise monetary costs, especially in the
cloud.

To mitigate the above issue, we use a database-inspired
lens to formalize and accelerate OBE. We start with a sim-
ple but crucial observation: occluded images are not disjoint
but share most of their pixels; so, most of the re-inference
computations are redundant. This observation leads us to
connect OBE with two classical data management concerns:
incremental view maintenance (IVM) and multi-query op-
timization (MQO). Instead of treating a CNN as a “black-
box,” we open it up and formalize CNN layers as “queries.”
Just like how a relational query converts relations to other
relations, a CNN layer converts tensors (multidimensional
arrays) to other tensors. A deep CNN stacks many types of
such layers to convert the input (represented as a tensor) to
the prediction output, as Figure 1(a) illustrates. So, we re-
imagine OBE as a set of tensor transformation queries with
incrementally updated inputs. With this fresh database-
inspired view, we devise several novel CNN-specific query
optimization techniques to accelerate OBE.

Our first optimization is incremental inference. We first
materialize all tensors produced by the CNN. For every
re-inference request, instead of rerunning inference from
scratch, we treat it as an IVM query, with the “views” being
the tensors. We rewrite such queries to reuse the materi-
alized views as much as possible and recompute only what
is needed, thus avoiding computational redundancy. Such
rewrites are non-trivial because they are tied to the com-
plex geometric dataflows of CNN layers. We formalize such
dataflows to create a novel algebraic rewrite framework. We
also create a “static analysis” routine to tell up front how
much computations can be saved. Going further, we batch
all re-inference requests to reuse the same materialized
views. This is a form of MQO we call batched incremental
inference. We create a GPU-optimized kernel for such exe-
cution. To the best of our knowledge, this is the first time
IVM is combined with MQO in query optimization, at least
in machine learning (ML) systems.
We then introduce two novel approximate inference opti-

mizations that allow users to tolerate some degradation in
visual quality of the heatmaps produced to reduce runtimes
further. These optimizations build upon our incremental
inference optimization and use our IVM framework. Our
first approximate optimization, projective field thresholding,
draws upon an idea from neuroscience and exploits the in-
ternal semantics of how CNNs work. Our second, adaptive
drill-down, exploits the semantics of the OBE task and the
way users typically consume the heatmaps produced. We
also present intuitive automated parameter tuning methods
to help users adopt these optimizations. Our optimizations
operate largely at the logical level and are complementary
to more physical-level optimizations such as low-precision
computation and model pruning.
We prototype our ideas in the popular deep learning

framework PyTorch to create a tool we call Krypton. It
works on both CPU and GPU. We perform an empirical

evaluation of Krypton with multiple CNNs and real-world
image datasets from recent radiology and ML papers. Kryp-
ton yields up to 35x speedups over the current dominant
practice of running re-inference with just batching for pro-
ducing high-quality approximate heatmaps, and up to 5x
speedups for producing exact heatmaps.

This paper is a shortened version of our paper titled “In-
cremental and Approximate Inference for Faster Occlusion-
based Deep CNN Explanations”that appeared in ACM SIG-
MOD 2019 [20]. More details about the techniques discussed
in this paper and more experimental results can be found in
that SIGMOD paper, as well as in the associated extended
version published in ACM TODS [21].

2. SETUP AND PRELIMINARIES
We now state our problem formally and explain our as-

sumptions. We then formalize the dataflow of the layers
of a CNN, since these are required for understanding our
techniques in Sections 3 and 4. Table 1 lists our notation.

2.1 Problem Statement and Assumptions
We are given a CNN f that has a sequence (or DAG) of

layers l, each of which has a tensor transformation func-
tion T:l. We are also given the image I:img for which the
occlusion-based explanation (OBE) is desired, the class la-
bel L predicted by f on I:img, an occlusion patch P in RGB
format, and occlusion patch stride SP . We are also given
a set of patch positions G constructed either automatically
or manually with a visual interface interactively. The OBE
workload is as follows: produce a 2-D heatmap M , wherein
each value corresponds to a position in G and has the pre-

diction probability of L by f on the occluded image I′
x,y:img

(i.e., superimpose occlusion patch on image) or zero other-
wise. More precisely, we can describe the OBE workload
with the following logical statements:

WM = �(width(I:img)− width(P) + 1)/SP� (1)

HM = �(height(I:img)− height(P) + 1)/SP� (2)

M ∈ IRHM×WM (3)

∀ (x, y) ∈ G : (4)

I′
x,y:img ← I:img ◦(x,y) P (5)

M [x, y] ← f(I′
x,y:img)[L] (6)

Steps (1) and (2) calculate the dimensions of the heatmap
M . Step (5) superimposes P on I:img with its top left cor-
ner placed on the (x, y) location of I:img. Step (6) calculates
the output value at the (x, y) location by performing CNN

inference for I′
x,y:img using f and picks the prediction prob-

ability of L. Steps (5) and (6) are performed independently
for every position in G. In the non-interactive mode, G is
initialized to G = [0, HM) × [0,WM). Intuitively, this rep-
resents the set of all possible occlusion patch positions on
I:img, which yields a full heatmap. In the interactive mode,
the user manually places the occlusion patch only at a few
locations at a time, yielding partial heatmaps.

2.2 Dataflow of CNN Layers
CNNs are organized as layers of various types, each of

which transforms a tensor (multidimensional array, typ-
ically 3-D) into another tensor: Convolution uses image

62 SIGMOD Record, March 2020 (Vol. 49, No. 1)

Figure 2: Simplified illustration of the key layers of a typical CNN. The highlighted cells (dark/red background) show how a small local
spatial context in the first input propagates through subsequent layers. (a) Convolution layer (for simplicity sake, bias addition is not
shown). (b) ReLU Non-linearity layer. (c) Pooling layer (max pooling). Notation is explained in Table 1.

Symbol Meaning

f Given deep CNN; input is an image tensor; output is
a probability distribution over class labels

L Class label predicted by f for the original image I:img

T:l Tensor transformation function of layer l of the given
CNN f

P Occlusion patch in RGB format

SP Occlusion patch striding amount

G Set of occlusion patch superimposition positions on
I:img in (x,y) format

M Heatmap produced by the OBE workload

HM ,WM Height and width of M

◦(x,y) Superimposition operator. A ◦(x,y) B, superimposes
B on top of A starting at (x, y) position

I:l (I:img) Input tensor of layer l (Input Image)

O:l Output tensor of layer l

CI:l, HI:l,WI:l Depth, height, and width of input of layer l

CO:l, HO:l,WO:l Depth, height, and width of output of layer l

Kconv:l Convolution filter kernels of layer l

Bconv:l Convolution bias value vector of layer l

Kpool:l Pooling filter kernel of layer l

HK:l,WK:l Height and width of filter kernel of layer l

S:l;Sx:l;Sy:l Filter kernel striding amounts of layer l; S:l ≡
(Sx:l, Sy:l), strides along width and height dimensions

P:l;Px:l;Py:l Padding amounts of layer l; P:l ≡ (Px:l, Py:l), padding
along width and height dimensions

Table 1: Notation used in this paper.

filters from graphics to extract features, but with para-
metric filter weights (learned during training); Pooling
subsamples features in a spatial-aware manner; Batch-
Normalization normalizes the output tensor; Non-Linearity
applies an element-wise non-linear function (e.g., ReLU);
Fully-Connected is an ordered collection of perceptrons [9].
The output tensor of a layer can have a different width,
height, and/or depth than the input. An image can be
viewed as a tensor, e.g., a 224×224 RGB image is a 3-D
tensor with width and height 224 and depth 3. A Fully-
Connected layer converts a 1-D tensor (or a “flattened” 3-D
tensor) to another 1-D tensor. For simplicity of exposition,
we group CNN layers into 3 main categories based on the
spatial locality of how they transform a tensor: (1) Trans-
formations with a global context ; (2) Transformations at the
granularity of individual elements; and (3) Transformations
at the granularity of a local spatial context.

Global context granularity. Such layers convert the in-
put tensor into an output tensor using one global transfor-
mation. Since, every element of the output will likely be af-
fected by a point change in the input, such layers do not offer
a major opportunity for incremental computations. Fully-
Connected is the only layer of this type. They typically arise
only as the last layer(s) in deep CNNs (and never in some
recent deep CNNs), and typically account for a negligible
fraction of the total computational cost.

Individual element granularity. Such layers apply a
“map()” function on the elements of the input tensor, as Fig-
ure 2 (b) illustrates. Non-Linearity (e.g., ReLU) falls under
this category. If the input is incrementally updated, only the
corresponding region of the output will be affected. Thus,
incremental inference for such layers is straightforward.

Local spatial context granularity. Such layers perform
weighted aggregations of slices of the input tensor, called lo-
cal spatial contexts, by multiplying them with a filter kernel
(a tensor of weights). If the input is incrementally updated,
the region of the output that will be affected is not straight-
forward to ascertain–this requires non-trivial and careful cal-
culations due to the overlapping nature of how filters get ap-
plied to local spatial contexts. Both Convolution and Pool-
ing fall under this category. Since such layers typically ac-
count for the bulk of the computational cost of deep CNN
inference, enabling incremental inference for such layers in
the OBE context is a key focus of this paper (Section 3). The
rest of this section explains the machinery of the dataflow
in such layers using our notation.

Dataflow of Convolution Layers. A layer l has CO:l 3-
D filter kernels arranged as a 4-D array Kconv:l, with each
having a smaller spatial width WK:l and height HK:l than
the width WI:l and height HI:l of the input tensor I:l but
the same depth CI:l. During inference, cth filter kernel is
“strided” along the width and height dimensions of the in-
put to produce a 2-D “activation map” A:c = (ay,x:c) ∈
IRHO:l× WO:l by computing element-wise products between
the kernel and the local spatial context and adding a bias
value. The computational cost of each of these small ma-
trix products is proportional to the volume of the filter ker-
nel. All the 2-D activation maps are then stacked along
the depth dimension to produce the output tensor O:l ∈
IRCO:l×HO:l×WO:l . Figure 2 (a) presents a simplified illus-
tration of this layer.

Dataflow of Pooling Layers. Such layers behave essen-
tially like Convolution layers with a fixed (not learned) 2-D

SIGMOD Record, March 2020 (Vol. 49, No. 1) 63

filter kernel Kpool:l. These kernels aggregate a local spa-
tial context to compute its maximum or average element.
However, unlike Convolution, Pooling operates on the depth
slices of the input tensor independently. Figure 2(c) presents
a simplified illustration of this layer. Since OBE only con-
cerns the width and height dimensions of the image and
subsequent tensors, we treat both these types of layers in a
unified manner for our optimizations.

Relationship between Input and Output Dimen-
sions. For Convolution and Pooling layers, WO:l and HO:l

are determined by WI:l and HI:l, WK:l and HK:l, and two
other parameters that are specific to that layer: stride S:l

and padding P:l. Stride is the number of pixels by which
the filter kernel is moved at a time. For some layers, to
help control the dimensions of the output to be the same
as the input, one “pads” the input with zeros. Padding
P:l captures how much such padding extends these dimen-
sions. Both stride and padding values can differ along the
width and height dimensions; Sx:l and Sy:l and Px:l and
Py:l, respectively. In Figure 2, the Convolution layer has
Sx:l = Sy:l = 1, while the Pooling layer has Sx:l = Sy:l = 2.
Convolution layer also has Px:l = Py:l = 1. Given these
parameters, width (similarly height) of the output tensor is
given by the following formula:

WO:l = (WI:l −WK:l + 1 + 2× Px:l)/Sx:l (7)

Computational Cost of Inference. Convolution layers
typically account for a bulk of the cost (90% or more). Thus,
we can roughly estimate the computational cost of inference
by counting the number of fused multiply-add (FMA) float-
ing point operations (FLOPs) needed for the Convolution
layers. The amount of computations performed by a single
application of a Convolution filter kernel K:l is equal to the
volume of the filter in FLOPs, with each FLOP correspond-
ing to one FMA. Thus, the total computational cost Q:l of a
layer that produces output O:l and the total computational
cost Q of the entire set of Convolution layers of a given CNN
f can be calculated as per Equations (8) and (9).

Q:l = (CI:l ·HK:l ·WK:l)(CO:l ·HO:l ·WO:l) (8)

Q =
∑

l in f

Q:l (9)

3. INCREMENTAL CNN INFERENCE
In relational IVM, when a part of the input relation is

updated, we recompute only the part of the output that
changes. We bring this notion to CNNs; a CNN layer is
our “query” and a materialized feature tensor is our “rela-
tion.” OBE updates only a part of the image. So, only some
parts of the tensors need to be recomputed. We call this
incremental inference. We create an algebraic framework
to determine which parts of a CNN layer must be updated
and how to propagate updates across layers. We then com-
bine our incremental inference framework with an MQO-
style technique and characterize theoretical upper bounds
on the speedups possible with these ideas.

3.1 Single Layer Incremental Inference
As per the discussion in Section 2.2, we focus only on

the non-trivial layers that operate at the granularity of a

Symbol Meaning

xI
P:l, y

I
P:l Start coordinates of input update patch for layer l

xR
P:l, y

R
P:l Start coordinates of read-in context for layer l

xO
P:l, y

O
P:l Start coordinates of output update patch for layer l

HI
P:l,W

I
P:l Height and width of input update patch for layer l

HR
P:l,W

R
P:l Height and width of read-in context for layer l

HO
P:l,W

O
P:l Height and width of output update patch for layer l

τ Projective field threshold

rdrill−down Drill-down fraction for adaptive drill-down

Table 2: Additional notation for Sections 3 and 4.

Figure 3: Simplified illustration of input and output update
patches for Convolution/Pooling layers.

local spatial context (Convolution and Pooling). Table 2
lists some extra notation for this section.

Determining Patch Update Locations. We first explain
how to calculate the coordinates and dimensions of the out-
put update patch of layer l given the input update patch and
layer-specific parameters. Figure 3 illustrates these calcu-
lations. Our coordinate system’s origin is at the top left
corner. The input update patch is shown in red/dark color
and starts at (xI

P:l, y
I
P:l), with height HI

P:l and width W I
P:l.

The output update patch starts at (xO
P:l, y

O
P:l) and has a

height HO
P:l and width WO

P:l. Due to overlaps among fil-
ter kernel positions during inference, computing the output
update patch requires reading a slightly larger spatial con-
text than the input update patch–we call this the “read-in
context,” and it is illustrated by the blue/shaded region in
Figure 3. The read-in context starts at (xR

P:l, y
R
P:l), with

its dimensions denoted by WR
P:l and HR

P:l. The relationship
between these quantities along the width dimension can be
expressed as follows (likewise for the height dimension):

xO
P:l = max

(
(Px:l + xI
P:l −WK:l + 1)/Sx:l�, 0

)
(10)

WO
P:l = min

(
(W I
P:l +WK:l − 1)/Sx:l�,WO:l

)
(11)

xR
P:l = xO

P:l × Sx:l − Px:l (12)

WR
P:l = WK:l + (WO

P:l − 1)× Sx:l (13)

64 SIGMOD Record, March 2020 (Vol. 49, No. 1)

Equation (10) calculates the coordinates of the output up-
date patch. As shown in Figure 3, padding effectively shifts
the coordinate system and thus, Px:l is added to correct it.
Due to overlaps among the filter kernels, the affected region
of the input update patch (blue/shaded region in Figure 3)
will be increased by WK:l − 1, which needs to be subtracted
from the input coordinate xI

P:l. A filter of size WK:l that is
placed starting at xI

P:l−WK:l+1 will see an update starting
from xI

P:l. Equation (11) calculates the width of the output
update patch, which is essentially the number of filter kernel
stride positions on the read-in input context. However, this
value cannot be larger than the output size. Given these, a
start coordinate and width of the read-in context are given
by Equations (12) and (13); similar equations hold for the
height dimension (skipped for brevity).

Incremental Inference Operation. For layer l, given
the transformation function T:l, the pre-materialized input
tensor I:l, input update patch PO

:l , and the above calculated
coordinates and dimensions of the input, output, and read-in
context, the output update patch PO

:l is computed as follows:

U = I:l[:, x
R
P:l : x

R
P:l +WR

P:l, y
R
P:l : y

R
P:l +HR

P:l] (14)

U = U ◦(xI
P:l

−xR
P:l

),(yI
P:l

−yR
P:l

) PI
:l (15)

PO
:l = T:l(U) (16)

Equation (14) slices the read-in context U from the pre-
materialized input tensor I:l. Equation (15) superimposes
the input update patch PI

:l on it. This is an in-place update
of the array holding the read-in context. Finally, Equa-
tion (16) computes the output update patch PO

:l by invoking
T:l on U . Thus, we avoid performing inference on all of I:l,
thus achieving incremental inference and reducing FLOPs.

3.2 Propagating Updates across Layers
Unlike relational IVM, CNNs have many layers, often in

a sequence. This is analogous to a sequence of queries, each
requiring IVM on its predecessor’s output. This leads to
a new issue: correctly and automatically configuring the
update patches across layers of a CNN. While this seems
simple, it requires care at the boundary of a local context
transformation and a global context transformation. In par-
ticular, we need to materialize the full updated output, not
just the output update patches, since global context trans-
formations lose spatial locality for subsequent layers. Some
recent deep CNNs have a more general directed acyclic graph
(DAG) structure for layers. They have two new kinds of lay-
ers that “merge” two branches in the DAG: element-wise ad-
dition and depth-wise concatenation. To address such cases,
we propose a simple unified solution: compute the bounding
box of the input update patches. While this will potentially
recompute parts of the output that do not get modified, we
think this trade-off is acceptable because the gains are likely
to be marginal for the additional complexity introduced.

3.3 Multi-Query Incremental Inference
OBE issues |G| re-inference requests in one go. View-

ing each request as a “query” makes the connection with
MQO [26] clear. The |G| queries are also not disjoint, as
the occlusion patch is small, which means most pixels are
the same. We now briefly explain how we extend our IVM
framework with an MQO-style optimization fusing multiple

re-inference requests. An analogy with relational queries is
many concurrent incremental updates on the same relation.

Batched Incremental Inference. Our optimization
works as follows: materialize all CNN tensors once and
reuse them for incremental inference across all |G| queries.
Since the occluded images share most of their pixels, parts of
the tensors will likely be identical too. Thus, we can amor-
tize the materialization cost. Batched execution is standard
practice on high-throughput compute hardware like GPUs,
since it amortizes CNN set up costs, data movement costs,
etc. Batch sizes are tuned to optimize hardware utilization.
Thus, we combine both these ideas to execute incremen-
tal inference in a batched manner. We call this approach
“batched incremental inference.” Empirically, we found that
batching alone yields limited speedups (under 2X), but
batched incremental inference amplifies the speedups.

GPU Optimized Implementation. Empirically, we
found a dichotomy between CPUs and GPUs: batched in-
cremental inference yielded expected speedups on CPUs,
but it performed dramatically poorly on GPUs. In fact,
a naive implementation on GPUs was slower than full re-
inference! The reason for this was the overheads incurred
during read-in context preparation step, which throttles the
GPU throughput. To overcome this issue, we created a cus-
tom CUDA kernel to perform read-in context preparation
more efficiently by copying memory regions in parallel for
all items in the batched inference request.

3.4 Expected Speedups
We extend our framework to perform “static analysis” on

a given CNN f to find how much FLOPs can be saved us-
ing incremental inference, yielding us an upper bound on
speedups. The computational cost of incremental inference
for a layer is proportional to the volume of the individual
filter kernel times the total volume of the updated output.
The total computational cost for incremental inference, de-
noted Qinc , is the sum of incremental inference cost across
all layers. Qinc can be much smaller than Q in Equation (9).
We define the theoretical speedup as the ratio Q

Qinc
. This tells

us how beneficial incremental inference can be in the best
case without running the actual inference itself.
We calculated the theoretical speedups for many popu-

lar CNNs for occlusion patches with varying sizes placed
at the center of the image. For an occlusion patch of size
16 × 16, VGG-16 sees the highest theoretical speedups of
6x; DenseNet-121 sees a speedup of 2x, the lowest. Most
CNNs fall in the 2x–3x range. The differences arise due to
the specifics of the CNNs’ architectures: VGG-16 has small
Convolution filter kernels and strides, which means full re-
inference is costlier. While speedups of 2x–3x may sound
“not that significant” in practice, we find they are indeed
significant for two reasons. First, users often wait in the
loop for OBE when performing interactive diagnoses. Thus,
even such speedups can improve their productivity. Second,
our IVM is the foundation for our approximate inference
optimizations (Section 4), which amplify the speedups.

4. APPROXIMATE CNN INFERENCE
Since incremental inference is exact, i.e., it yields the same

heatmap as full inference, it does not exploit a capability of
human perception: tolerance of some degradation in visual
quality. We now briefly explain how we build upon our IVM

SIGMOD Record, March 2020 (Vol. 49, No. 1) 65

framework to create two novel heuristic approximate infer-
ence optimizations that trade off the heatmap’s quality in a
user-tunable manner to accelerate OBE further.

4.1 Projective Field Thresholding
The projective field of a CNN neuron is the slice of the

output tensor that is connected to it. It is a term from neu-
roscience to describe the effects of a retinal cell on the output
of the eye’s neuronal circuitry [7]. This notion sheds light
on the growth of the size of the update patches through the
layers of a CNN. The 3 kinds of layers (Section 2.2) affect
the projective field size growth differently. Individual ele-
ment transformations do not alter the projective field size.
Global context transformations increase it to the whole out-
put. However, local spatial context transformations, which
are the most crucial, increase it gradually at a rate deter-
mined by the filter kernel’s size and stride: additively in
the size and multiplicatively in the stride. The growth of
the projective field size implies the amount of FLOPs saved
by IVM decreases as we go to the higher layers of a CNN.
Eventually, the output update patch becomes as large as the
output tensor. This growth is illustrated by Figure 4(a).

Figure 4: (a) Projective field growth for 1-D Convolution (filter
size 2, stride 1). (b) Projective field thresholding; τ = 5/7.

Our above observation motivates the main idea of this op-
timization, which we call projective field thresholding: trun-
cate the projective field from growing beyond a given thresh-
old fraction τ (0 < τ ≤ 1) of the output size. This means
inference in subsequent layers is approximate. Figure 4(b)
illustrates the idea for a filter size 3 and stride 1. This ap-
proximation can alter the accuracy of the output values and
the heatmap’s visual quality. Empirically, we find that mod-
est truncation is tolerable and does not affect the heatmap’s
visual quality too significantly.

To provide intuition on why the above happens, consider
histograms shown in Figures 4(a,b) that list the number of
unique “paths” from the updated element to each output el-
ement. It resembles a Gaussian distribution. Thus, for most
of the output patch updates, truncation will only discard a
few values at the “fringes” that contribute to an output ele-
ment. This optimization is only feasible in conjunction with
our incremental inference framework (Section 3) to reuse the
remaining parts of the tensors and save FLOPs.

4.2 Adaptive Drill-Down
This heuristic optimization is based on our observation

about a peculiar semantics of OBE that lets us modify how
G (the set of occlusion patch locations) is specified and han-
dled, especially in the non-interactive specification mode.
We explain our intuition with an example. Consider a radi-
ologist explaining a CNN prediction for diabetic retinopathy
on a tissue image. The region of interest typically occupies

only a tiny fraction of the image. Thus, it is not neces-
sary to perform regular OBE for every patch location: most
of the (incremental) inference computations are effectively
“wasted” on uninteresting regions. In such cases, we mod-
ify the OBE workflow to produce an approximate heatmap
using a two-stage process, illustrated by Figure 5.

Figure 5: Schematic representation of adaptive drill-down.

In stage one, we produce a lower resolution heatmap by
using a larger stride–we call it stage one stride S1. Us-
ing this heatmap, we identify the regions of the input that
see the largest drops in predicted probability for label L.
Given a predefined parameter drill-down fraction, denoted
rdrill−down , we select a proportional number of regions based
on the probability drops. In stage two, we perform OBE
only for these regions with original stride value (we call this
stage two stride, S2) to yield a portion of the heatmap at
the original higher resolution. This optimization also builds
upon our incremental inference optimizations, but it is or-
thogonal to projective field thresholding.

4.3 Automated Parameter Tuning
We also devise automated parameter tuning methods for

easily configuring the approximate inference optimizations.
For projective field thresholding, mapping a threshold value
(τ) to visual quality directly is likely to be unintuitive for
users. Thus, to measure visual quality more intuitively,
we adopt a cognitive science-inspired metric called Struc-
tural Similarity (SSIM) Index, which is widely used to quan-
tify human-perceptible differences between two images [28].
During an offline phase, we learn a function that maps the
heatmap visual quality to a τ value using a sample of work-
load images. During the online phase, we use the learned
function to map the user given SSIM value to a target τ
value. For adaptive drill-down, we expect the user to provide
the drill-down ratio (rdrill−down) based on her understand-
ing of the size of the region of interest in the OBE heatmap
and on how much speedup she wants to achieve. We set the
stage one stride (S1) using these two user-given settings.

5. EXPERIMENTAL EVALUATION
We integrated our techniques with the popular deep learn-

ing tool PyTorch to create a system we call Krypton. We
now present a snapshot of our key empirical results with
Krypton on different CNNs and datasets.

Datasets. We use 2 real-world image datasets: OCT and
Chest X-Ray. OCT has about 84,000 optical coherence to-
mography retinal images with 4 classes. Chest X-Ray has
about 6,000 X-ray images with 3 classes. Both OCT and
Chest X-Ray are from a recent radiology study that applied
deep CNNs to detect the respective diseases [11].

Workloads. We use 3 diverse ImageNet-trained [25] deep
CNNs: VGG16, ResNet18 and Inception3. They comple-

66 SIGMOD Record, March 2020 (Vol. 49, No. 1)

5.4x

34.5x
2.1x

14.8x

1.5x

8.0x
5.4x

13.8x
2.1x

4.9x

1.5x

3.7x
3.9x

16.0x
1.6x

6.2x

0.7x

4.5x
3.9x

8.6x
1.6x

3.1x

0.7x

2.3x

Ru
nt

im
e

(se
co

nd
s)

Figure 6: End-to-end runtimes of Krypton and the baseline on 2 datasets and 3 CNNs on GPU and CPU.

ment each other in terms of model size, architectural com-
plexity, computational cost, and our predicted theoretical
speedups. CNNs were fine-tuned by retraining their final
Fully-Connected layers using the OCT and Chest X-Ray
datasets, as per standard practice. The GPU-based exper-
iments used a batch size of 128; for CPUs, the batch size
was 16. All CPU-based experiments were executed with a
thread parallelism of 8.

Experimental Setup. We use a machine with 32 GB
RAM, Intel i7 3.4GHz CPU, and NVIDIA Titan X (Pas-
cal) GPU with 12 GB memory. The machine runs Ubuntu
16.04 with PyTorch version 0.4.0, CUDA version 9.0, and
cuDNN version 7.1.2. All reported runtimes are the average
of 3 runs, with 95% confidence intervals shown.

5.1 End-to- End Runtimes
We focus on perhaps the most common scenario for OBE:

produce the whole heatmap for automatically created G
(“non-interactive” mode). The occlusion patch size is set to
16; stride, 4. We compare two variants of Krypton: Kryp-
ton-Exact uses only incremental inference, while Krypton-
Approximate uses our approximate inference optimizations
too. The baseline is Naive, which runs full re-inference with
only batching to improve hardware utilization. We set the
approximate inference parameters based on the semantics of
each dataset’s prediction task. Figure 6 presents the results.
More details about the parameters and visual examples of
the heatmaps are available in the longer version of this pa-
per [20].

Overall, we see that Krypton offers significant speedups
across the board on both GPU and CPU, with the highest
speedups seen by Krypton-Approximate on OCT with
VGG16: 16x on GPU and 34.5x on CPU. The highest
speedups of Krypton-Exact are also on VGG16: 3.9x
on GPU and 5.4x on CPU. The speedups of Krypton-
Exact are identical across datasets for a given CNN, since it
does not depend on the image semantics, unlike Krypton-
Approximate due to its parameters. Krypton-Approximate
sees the highest speedups on OCT.
The speedups are lower with ResNet18 and Inception3

than VGG16 due to their architectural properties (kernel
filter dimensions, stride, etc.) that make the projective field
grow faster. Moreover, Inception3 has a complex DAG archi-
tecture with more branches and depth-wise concatenation,
which limits GPU throughput for incremental inference. In
fact, Krypton-Exact on GPU shows a minor slow-down
(0.7x) with Inception3. However, Krypton-Approximate
still offers speedups on GPU with Inception3 (up to 4.5x).

We also found that ResNet18 and VGG16 see speedups al-
most near their theoretical speedups, but Inception3 does
not. Note that our theoretical speedup definition only counts
FLOPs and does not account for memory stall overheads.
Finally, the speedups are higher on CPU than GPU; this

is because CPU suffers less from memory stalls during in-
cremental inferences. However, the absolute runtimes are
much lower on GPU, as expected. Overall, Krypton re-
duces OBE runtimes substantially for multiple datasets and
deep CNNs.

5.2 Other Experimental Results
We also perform ablation studies to evaluate the impact

of each of our optimization techniques for varying configu-
ration parameters for OBE. The patch size and stride have
an inverse effect on speedups because they reduce the sheer
amount of FLOPs in the re-inference requests. The param-
eters of the approximate optimizations also affect speedups
significantly, and our automated tuning methods help opti-
mize the accuracy-runtime tradeoffs effectively. The mem-
ory overhead of our batched incremental inference approach
is also significantly lower (about 2x) compared to full re-
inference.

5.3 Demonstration and Extensions
In follow-on work, we extended Krypton and demon-

strated support for human-in-the-loop OBE [19, 24]. The
user can interactively select a sub-region of the image (to
specify G) and iteratively refine it. We also showed that
Krypton can help accelerate OBE on time-series data out
of the box and can also help accelerate object recognition in
fixed-angle camera videos when combined with new approx-
imate inference techniques [21].

6. OTHER RELATED WORK
Explaining CNN Predictions. Perturbation-based and
gradient-based are the two main kinds of methods for ex-
plaining CNN predictions. Perturbation-based methods ob-
serve the output of the CNN by modifying regions of the
input image. OBE belongs to this category. In practice,
however, OBE is usually more popular among domain sci-
entific users, especially in radiology [10], since it is easy to
understand for non-technical users and typically produces
high-quality heatmaps.

Faster CNN Inference. EVA2 [3] and CBInfer [4] use
approximate change detection for faster CNN inference over
video data. While one can map OBE to a “video,” our IVM

SIGMOD Record, March 2020 (Vol. 49, No. 1) 67

and MQO techniques are complementary to such systems,
while our approximate inference optimizations are also novel
and exploit specific properties of CNNs and OBE.

Query Optimization. Our work is inspired by the long
line of work on relational IVM [6, 16], but ours is the first
to use the IVM lens for OBE with CNNs. Our algebraic
IVM framework is closely tied to the dataflow of CNN lay-
ers, which transform tensors in non-trivial ways. Our work
is related to the IVM framework for linear algebra in [23].
They focus on bulk matrix operators and incremental addi-
tion of rows. The focus of our work is on more fine-grained
CNN inference computations. Our work is also inspired by
relational MQO [26], but our focus is CNN inference, not re-
lational queries. MQO for ML systems is a growing area of
research [2, 14, 15], both for classical statistical ML (e.g., [5,
12, 13, 17, 30]) and deep learning (e.g., [18, 22]). Our work
adds to this direction, but ours is the first work to combine
MQO with IVM for ML systems. Our approximate inference
optimizations are inspired by AQP [8], but unlike statisti-
cal approximations of SQL aggregates, our techniques are
novel CNN-specific and human perception-aware heuristics
tailored to OBE.

7. CONCLUSIONS AND FUTURE WORK
Deep CNNs are popular for image prediction tasks, but

their internal workings are unintuitive for most users.
Occlusion-based explanation (OBE) is a popular mecha-
nism to explain CNN predictions, but it is highly compute-
intensive. We formalize OBE from a data management
standpoint and present several novel database-inspired op-
timizations to speed up OBE. Our techniques span incre-
mental inference and multi-query optimization for CNNs
to human perception-aware approximate inference. Over-
all, our ideas yield over an order of magnitude speedups for
OBE on both GPU and CPU. As for future work, we plan to
extend our ideas to other deep learning workloads and data
types. More broadly, we believe database-inspired query
optimization techniques can help reduce resource costs of
deep learning systems significantly, thus enabling a wider
base of application users to benefit from modern ML.

Acknowledgments. This work was supported in part by a
Hellman Fellowship and by the NIDDK of the NIH under
award number R01DK114945. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the official views of the NIH. We thank NVIDIA Corpora-
tion for donating the Titan Xp GPU used for this work. We
thank the members of UC San Diego’s Database Lab for
their feedback on this work.

8. REFERENCES
[1] AI Device for Detecting Diabetic Retinopathy Earns Swift

FDA Approval. https://bit.ly/36300H9. Accessed April
30, 2020.

[2] M. Boehm et al. Data Management in Machine Learning
Systems. Synthesis Lectures on Data Management. Morgan
& Claypool Publishers, 2019.

[3] M. Buckler et al. EVA2: Exploiting Temporal Redundancy
in Live Computer Vision. In ISCA, 2018.

[4] L. Cavigelli et al. CBInfer: Change-based Inference for
Convolutional Neural Networks on Video Data. In
International Conference on Distributed Smart Cameras,
2017.

[5] L. Chen et al. Towards Linear Algebra over Normalized
Data. In VLDB, 2017.

[6] R. Chirkova and J. Yang. Materialized Views. Now
Publishers Inc., 2012.

[7] S. E. de Vries et al. The Projective Field of a Retinal
Amacrine Cell. In Journal of Neuroscience, 2011.

[8] M. N. Garofalakis and P. B. Gibbons. Approximate Query
Processing: Taming the TeraBytes. In VLDB, 2001.

[9] I. Goodfellow et al. Deep Learning. MIT press Cambridge,
2016.

[10] K.-H. Jung et al. Deep Learning for Medical Image
Analysis: Applications to Computed Tomography and
Magnetic Resonance Imaging. Hanyang Medical Reviews,
2017.

[11] D. S. Kermany et al. Identifying Medical Diagnoses and
Treatable Diseases by Image-Based Deep Learning. Cell,
2018.

[12] P. Konda et al. Feature Selection in Enterprise Analytics:
A Demonstration Using an R-Based Data Analytics
System. In VLDB, 2013.

[13] A. Kumar et al. Learning Generalized Linear Models Over
Normalized Data. In ACM SIGMOD, 2015.

[14] A. Kumar et al. Model Selection Management Systems:
The Next Frontier of Advanced Analytics. ACM SIGMOD
Rec., 2016.

[15] A. Kumar et al. Data Management in Machine Learning:
Challenges, Techniques, and Systems. In ACM SIGMOD,
2017.

[16] A. Y. Levy et al. Answering Queries Using Views. In
PODS, 1995.

[17] S. Li et al. Enabling and Optimizing Non-Linear Feature
Interactions in Factorized Linear Algebra. In ACM
SIGMOD, 2019.

[18] S. Nakandala et al. Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems. In ACM
SIGMOD DEEM Workshop, 2019.

[19] S. Nakandala et al. Demonstration of Krypton: Incremental
and Approximate Inference for Faster Occlusion-based
Deep CNN Explanations. In SysML, 2019.

[20] S. Nakandala et al. Incremental and Approximate Inference
for Faster Occlusion-Based Deep CNN Explanations. In
ACM SIGMOD, 2019.

[21] S. Nakandala et al. Incremental and Approximate
Computations for Accelerating Deep CNN Inference. ACM
TODS, 2020.

[22] S. Nakandala and A. Kumar. Vista: Optimized System for
Declarative Feature Transfer from Deep CNNs at Scale. In
ACM SIGMOD, 2020.

[23] M. Nikolic et al. LINVIEW: Incremental View Maintenance
for Complex Analytical Queries. In ACM SIGMOD, 2014.

[24] A. Ordookhanians et al. Demonstration of Krypton:
Optimized CNN Inference for Occlusion-Based Deep CNN
Explanations. In VLDB, 2019.

[25] O. Russakovsky et al. Imagenet Large Scale Visual
Recognition Challenge. In International Journal of
Computer Vision, 2015.

[26] T. K. Sellis. Multiple-Query Optimization. In ACM TODS,
1988.

[27] P. Voigt and A. Von dem Bussche. The EU General Data
Protection Regulation (GDPR): A Practical Guide.
Springer Publishing Company, Inc., 2017.

[28] Z. Wang et al. Image Quality Assessment: From Error
Visibility to Structural Similarity. In IEEE Transactions
on Image Processing, 2004.

[29] M. D. Zeiler and R. Fergus. Visualizing and Understanding
Convolutional Networks. In European Conference on
Computer Vision, 2014.

[30] C. Zhang et al. Materialization Optimizations for Feature
Selection Workloads. In ACM SIGMOD, 2014.

[31] L. M. Zintgraf et al. Visualizing Deep Neural Network
Decisions: Prediction Difference Analysis. In ICLR, 2017.

68 SIGMOD Record, March 2020 (Vol. 49, No. 1)

