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Incremental and Approximate Computations for
Accelerating Deep CNN Inference
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Deep learning now offers state-of-the-art accuracy for many prediction tasks. A form of deep learning called

deep convolutional neural networks (CNNs) are especially popular on image, video, and time series data. Due

to its high computational cost, CNN inference is often a bottleneck in analytics tasks on such data. Thus, a

lot of work in the computer architecture, systems, and compilers communities study how to make CNN in-

ference faster. In this work, we show that by elevating the abstraction level and re-imagining CNN inference

as queries, we can bring to bear database-style query optimization techniques to improve CNN inference ef-

ficiency. We focus on tasks that perform CNN inference repeatedly on inputs that are only slightly different.

We identify two popular CNN tasks with this behavior: occlusion-based explanations (OBE) and object recog-

nition in videos (ORV). OBE is a popular method for “explaining” CNN predictions. It outputs a heatmap over

the input to show which regions (e.g., image pixels) mattered most for a given prediction. It leads to many

re-inference requests on locally modified inputs. ORV uses CNNs to identify and track objects across video

frames. It also leads to many re-inference requests. We cast such tasks in a unified manner as a novel instance

of the incremental view maintenance problem and create a comprehensive algebraic framework for incremen-

tal CNN inference that reduces computational costs. We produce materialized views of features produced

inside a CNN and connect them with a novelmulti-query optimization scheme for CNN re-inference. Finally,

we also devise novel OBE-specific and ORV-specific approximate inference optimizations exploiting their se-

mantics.We prototype our ideas in Python to create a tool called Krypton that supports both CPUs andGPUs.

Experiments with real data and CNNs show that Krypton reduces runtimes by up to 5× (respectively, 35×)
to produce exact (respectively, high-quality approximate) results without raising resource requirements.
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1 INTRODUCTION

Deep Convolutional Neural Networks (CNNs) are now the state-of-the-art method for many pre-
diction tasks on images, video, and time series data [1]. Thus, there is growing adoption of deep
CNNs in numerous application domains such as healthcare [2, 3], agriculture [4], image search
and recommendation systems [5], species monitoring [6], security [7], and sociology [8]. How-
ever, CNN inference is compute-intensive and time consuming. For example, inference using the
popular VGG16 [9] CNN model requires 15 GFLOPs of computations. Furthermore, many ana-
lytics tasks involving CNNs perform repeated CNN inference, amplifying the computational cost
and raising latency. This makes the adoption of CNNs unwieldy for interactive and/or resource-
constrained settings as mobile, browser, and edge devices, while potentially raising resource costs
in regular server and cloud settings.
In this work, we show that by re-imagining CNN inference as “queries,” we can devise clas-

sical database-inspired query optimization techniques to reduce the computational cost of CNN
inference in some popular analytics tasks. Specifically, we dive deeper into two tasks that perform
repeated CNN re-inference on slightly modified inputs: (1) occlusion-based explanations (OBE) [10]
and (2) object recognition in videos (ORV).

1.1 Occlusion-Based Explanations (OBE)

A key criticism of CNNs is that their internal workings are unintuitive to non-technical users.
Thus, users often seek an “explanation” for why a CNN predicted a certain label. Explanations can
help users trust CNNs [11], especially in high-stakes applications such as radiology [12], and are
a legal requirement for machine learning applications in some countries [13, 14].

How to explain a CNN prediction is still an active research question, but in the practical litera-
ture OBE is a widely used method. OBE works as follows: Place a small square patch on the image
to occlude those pixels. Rerun CNN inference, as Figure 1(b) illustrates, on the occluded image.
The predicted class probability will change. Repeat this process by moving the patch across the
image to obtain a sensitivity heatmap of probability changes, as Figure 1(c) shows. This heatmap
highlights regions of the input that were highly “responsible” for the output (red/orange color re-
gions). Such localization of regions of interest allows users to gain intuition on what “mattered”
for a prediction. For instance, the heatmap can highlight diseased areas of a tissue image, which
a radiologist can then inspect more deeply for further tests. Overall, OBE is popular because it is
easy for non-technical users to understand.

1.2 Object Recognition in Videos (ORV)

Our second task applies CNN inference to video monitoring and analytics. CNNs are the state-
of-the-art method to perform object recognition in videos. ORV is gaining popularity due to the
mass deployment of video cameras in applications such as security surveillance [15], traffic mon-
itoring [16], and tracking animal species in the wild [6]. An example use case from a trail camera
video is shown in Figure 2. In ORV, each video frame is treated as an individual image. A trained
CNN performed inference to identify the object. In this work, we focus specifically on single-object

recognition over fixed-angle camera video feeds, a common setting in video monitoring applica-
tions such as species monitoring and surveillance security.

1.3 Problem: Compute-intensive, Slow, and Redundant Re-inference

DeepCNN inference is already computationally expensive; OBE andORV just amplify that issue by
creating a large number of CNN re-inference requests, even tens of thousands. However, wemake a
crucial observation about such tasks: much of the re-inference computations are largely redundant,
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Fig. 1. (a) Using a CNN to predict diabetic retinopathy in an OCT image/scan. (b) Occluding a part of the

image changes the prediction probability. (c) By moving the occluding patch, a sensitivity heatmap can be

produced.

Fig. 2. Sample video frames obtained from a trail camera video (sampled at a rate of 1 frame per second).

First frame shows the stationary background. Subsequent frames show the arrival of an animal into the

scene and the corresponding changed region. A CNN can be trained to correctly recognize animals in video

frames.

because the inputs differ only slightly. For example, Reference [17] reports 500,000 re-inference
requests for performing OBE on a single image. Naively performing re-inference takes 1hr even
on a GPU! Such long wait times can hinder users’ ability to consume the explanations and reduce
user productivity. But note that most of the pixels across occluded images are identical. Likewise,
in ORV the number of re-inference requests issued is proportional to the length of the video.
But note that most of the pixels across adjacent frames will be almost identical due to temporal
locality. One simple way to reduce runtimes in such tasks is to throw more compute hardware at
it, if possible, since OBE and offline ORV are embarrassingly parallel across re-inference requests.
But this is not feasible for online ORV. Moreover, extra compute hardware may not be affordable,
especially for domain scientists, or even feasible in all settings, e.g., in mobile clinical diagnosis
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or edge deployments. Throwing more resources at massively redundant computations also wastes
money, especially in pay-as-you-go cloud environments.

1.4 Our Contributions

In this work, we approach the computational redundancy problem in CNN tasks such as OBE
and ORV from the database standpoint by connecting their computational model to three classi-
cal database-inspired techniques: incremental view maintenance (IVM), multi-query optimization

(MQO), and approximate query processing (AQP). Instead of treating a CNN as a “blackbox,” we
open it up and formalize CNN layers as “queries.” Just like how a relational query converts rela-
tions to other relations, a CNN layer converts tensors (multidimensional arrays) to other tensors.
So, we re-imagine OBE and ORV as a set of tensor transformation queries with incrementally up-
dated inputs.With this fresh database-inspired view, we introduce several novel CNN-specific query
optimization techniques to accelerate OBE and ORV.

Incremental inference for OBE. Our first optimization is incremental inference. We firstmateri-

alize all tensors produced by the CNN. For every re-inference request, instead of rerunning infer-
ence from scratch, we treat it as an IVM query, with the “views” being the tensors. We rewrite such
queries to reuse the materialized views as much as possible and recompute only what is needed,
thus avoiding computational redundancy. Such rewrites are non-trivial, because they are tied to
the complex geometric dataflows of CNN layers. We formalize such dataflows to create a novel
algebraic rewrite framework. We also create a “static analysis” routine to tell us up front how much
computations can be saved. Going further, we batch all re-inference requests to reuse the same

materialized views. This is a form of MQO, which we call batched incremental inference. We also
create a GPU-optimized kernel for such execution. To the best of our knowledge, this is the first
instance of IVM being combined with MQO in query optimization, at least for CNN inference.

Approximate inference for OBE. For OBE, we also introduce two novel approximate inference

optimizations that allow users to tolerate some degradation in visual quality of the heatmaps
produced to reduce runtimes further. These optimizations build upon our incremental inference
optimization to trade off heatmap quality in a user-tunable manner. Our first approximate
optimization, projective field thresholding, draws upon an idea from neuroscience and exploits the
internal semantics of how CNNs work. Our second approximate optimization, adaptive drill-down,
exploits the semantics of the OBE task and the way users typically consume the heatmaps pro-
duced. We also present intuitive automated parameter tuning methods to help users adopt these
optimizations.

Approximate inference for ORV. Similar to OBE, ORV can also be treated as a sequence of
occluded images. In ORV, the image is the background of the video and occlusions are generated by
a moving object. As the camera angle is fixed, based on some pixel-wise threshold, it is reasonable
to assume the background to be fixed for a given episode of time. Thus, we approximate ORV as
an extension of OBE. By taking the bounding box of the occluding object as the occluding patch,
we leverage the same incremental inference infrastructure developed for OBE to perform ORV.
All of our techniques exist primarily at the logical level and help reduce computational costs.

Thus, they are complementary to lower-level techniques to reduce runtimes from prior art such
as reduced precision [18] or network pruning [19]. We prototype our techniques in the popular
deep learning framework PyTorch to create a tool we call Krypton. It works on both CPU and
GPU and supports any arbitrary CNNmodel architectures.We perform a comprehensive empirical
evaluation of Krypton with real-world datasets and deep CNNs. For OBE, we use three image
datasets and three CNNs from recent radiology and computer vision papers. Krypton yields up
to 35× speedups over the current dominant practice of running re-inference with just batching
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Fig. 3. Krypton system architecture. It has four main components: API, Parameter Tuner, KryptonGraph
Generator/Executor, and User Interface.

for producing high-quality approximate heatmaps and up to 5× speedups for producing exact
heatmaps. We also show how Krypton can accelerate both OBE on real-world time series data
analyzed with one-dimensional CNNs and ORV for real-world fixed-angle camera videos. We then
tease apart the utility of each of our individual optimizations with drill-down experiments. Overall,
this article makes the following contributions:

• To the best of our knowledge, this is the first article to formalize and optimize the execution
of CNN inference from a data management standpoint.

• We create a novel and comprehensive algebraic framework for incremental CNN inference
to reduce the computational cost of OBE. We integrate our IVM framework with an MQO
technique to further reduce computational redundancy in CNN inference.

• We present two novel approximate inference optimizations for OBE that exploit the seman-
tics of CNNs and properties of human perception.

• We approximate ORV as an extension of OBE and show how the same IVM machinery
developed for OBE helps accelerate ORV, too.

• We prototype our ideas in a tool, Krypton, and perform an extensive empirical evaluation
with real data and deep CNNs. Krypton offers substantial speedups for both OBE and ORV,
even over an order of magnitude in some cases.

Outline. Section 2 presents the high-level system architecture of Krypton. Section 3 explains our
problem setup, assumptions, and CNN dataflow model. Section 4 (respectively, Section 5) presents
our incremental (respectively, approximate) inference optimizations for OBE. In Section 6, we ex-
plain the approximate inference optimizations for ORV. Section 6 presents the experimental eval-
uation. We discuss other related work in Section 7 and conclude in Section 8.

2 SYSTEM ARCHITECTURE

We explain the architecture of Krypton system in the context of the OBE workload. It has an
offline setup phase and an online execution phase. For the ORV workload, we use only the online
phase. The high-level architecture of the system is shown in Figure 3.
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Krypton is implemented on top of the PyTorch deep learning library.1 It has four main
components:

• API
• Parameter Tuner
• KryptonGraph Generator/Executor
• User Interface (UI)

During the offline setup phase, Krypton takes in three inputs:

• Arbitrary PyTorch CNN model
• Sample of images from the OBE application (e.g., batch of OCT images)
• Several tuning parameters such as occlusion patch size, stride for the occlusion patch, and

quality metrics for approximate inference

By analyzing the provided PyTorch CNN model, Krypton generates a DAG of incremental in-
ference operators that we call a KryptonGraph. More details on KryptonGraph generation are
explained in Section 4.5. Parameter Tuner then uses the user-provided sample of images and pa-
rameters to tune approximate inference subjected to user-defined quality metrics. More details on
approximate inference are described in Section 5 and more details on parameter tuning are de-
scribed in Section 5.3. During the online phase, user will provide an input image for which she
wants to run OBE using the UI. After successful execution of OBE (respectively, ORV) using the
KryptonGraph executor, Krypton will return the generated heatmap (respectively, predicted class
labels). For the interested reader, more details about the UI and how it integrates with the Krypton
engine can be found in our demo paper [20].

3 SETUP AND PRELIMINARIES

We now state the OBE problem formally and explain our assumptions. We then formalize the
dataflow of the layers of a CNN, since these are required for understanding our techniques in
Sections 3 and 4. Table 1 lists our notation. Finally, we briefly explain the Structural Similarity
Index (SSIM), which is used to quantify the quality of the OBE-generated sensitivity heatmaps.

3.1 OBE Problem Statement and Assumptions

We are given a CNN f that has a sequence (or DAG) of layers l , each of which has a tensor trans-
formation function T:l . We are also given the image I:imд for which the OBE is desired, the class
label L predicted by f on I:imд , an occlusion patch P in RGB format, and occlusion patch stride SP .
We are also given a set of patch positions G constructed either automatically or manually with a
visual interface interactively. The OBE workload is as follows: produce a 2-D heatmapM , wherein
each value corresponds to a position inG and has the predicted probability for label L by the CNN

f on the occluded image I′x,y :imд (i.e., superimpose occlusion patch on image) or zero otherwise.

More precisely, we can describe the OBE workload with the following logical statements:

WM = �(width(I:imд ) − width(P ) + 1)/SP� (1)

HM = �(height(I:imд ) − height(P ) + 1)/SP� (2)

M ∈ IRHM×WM (3)

∀ (x ,y) ∈ G : (4)

I′x,y :imд ← I:imд ◦(x,y ) P (5)

M[x ,y]← f (I′x,y :imд )[L]. (6)

1It is simple to extend it to support other libraries like TensorFlow as well.
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Table 1. Notation Used in this Article

Symbol Meaning

f Given deep CNN; input is an image tensor; output is a probability distribution over class
labels

L Class label predicted by f for the original image I:imд

T:l Tensor transformation function of layer l of the given CNN f

P Occlusion patch in RGB format

SP Occlusion patch striding amount

G Set of occlusion patch superimposition positions on I:imд in (x,y) format

M Heatmap produced by the OBE workload

HM ,WM Height and width ofM

◦(x,y ) Superimposition operator. A ◦(x,y ) B, superimposes B on top of A starting at (x ,y)
position

I:l (I:imд ) Input tensor of layer l (Input Image)

O:l Output tensor of layer l

CI:l ,HI:l ,WI:l Depth, height, and width of input of layer l

CO:l ,HO:l ,WO:l Depth, height, and width of output of layer l

Kconv :l Convolution filter kernels of layer l

Bconv :l Convolution bias value vector of layer l

Kpool :l Pooling filter kernel of layer l

HK :l ,WK :l Height and width of filter kernel of layer l

S:l ; Sx :l ; Sy :l Filter kernel striding amounts of layer l ; S:l ≡ (Sx :l , Sy :l ), strides along width and height
dimensions

P:l ; Px :l ; Py :l Padding amounts of layer l ; P:l ≡ (Px :l , Py :l ), padding along width and height
dimensions

Steps (1) and (2) calculate the dimensions of the heatmap M . Step (5) superimposes P on I:imд

with its top left corner placed on the (x ,y) location of I:imд . Step (6) calculates the output value

at the (x ,y) location by performing CNN inference for I′x,y :imд using f and picks the prediction

probability of L. Steps (5) and (6) are performed independently for every occlusion patch position
in G. In the non-interactive mode, G is initialized to G = [0,HM ) × [0,WM ). Intuitively, this rep-
resents the set of all possible occlusion patch positions on I:imд , which yields a full heatmap. In
the interactivemode, the user may manually place the occlusion patch only at a few locations at a
time, yielding partial heatmaps.
We assume the CNN is used for classification (or regression), since OBE is typically only used

in these applications. One could create CNNs that predict an image “segmentation” instead, but
labeling image segments for training such CNNs is tedious and expensive. Thus, most recent ap-
plications of CNNs in healthcare, sociology, and other domains rely on classification CNNs and
use OBE [2–4, 7, 8]. Other approaches to explain CNN predictions have been studied, but since
they are orthogonal to our focus, we summarize them in the Related Work section (Section 8).

3.2 Dataflow of CNN Layers

CNNs are organized as layers of various types, each of which transforms a tensor (multidimen-
sional array, typically 3-D) into another tensor: Convolution uses image filters from graphics to ex-
tract features, but with parametric filter weights (learned during training); Pooling subsamples fea-
tures in a spatial-aware manner; Batch-Normalization normalizes the output tensor; Non-linearity
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Fig. 4. Simplified illustration of the key layers of a typical CNN. The highlighted cells (dark/red background)

show how a small local spatial context in the first input propagates through subsequent layers. (a) Convo-

lution layer (for simplicity sake, bias addition is not shown). (b) ReLU Non-linearity layer. (c) Pooling layer

(max pooling). Notation is explained in Table 1.

applies an element-wise non-linear function (e.g., ReLU); Fully-Connected is an ordered collection
of perceptrons [21]. The output tensor of a layer can have a different width, height, and/or depth
than the input. An image can be viewed as a tensor, e.g., a 224 × 224 RGB image is a 3-D tensor with
width and height 224 and depth 3. A Fully-Connected layer converts a 1-D tensor (or a “flattened”
3-D tensor) to another 1-D tensor. For simplicity of exposition, we group CNN layers into three
main categories based on the spatial locality of how they transform a tensor: (1) Transformations
with a global context, e.g., Fully-Connected; (2) Transformations at the granularity of individual
elements, e.g., ReLU or Batch Normalization; and (3) Transformations at the granularity of a local
spatial context, e.g., Convolution or Pooling.

Global context granularity. Such layers convert the input tensor holistically into an output ten-
sor without any spatial context, typically with a full matrix-vector multiplication. Fully-Connected
is the only layer of this type. Since every element of the output will likely be affected by the entire
input, such layers do not offer a major opportunity for faster incremental computations. Thank-
fully, Fully-Connected layers typically arise only as the last layer(s) in deep CNNs (and never in
some recent deep CNNs), and as shown in Figure 5, they typically account for a negligible frac-
tion of the total computational cost and runtime. Thus, we do not focus on such layers for our
optimizations.

Individual element granularity. Such layers apply a “map()” function on the elements of the
input tensor, as Figure 4(b) illustrates. Thus, the output has the same dimensions as the input. Non-
Linearity (e.g., with ReLU) falls under this category. The computational cost is proportional to the
“volume” of the input tensor (product of the dimensions). If the input is incrementally updated,
only the corresponding region of the output will be affected. Thus, incremental inference for such
layers is straightforward. The computational cost of the incremental computation is proportional
to the volume of the updated region and is typically a small fraction of the overall computation
cost, as shown in Figure 5.

Local spatial context granularity. Such layers performweighted aggregations of slices of the in-
put tensor, called local spatial contexts, bymultiplying themwith a filter kernel (a tensor of weights).
Thus, input and output tensors can differ in width, height, and depth. If the input is incrementally
updated, the region of the output that will be affected is not straightforward to ascertain—this
requires non-trivial and careful calculations due to the overlapping nature of how filters get ap-
plied to local spatial contexts. Both Convolution and Pooling fall under this category. As shown in
Figure 5, such layers typically account for the bulk of the computational cost of deep CNN infer-
ence (over 90%). Thus, enabling incremental inference for such layers in the OBE context is a key
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Fig. 5. Runtime distribution for different CNN layer families (based on the transformation granularity) for

three popular deep CNNs. Experiments are performed on a CPU. For ResNet18 and Inception3, the runtime

percentage spent on global context transformations is zero. Details on experimental setup are provided in

Section 7.

focus of this article (Section 3). The rest of this section explains the machinery of the dataflow in
such layers using our notation. Section 3 then uses this machinery to explain our optimizations.

Dataflow of Convolution Layers. A layer l has CO:l 3-D filter kernels arranged as a 4-D array
Kconv :l , with each having a smaller spatial widthWK :l and height HK :l than the widthWI:l and
height HI:l of the input tensor I:l but the same depth CI:l . During inference, cth filter kernel is
“strided” along the width and height dimensions of the input to produce a 2-D “activation map”
A:c = (ay,x :c ) ∈ IRHO:l×WO:l by computing element-wise products between the kernel and the local
spatial context and adding a bias value as per Equation (7). The computational cost of each of these
small matrix products is proportional to the volume of the filter kernel. All the 2-D activation maps
are then stacked along the depth dimension to produce the output tensor O:l ∈ IRCO:l×HO:l×WO:l .
Figure 4(a) presents a simplified illustration of this layer.

ay,x :c =

CI:l∑
k=0

HK :l−1∑
j=0

WK :l−1∑
i=0

Kconv :l [c,k, j, i]

× I:l
[
k,y −

⌊HK :l

2

⌋
+ j,x −

⌊WK :l

2

⌋
+ i

]
+ Bconv :l [c]

(7)

Dataflow of Pooling Layers. Such layers behave essentially like Convolution layers but with a
fixed (not learned) 2-D filter kernelKpool :l . These kernels aggregate a local spatial context to com-
pute its maximum or average element. But unlike Convolution, Pooling operates independently on
the depth slices of the input tensor. It takes as input a 3-D tensor Ol of depthCI:l , widthWI:l , and
height HI:l . It produces as output a 3-D tensor O:l with the same depthCO:l = CI:l but a different
width ofWO:l and height HO:l . The filter kernel is typically strided over more than one pixel at a
time. Thus,WO:l andHO:l are usually smaller thanWI:l andHI:l , respectively. Figure 4(c) presents
a simplified illustration of this layer. Overall, both Convolution and Pooling layers have a similar
dataflow along the width and height dimensions, while differing on the depth dimension. Since
OBE only concerns the width and height dimensions of the image and subsequent tensors, we can
treat both these types of layers in a unified manner for our optimizations.

Relationship between Input and Output Dimensions. For Convolution and Pooling layers,
WO:l and HO:l are determined byWI:l and HI:l ,WK :l and HK :l , and two other parameters that
are specific to that layer: stride S:l and padding P:l . Stride is the number of pixels by which the
filter kernel is moved at a time; it can differ along the width and height dimensions: Sx :l and Sy :l ,
respectively. In practice, most CNNs have Sx :l = Sy :l . Typically, Sx :l ≤WK :l and Sy :l ≤ HK :l . In
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Figure 4, the Convolution layer has Sx :l = Sy :l = 1, while the Pooling layer has Sx :l = Sy :l = 2. For
some layers, to help control the dimensions of the output to be the same as the input, one “pads”
the input with zeros along the width and height dimensions. Padding P:l captures how much such
padding extends these dimensions; once again, padding values can differ along the width and
height dimensions: Px :l and Py :l . In Figure 4(a), the Convolution layer has Px :l = Py :l = 1. Given
these parameters, width (similarly height) of the output tensor is given by the following formula:

WO:l = (WI:l −WK :l + 1 + 2 × Px :l )/Sx :l . (8)

Computational Cost of Inference.Deep CNN inference is computationally expensive. Convolu-
tion layers typically account for a bulk of the cost (90% ormore) [22]. Thus, we can roughly estimate
the computational cost of inference by counting the number of fused multiply-add (FMA) floating
point operations (FLOPs) needed for the Convolution layers. For example, applying a Convolution
filter with dimensions (CI:l ,HK :l ,WK :l ) to compute one element of the output tensor requires
CI:l · HK :l ·WK :l FLOPs, with each FLOP corresponding to one FMA. Thus, the total computa-
tional cost Q:l of a layer that produces output O:l of dimensions (CO:l ,HO:l ,WO:l ) and the total
computational cost Q of the entire set of Convolution layers of a given CNN f can be calculated
as per Equations (9) and (10):

Q:l = (CI:l · HK :l ·WK :l ) (CO:l · HO:l ·WO:l ), (9)

Q =
∑
l in f

Q:l . (10)

3.3 Estimating theQuality of Generated Approximate Heatmaps

When applying approximate inference optimizations for OBE, Krypton trades off the accu-
racy/quality of the generated heatmap in favor of faster execution. To measure this drop of ac-
curacy, we use SSIM Index [23], one of the widely used approaches to measure the human-

perceived difference between two similar images. When applying SSIM index, we treat the orig-
inal heatmap as the reference image with no distortions; the perceived image similarity of the
Krypton-generated heatmap is calculated with reference to that. The generated SSIM index is a
value between −1 and 1, where 1 corresponds to perfect similarity. Typically SSIM index values in
the range of 0.90 − 0.95 are used in practical applications such as image compression and video en-
coding, as they produce distortions indistinguishable for humans. For more details on SSIM Index
metric, we refer the reader to the original SSIM Index paper [23].

4 INCREMENTAL INFERENCE OPTIMIZATIONS

We start with a theoretical characterization of the speedups incremental inference can yield for
OBE. We then dive into our novel algebraic framework to enable incremental CNN inference and
combine it with our multi-query optimization for OBE.

4.1 Expected Speedups

In relational IVM, when a part of the input relation is updated, we recompute only the part of
output that gets changed. We bring this notion to CNNs; a CNN layer is our “query” and the mate-
rialized feature tensor is our “relation.” OBE updates only a part of the image; so, only some parts
of the tensors need to be recomputed. We create an algebraic framework to determine which parts
these are for a CNN layer (Section 3.2) and how to propagate updates across layers (Section 3.3).
Given a CNN f and the occlusion patch, our framework determines using “static analysis” over f
how many FLOPs can be saved, yielding us an upper bound on speedups.
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Fig. 6. Theoretical speedups for popular deep CNN architectures with incremental inference.

More precisely, let the output tensor dimensions of layer l be (CO:l ,HO:l ,WO:l ). An incremental
update recomputes a smaller local spatial context with widthWP:l ≤WO:l and heightHP:l ≤ HO:l .
Thus, the computational cost of incremental inference for layer l , denoted byQinc:l , is equal to the
volume of the individual filter kernel times the total volume of the updated output, as given by
Equation (11). The total computational cost for incremental inference, denoted Qinc , is given by
Equation (12).

Qinc:l = (CI:l · HK :l ·WK :l ) (CO:l · HP:l ·WP:l ), (11)

Qinc =
∑
l in f

Qinc:l . (12)

The above costs can be much smaller thanQ:l andQ in Equations (9) and (10) earlier. We define

the theoretical speedup as the ratio
Q
Qinc

. It tells us how beneficial incremental inference can be in the

best casewithout performing the inference itself. It depends on several factors: the occlusion patch
size, its location, the parameters of layers (kernel dimensions, stride, etc.), and so on. Calculating
it is non-trivial and requires careful analysis, which we perform. The location of patch affects this
ratio, because a patch placed in the corner leads to fewer updates overall than one placed in the
center of the image. Thus, the “worst-case” theoretical speedup is determined by placing the patch
at the center.
We perform a sanity check experiment to ascertain the theoretical speedups for a few popular

deep CNNs. For varying occlusion patch sizes (with a stride of 1), we plot the theoretical speedups
in Figure 6. VGG-16 has the highest theoretical speedups, while DenseNet-121 has the lowest. Most
CNNs fall in the 2×–3× range. The differences arise due to the specifics of the CNNs’ architectures:
VGG-16 has small Convolution filter kernels and strides, which means full inference incurs a high
computational cost (Q = 15 GFLOPs). Thus, VGG-16 benefits the most from incremental inference.
Note the image size is assumed to be 224 × 224 for this plot; if the image is larger, the theoretical
speedups will be higher.
While speedups of 2×–3×may sound “not that significant” in practice, we find that they indeed

are significant for at least two reasons. First, users often wait in the loop for OBE workloads for
performing interactive diagnoses and analyses. Thus, even such speedups can improve their pro-
ductivity, e.g., reducing the time taken on a CPU from about 6 mins to just 2 mins, or on a GPU
from 1 min to just 20 s. Second, and equally importantly, incremental inference is the foundation
for our approximate inference optimizations (Section 4), which amplify the speedups we achieve for
OBE. For instance, the speedup for Inception3 goes up from only 2× for incremental inference to
up to 8×with all of our optimizations enabled. Thus, incremental inference is critical to optimizing
OBE.
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Fig. 7. Simplified illustration of input and output update patches for Convolution/Pooling layers.

4.2 Single Layer Incremental Inference

Wenowpresent our algebraic framework for incremental updates to thematerialized output tensor
of a CNN layer. As per the discussion in Section 2.2, we focus only on the non-trivial layers that
operate at the granularity of a local spatial context (Convolution and Pooling).We call ourmodified
version of such layers “incremental inference operations.”

Determining Patch Update Locations. We first explain how to calculate the coordinates and
dimensions of the output update patch of layer l given the input update patch and layer-specific
parameters. Figure 7 presents a simplified illustration of these calculations. Our coordinate sys-
tem’s origin is at the top left corner. The input update patch is shown in red/dark color and starts at

(xIP:l ,y
I
P:l ), with heightH

I
P:l and widthW

I
P:l . The output update patch starts at (x

O
P:l ,y

O
P:l ) and has

a heightH OP:l and widthW
O
P:l . Due to overlaps among filter kernel positions during inference, com-

puting the output update patch requires us to read a slightly larger spatial context than the input
update patch—we call this the “read-in context,” and it is illustrated by the blue/shaded region in
Figure 7. The read-in context starts at (xRP:l ,y

R
P:l ), with its dimensions denoted byW R

P:l and H
R
P:l .

Table 2 summarizes all this additional notation for this section. The relationship between these
quantities along the width dimension (similarly along the height dimension) can be expressed as
follows:

xOP:l = max
(
�
(
Px :l + x

I
P:l −WK :l + 1

)
/Sx :l �, 0

)
, (13)

W O
P:l = min

(⌈
(W I
P:l +WK :l − 1)/Sx :l

⌉
,WO:l

)
, (14)

xRP:l = xOP:l × Sx :l − Px :l , (15)

W R
P:l =WK :l +

(
W O
P:l − 1

)
× Sx :l . (16)

Equation (13) calculates the coordinates of the output update patch. As shown in Figure 7,
padding effectively shifts the coordinate system and thus, Px :l is added to correct it. Due to over-
laps among the filter kernels, the affected region of the input update patch (blue/shaded region in
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Table 2. Additional Notation for Sections 4 and 5

Symbol Meaning

xIP:l ,y
I
P:l Start coordinates of input update patch for layer l

xRP:l ,y
R
P:l Start coordinates of read-in context for layer l

xOP:l ,y
O
P:l Start coordinates of output update patch for layer l

H IP:l ,W
I
P:l Height and width of input update patch for layer l

H RP:l ,W
R
P:l Height and width of read-in context for layer l

H OP:l ,W
O
P:l Height and width of output update patch for layer l

τ Projective field threshold
rdr ill−down Drill-down fraction for adaptive drill-down

Figure 7) will be increased byWK :l − 1, which needs to be subtracted from the input coordinate

xIP:l . A filter of sizeWK :l that is placed starting at x
I
P:l −WK :l + 1 will see an update starting from

xIP:l . Equation (14) calculates the width of the output update patch, which is essentially the number
of filter kernel stride positions on the read-in input context. However, this value cannot be larger
than the output size. Given these, a start coordinate and width of the read-in context are given by
Equations (15) and (16); similar equations hold for the height dimension (skipped for brevity).

Incremental Inference Operation. For layer l , given the transformation function T:l , the
pre-materialized input tensor I:l , input update patch PO

:l
, and the above calculated coordinates

and dimensions of the input, output, and read-in context, the output update patch PO
:l
is computed

as follows:

U = I:l
[
:,xRP:l : x

R
P:l +W

R
P:l ,y

R
P:l : y

R
P:l + H

R
P:l

]
, (17)

U = U◦(xIP:l−xRP:l ), (yIP:l−yRP:l )P
I
:l , (18)

PO:l = T:l (U ). (19)

Equation (17) slices the read-in context U from the pre-materialized input tensor I:l . Equa-
tion (18) superimposes the input update patch PI

:l
on it. This is an in-place update of the array

holding the read-in context. Finally, Equation (19) computes the output update patch PO
:l

by in-
voking T:l on U . Thus, we avoid performing inference on all of I:l , thus achieving incremental
inference and reducing FLOPs.

Special Cases for Incremental Inference. There are special cases under which the output patch
size can be smaller than the values calculated above. Consider the simplified 1-D case shown in
Figure 8 (a), where the filter stride2 (3) is the same as the filter size (3). In this case, the size of
the output update patch is one less than the value calculated by Equation (14). But this is not
the case for the situation shown Figure 8(b), which has the same input patch size but placed at
a different location. Another case arises when the modified patch is placed at the edge of the
input, as shown in Figure 8(c). In this case, it is impossible for the filter to move freely through
all positions, since it hits the input boundary. However, it is not the case for the modified patch
shown in Figure 8(d). In Krypton, we do not treat these cases separately but rather use the values
calculated by Equation (14) for the width dimension (similarly for the height dimension), since
they act as an upper bound. In the case of a smaller output patch, Krypton reads and updates a

2Note that stride is typically less than or equal to filter size.
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Fig. 8. Illustration of special cases for which actual output size will be smaller than the value given by

Equation (14). (a) and (b) show cases where the filter stride is equal to the filter size. (c) and (d) show situations

where the position of the modified patch affecting the size of the output patch.

slightly bigger patch to preserve uniformity. This also requires updating the starting coordinates
of the patch, as shown in Equation (20). This sort of uniform treatment is required for performing
batched inference operations, which gives significant speedups compared to per-image inference.

IfxOP + W O
P >WO :

xOP =WO −W O
P ;x

I
P =WI −W I

P ;x
R
P =WI −W R

P
(20)

Special Types of CNNs. So far in our formulation, we focused on use cases where CNNs are
being used on image data. However, CNNs can be applied to sequence data, such as time-series, by
splitting the sequence into equal-sized windows. In the case of time series data, this is done along
the time axis. Windowed sequence can be considered as a special type of image where the height
is always one and width is equal to the window size. The number of channels in the image will be
equal to the number of attributes in a multi-variate sequence. All convolution operations will be
applied only over the windowing axis and hence they are called one-dimensional CNNs. OBE is
still useful in these scenarios to explain CNN predictions. However, in this case OBE will produce
a sequence of probabilities instead of a heatmap. Due to the generic nature of our incremental
inference formulation, Krypton can accelerate OBE for 1-D CNNs through incremental inference
by simply setting the height of the occlusion patch to one.

4.3 Propagating Updates across Layers

Sequential CNNs. Unlike relational IVM, CNNs have many layers, often in a sequence. This is
analogous to a sequence of queries, each requiring IVM on its predecessor’s output. This leads
to a new issue: correctly and automatically configuring the update patches across all layers of a

CNN. Specifically, output update patch PO
:l

of layer l becomes the input update patch of layer
l + 1. While this seems simple, it requires care at the boundary of a local context transformation
and a global context transformation, e.g., between a Convolution (or Pooling) layer and a Fully-
Connected layer. In particular, we need to materialize the full updated output, not just the output
update patches, since global context transformations lose spatial locality for subsequent layers.

Extension to DAG CNNs. Some recent deep CNNs have a more general directed acyclic graph
(DAG) structure for layers. They have two new kinds of layers that “merge” two branches in the
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Fig. 9. Illustration of bounding box calculation for differing input update patch locations for element-wise

addition and depth-wise concatenation layers in DAG CNNs.

DAG: element-wise addition and depth-wise concatenation. Element-wise addition requires two in-
put tensors with all dimensions being identical. Depth-wise concatenation takes two input tensors
with the same height and width dimensions. We now face a new challenge—how to calculate the
output update patch when the two input tensors differ on their input update patches locations and
sizes? Figure 9 shows a simplified illustration of this issue. The first input has its update patch

starting at coordinates (xIP1:l ,y
I
P1:l ) with dimensions H IP1:l andW

I
P1:l , while the second input has

its update patch starting at coordinates (xIP2:l ,y
I
P2:l ) with dimensions H IP2:l andW

I
P2:l . This issue

can arise with both element-wise addition and depth-wise concatenation.
We propose a simple unified solution: compute the bounding box of the input update patches.

So, the coordinates and dimensions of both read-in contexts and the output update patch will be
identical. Figure 9 illustrates this. While this will potentially recompute parts of the output that do
not get modified, we think this tradeoff is acceptable, because the gains are likely to be marginal
for the additional complexity introduced into our framework. Overall, the output update patch
coordinate and width dimension are given by the following (similarly for the height dimension):

xO
P :l = min

(
xIP1:l ,x

I
P2:l
)
,

W O
P:l = max

(
xIP1:l +W

I
P1:l ,x

I
P2:l +W

I
P2:l
)
− min

(
xIP1:l ,x

I
P2:l
)
.

(21)

4.4 Multi-query Incremental Inference

OBE issues |G | re-inference requests in one go. Viewing each request as a “query” makes the con-
nection with multi-query optimization (MQO) [24] clear. The |G | queries are also not disjoint, since
the occlusion patch is typically small, which means most pixels are the same for each query. Thus,
we now extend our IVM framework for re-inference with an MQO-style optimization fusing mul-
tiple re-inference requests. An analogy with relational queries would be having many incremental
update queries on the same relation in one go, with each query receiving a different incremental
update.

Batched Incremental Inference.Our optimizationworks as follows: materialize all CNN tensors
once and reuse them for incremental inference across all |G | queries. Since the occluded images
sharemost of their pixels, parts of the tensorswill likely be identical, too. Thus, we can amortize the
materialization cost. One might ask: why not just perform “batched” inference for the |G | queries?
Batched execution is standard practice on high-throughput compute hardware like GPUs, since
it amortizes CNN setup costs, data-movement costs, and so on. Batch sizes are tuned to optimize
hardware utilization. We note that batching is an orthogonal (albeit trivial) optimization compared
to our MQO. Thus, we combine both of these ideas to execute incremental inference in a batched
manner. We call this approach “batched incremental inference.” Empirically, we find that batching
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ALGORITHM 1: BatchedIncrementalInference

Input:

T:l : Original Transformation function

I:l : Pre-materialized input from original image

[PI1:l , . . . ,PIn:l ] : Input patches
[(xIP1:l ,y

I
P1:l ), . . . , (x

I
Pn :l ,y

I
Pn :l )] : Input patch coordinates

W IP:l ,H
I
P:l : Input patch dimensions

1: procedure BatchedIncrementalInference

2: Calculate [(xOP1:l ,y
O
P1:l ), . . . , (x

O
Pn :l ,y

O
Pn :l )]

3: Calculate (W OP:1,H
O
P:l )

4: Calculate [(xRP1:l ,y
R
P1:l ), . . . , (x

R
Pn :l ,y

R
Pn : l )]

5: Calculate (W RP:l ,H
R
P:l )

6: InitializeU ∈ IRn×depth(I:l )×HRP:l×W R
P:l

7: for i in [1,. . . ,n] do

8: T1 ← I:l [:,xRPi :l : x
R
Pi :l +W

R
P:l ,y

R
Pi :l : y

R
Pi :l + H

R
P:l ]

9: T2 ← T1◦(xIPi :l−xRPi :l ), (yIPi :l−yRPi :l )Pi :l
10: U[i, :, :]← T2

11: [PO
1:l
, . . . ,PO

n:l
]← T (U ) � Batched version

12: return [PO
1:l
, . . . ,PO

n:l
],

13: [(xOP1:l ,y
O
P1:l ), . . . , (x

O
Pn :l ,y

O
Pn :l )], (W

O
P:l ,H

O
P:l )

alone yields limited speedups (under 2×), but our batched incremental inference amplifies the
speedups. Algorithm 1 formally presents the batched incremental inference operation for layer l .

BatchedIncrementalInference first calculates the geometric properties of the output update
patches and read-in contexts. A temporary tensorU is initialized to hold the input update patches
with their read-in contexts. The for loop iteratively populates U with corresponding patches.
Finally, T:l is applied toU to compute the output patches. We note that for the first layer in OBE,
all input update patches will be identical to the occlusion patch. But for the later layers, the update
patches will start to deviate depending on their locations and read-in contexts.

4.5 Automating KryptonGraph Generation/Execution for Arbitrary CNNs Represented
as PyTorch Neural Computational Graphs

Krypton can accelerate OBE for arbitrary PyTorch CNNs. To achieve this, we develop a high-level
abstraction called KryptonGraph and automate the generation and execution of it. For a given
CNN, KryptonGraph handles the incremental CNN inference of that CNN by using PyTorch. The
high-level process for KryptonGraph generation and execution is shown in Figure 10 and works
as follows:

(1) Given a CNN model f , we use the utilities available in PyTorch to trace the structure of
the CNN by providing a sample image as input. Since all CNNs are static in nature (i.e., the
order of operator execution is not dependent on data), the structure obtained by tracing is
guaranteed to be correct. The trace output is then exported to ONNX format [25], which
is a convenient representation format for subsequent analysis.

(2) Dropout [26] operators in the CNN model are simply ignored, as they do not have any
effect on CNN inference.
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Fig. 10. KryptonGraph generation and execution process. For brevity, only a subgraph of a linear CNN is

shown. The same method also applies to arbitrary DAG like CNNs.

(3) We then traverse the exported CNN model in topological order and create the
corresponding KryptonGraph. For each operator T in the original CNN f , there
will be a corresponding KryptonOP in the KryptonGraph that implements the
BatchedIncrementalInference (Algorithm 1) for local context operators. Each
KryptonOp also has a reference to the original CNN operator T , which will be used in
the BatchedIncrementalInference method or directly invoked for global context oper-
ators that do not support incremental inference (e.g., Fully-Connected). Under the hood,
KryptonOP is relying on the PyTorch framework for the actual execution of the corre-
sponding CNN operator. The first global context operator that succeeds a local context
operator will first fully materialize the updated input before invoking the full inference
operator. Since all CNNs are created using a small number of low-level operators (e.g.,
convolution, pooling, and Fully-Connected), by implementing all corresponding types of
KryptonOps, we are able to support arbitrary PyTorch CNNs as input.

(4) The generated KryptonGraph is then used for performing CNN inference for OBE. Given
an input image I:img , we first materialize all intermediate outputs corresponding to incre-
mental inference operators using one full inference.

(5) We then prepare occluded images (I′
(x,y ):img

) for all positions inG. For batches of I′
(x,y ):img

as the input, we invoke the KryptonGraph in topological order and calculate the corre-
sponding entries of heatmapM .

GPUOptimized Implementation. Empirically, we found a dichotomy between CPUs and GPUs:
BatchedIncrementalInference yielded expected speedups on CPUs, but it performed dramatically
poorly on GPUs. In fact, a naive implementation of BatchedIncrementalInference on GPUs was
slower than full re-inference! We now shed light on why this is the case and how we tackled this
issue. The for loop in line 7 of Algorithm 1 is essentially preparing the input for T:l by copying
values (slices of the materialized tensor) from one part of GPU memory to another sequentially. A
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Fig. 11. Custom GPU Kernel integration architecture.

detailed profiling of the GPU showed that these sequential memory copies are a bottleneck for GPU
throughput, since they throttle it from exploiting its massive parallelism effectively. To overcome
this issue, we extended PyTorch by creating a custom CUDA kernel to perform input preparation
more efficiently by copyingmemory regions in parallel for all items in the batched inference request.
This is akin to a parallel for loop tailored for slicing the tensor. We then invoke T:l , which is
already hardware-optimized by modern deep learning tools [27]. This custom kernel is integrated
to PyTorch using Python foreign function interface (FFI). The high-level architecture of the Custom
Kernel integration is shown in Figure 11. Python FFI integrates with the Custom Kernel Interface
layer, which then invokes the Custom Memory Copy Kernel Implementation. Also, since GPU
memory might not be enough to fit all |G | queries, the batch size for GPU execution might be
smaller than |G |.

5 APPROXIMATE INFERENCE OPTIMIZATIONS FOR OBE

Since incremental inference is exact, i.e., it yields the same OBE heatmap as full inference, it does
not exploit a capability of human perception: tolerance of some degradation in visual quality.
Thus, we now build upon our IVM framework to create two novel heuristic approximate inference
optimizations that trade off the heatmap’s quality in a user-tunable manner to accelerate OBE
further. We note that our optimizations operate at the logical level and are complementary to more
physical-level optimizations such as low-precision computation [18] and model pruning [19]. We
first present the techniques and then explain how to tune them.

5.1 Projective Field Thresholding

The projective field of a CNN neuron is the slice of the output tensor that is connected to it [28]. It is
a term from neuroscience to describe the effects of a retinal cell on the output of the eye’s neuronal
circuitry [29]. This notion sheds light on the growth of the size of the update patches through the
layers of a CNN. The three kinds of layers (Section 2.2) affect the projective field size growth
differently. Transformations at the granularity of individual elements do not alter the projective
field size. Global context transformations increase it to the whole output. But local spatial context
transformations, which are the most crucial, increase it gradually at a rate determined by the filter
kernel’s size and stride: additively in the size and multiplicatively in the stride. The growth of the
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Fig. 12. (a) Projective field growth for 1-D Convolution (filter size 2, stride 1). (b) Projective field thresholding;

τ = 5/7.

projective field size implies the amount of FLOPs saved by IVM decreases as we go to the higher
layers of a CNN. Eventually, the output update patch becomes as large as the output tensor. This
growth is illustrated by Figure 12(a).
Our above observation motivates the main idea of this optimization, which we call projec-

tive field thresholding: truncate the projective field from growing beyond a given threshold frac-

tion τ (0 < τ ≤ 1) of the output size. This means inference in subsequent layers is approximate.
Figure 12(b) illustrates the idea for a filter size 3 and stride 1. One input element is updated (shown
in red/dark); the change propagates to three elements in the next layer and then five, but it then
gets truncated, because we set τ = 5/7. This approximation can alter the accuracy of the output
values and the heatmap’s visual quality. Empirically, we find that modest truncation is tolerable
and does not affect the heatmap’s visual quality too significantly.
To provide intuition on why the above happens, consider histograms on the side of Figures 12(a)

and (b) that list the number of unique “paths” from the updated element to each element in the last
layer. It resembles a Gaussian distribution, with the maximum paths concentrated on the middle
element. Thus, for most of the output patch updates, truncation will only discard a few values at
the “fringes” that contribute to an output element. Of course, we do not consider the weights on
these “paths,” which is dependent on the given trained CNN. Since the weights can be arbitrary,
a tight formal analysis is unwieldy. But under some assumptions on the weights values (similar
to the assumptions in Reference [30] for understanding the “receptive field” in CNNs), we can see
that this distribution does indeed converge to a Gaussian. Thus, while this idea is a heuristic, it
is grounded in a common behavior of real CNNs. In the following proposition, we formalize the
effective projective field growth for a one-dimensional CNN with n convolutions layers. We also
assume that all layers have the same weight normalized CNN filter kernel (i.e., sum of the weights
add up to one).

Proposition 5.1. For a one-dimensional CNN with n layers that uses the same weight normalized

filter kernel, the theoretical projective field will grow O (n) and the effective projective field will grow
O (
√
n).

Proof. The input isu (t ) and t = 0, 1,−1, 2,−2, . . . indexes the input pixels. Assumeu (t ) is such
that

u (t ) =

{
1, t = 0,
0, t � 0.

(22)
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Each layer has the same kernel v (t ) of size k . The kernel signal can be formally defined as

v (t ) =
k−1∑
m=0

w (m)δ (t −m), (23)

wherew (m) is the weight for themth pixel in the kernel. Without losing generality, we can assume
the weights are normalized, i.e.,

∑
m w (m) = 1. The output signal of the nth layer o(t ) is simply o =

u ∗v ∗ · · · ∗v , convolving u with n such vs. To compute the convolution, we can use the Discrete
Time Fourier Transform to convert the signals into the Fourier domain, and obtain

U (ω) =
∞∑

t=−∞
u (t )e−jωt = 1, V (ω)

=

∞∑
t=−∞

v (t )e−jωt =
k−1∑
m=0

w (m)e−jωt .

(24)

Applying the convolution theorem, we get the Fourier transform of o

F (o) =F (u ∗v ∗ . . . ∗v ) (ω) = U (ω).V (ω)n

= 
�
k−1∑
m=0

w (m)e−jωt �
n

.
(25)

With inverse Fourier transform

o(t ) =
1

2π

∫ π

−π

�
k−1∑
m=0

w (m)e−jωt �
n

e jωtdω . (26)

The space domain signal o(t ) is given by the coefficients of e−jωt . These coefficients turn out
to be well studied in the combinatorics literature [31]. It can be shown that if

∑
m w (m) = 1 and

w (m) ≥ 0∀m, then

o(t ) =p (Sn = t ),

where Sn =
n∑
i=1

Xi andp (Xi =m) = w (m).
(27)

From the central limit theorem, as n → ∞, √n( 1
n
Sn − E[X ]) ∼ N (0,Var [X ]) and Sn ∼

N (n E[X ]),nVar [X ]). As o(t ) = p (Sn = t ), o(t ) also has a Gaussian shape with

E[Sn] = n
k−1∑
m=0

mw (m), (28)

Var [Sn] = n
�
k−1∑
m=0

m2w (m) − 
�
k−1∑
m=0

mw (m)�
2�. (29)

This indicates that o(t ) decays from the center of the projective field squared exponentially ac-
cording to the Gaussian distribution. As the rate of decay is related to the variance of the Gaussian
and assuming the size of the effective projective field is one standard deviation, the size can be
expressed as √

Var [Sn] =
√
nVar [Xi ] = O (

√
n). (30)

�
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However stacking more convolution layers would grow the theoretical projective field linearly.
But the effective projective field size is shrinking at a rate of O (1/

√
n). Overall, since most of the

contributions to the output elements are concentrated around the center, projective field truncation
is often affordable. Note that this optimization is only feasible in conjunction with our incremental
inference framework (Section 3) to reuse the remaining parts of the tensors and save FLOPs. We
extend the formulas for the output-input coordinate calculations to account for τ . For the width
dimension, the new formulas are as follows (similarly for the height dimension):

W O
P:l = min

(⌈(
W I
P:l +WK :l − 1

)
/Sx :l

⌉
,W O
P:l
)
, (31)

IfW O
P:l > round

(
τ ×W O

:l

)
:, (32)

W O
P:l = round

(
τ ×W O

:l

)
, (33)

W I
Pnew :l =W

O
P:l × Sx :l −WK :l + 1, (34)

xIP:l +=
(
W I
P:l −W I

Pnew :l

)
/2, (35)

W I
P:l =W

I
Pnew :l , (36)

xOP:l = max
(⌈(

Px :l + x
I
P:l −WK :l + 1

)
/Sx :l

⌉
, 0
)
. (37)

Equation (31) calculates the width assuming no thresholding. But if the output width exceeds the
threshold, it is reduced as per Equation (33). Equation (34) calculates the input width that would

produce an output of widthW O
P:l ; we can think of this as makingW I

P:l the subject of Equation (31).
If the new input width is smaller than the original input width, the starting x coordinate should be
updated as per Equation (35) s.t. the new coordinates correspond to a “center crop” compared to
the original. Equation (36) sets the input width to the newly calculated input width. Equation (37)
calculates the x coordinate of the output update patch.

Theoretical Speedups. We modify our “static analysis” framework to determine the theoretical
speedup of incremental inference (Section 3) to also include this optimization using the above for-
mulas. Consider a square occlusion patch placed on the center of the input image. Figure 13(a)
plots the new theoretical speedups for varying patch sizes forthree popular CNNs for different τ
values. As expected, as τ goes down from 1, the theoretical speedup goes up for all CNNs. Since
lowering τ approximates the heatmap values, we also plot the mean square error (MSE) of the ele-
ments of the exact and approximate output tensors produced by the final Convolution or Pooling
layers on a sample (n = 30) of real-world images. Figure 13(b) shows the results. As expected, as τ
drops, MSE increases. But interestingly, the trends differ across the CNNs due to their different ar-
chitectural properties. MSE is especially low for VGG-16, since its projective field growth is rather
slow relative to the other CNNs. We acknowledge that using MSE as a visual quality metric and
tuning τ are both unintuitive for humans. We mitigate these issues in Section 4.3 by using a more
intuitive quality metric and by presenting an automated tuning method for τ .

5.2 Adaptive Drill-down

This heuristic optimization is based on our observation about a peculiar semantics of OBE that lets
us modify how G (the set of occlusion patch locations) is specified and handled, especially in the
non-interactive specification mode. We explain our intuition with an example. Consider a radiolo-
gist explaining a CNN prediction for diabetic retinopathy on a tissue image. The region of interest
typically occupies only a tiny fraction of the image. Thus, it is an overkill to perform regular OBE
for every patch location: most of the (incremental) inference computations are effectively “wasted”
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Fig. 13. (a) Theoretical speedups with projective field thresholding. (b) Mean Square Error between exact

and approximate output of final Convolution/Pooling layers.

Fig. 14. (a) Schematic illustration of the adaptive drill-down idea. (b) Conceptual depiction of the effects of

S1 and rdrill−down on the theoretical speedup.

on uninteresting regions. In such cases, we modify the OBE workflow to produce an approximate
heatmap using a two-stage process, illustrated by Figure 14(a).

In stage one, we produce a lower resolution heatmap by using a larger stride—we call it stage
one stride S1. Using this heatmap, we identify the regions of the input that see the largest drops
in predicted probability of the label L. Given a predefined parameter drill-down fraction, denoted
rdrill−down, we select a proportional number of regions based on the probability drops. In stage two,
we perform OBE only for these regions with original stride value (we also call this stage two stride,
S2) for the occlusion patch to yield a portion of the heatmap at the original higher resolution. Since
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this process “drills down” adaptively based on the lower resolution heatmap, we call it adaptive
drill-down. Note that this optimization also builds upon the incremental inference optimizations
of Section 3, but it is orthogonal to projective field thresholding and can be used in addition.

Theoretical Speedups.We now define a notion of theoretical speedup for this optimization; this
is independent of the theoretical speedup of incremental inference. We first explain the effects of
rdrill−down and S1. Setting these parameters is an application-specific balancing act. If rdrill−down is
low, only a small region will need re-inference at the original resolution, which will save a lot of
FLOPs. But this may miss some regions of interest and thus, compromise important explanation
details. Similarly, a large S1 also saves a lot of FLOPs by reducing the number of re-inference queries
in stage one. But it runs the risk of misidentifying interesting regions, especially when the size of
those regions are smaller than the occlusion patch size. We now define the theoretical speedup
of adaptive drill-down as the ratio of the number of re-inference queries for regular OBE without
this optimization to that with this optimization. We only need the counts, since the occlusion
patch dimensions are unaltered, i.e., the cost of a re-inference query is the same with or without

this optimization. Given a stride S , the number of re-inference queries is
HIimg

S
· WIimg

S
. Thus, the

theoretical speedup is given by the following equation. Figure 14(b) illustrates how this ratio varies
with S1 and rdrill−down.

speedup =
S21

S22 + rdrill−down · S21
(38)

5.3 Automated Parameter Tuning

We now present automated parameter tuning methods for easily configuring our approximate
inference optimizations.

Tuning Projective Field Thresholding. As Section 4.1 explained, τ controls the visual qual-
ity of the heatmap. There is a spectrum of visual quality degradation: imperceptible changes to
major structural changes. But mapping τ to visual quality directly is likely to be unintuitive for
users. Thus, to measure visual quality more intuitively, we adopt a cognitive science-inspired met-
ric called Structural Similarity (SSIM) Index, which is widely used to quantify human-perceptible
differences between two images [23]. In our case, the two “images” are the original and approxi-
mate heatmaps. SSIM is a number in [−1, 1], with 1 meaning a perfect match. SSIM values in the
[0.90, 0.95] range are considered almost imperceptible distortions in many practical multimedia
applications such as image compression and video encoding [23].
Our tuning process for τ has an offline “training” phase and an online usage phase. The offline

phase relies on a set of sample images (default 30) from the same application domain. We compute
SSIM for the approximate and exact heatmaps for all sample images for a few τ values (default
1.0, 0.9, 0.8, . . . , 0.4). We then learn a second-degree polynomial curve for SSIM as a function of
τ with these data points. Figure 15(a) illustrates this phase and the fit SSIM-τ curves for three
different CNNs using sample images from an OCT dataset (Section 5). In the online phase, when
OBE is needed on a given image, we expect the user to provide a target SSIM for the quality–
runtime tradeoff they want (1 yields the exact heatmap). We can then use our learned curve to
map this target SSIM to the lowest τ . Figure 15(b) shows the CDFs of differences between the
target SSIM (0.9) and the actual SSIM yielded when using our auto-tuned τ on both the training
set and a holdout test set (also 30 images). In 80% of the cases, the actual SSIM was better than the
user-given target; never once did the actual SSIM go 0.1 below the target SSIM. This suggests that
our auto-tuning method for τ works, is robust, and applicable to different CNNs.
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Fig. 15. (a) Fitting a second-order curve for SSM against τ on a sample of the OCT dataset. (b) CDFs of

deviation of actual SSIM from the target SSIM (0.9) with our auto-tuned τ , which turned out to be 0.5, 0.7,

and 0.9 for VGG-16, ResNet-18, and Inception-V3, respectively.

Tuning Adaptive Drill-down. As Section 5.2 explained, the speedup offered by adaptive drill-
down is controlled by two parameters: stage one stride S1 and drill-down fraction rdrill−down. We
expect the user to provide rdrill−down (default 0.25), since it captures the user’s intuition about how
large or small the region of interest is likely to be in the images in their specific application domain
and dataset.We also expect the user to provide a “target speedup” ratio (default 3) for using this op-
timization to capture their desired quality-runtime tradeoff. The higher the user’s target speedup,
the more we sacrifice the quality of the “non-interesting regions” (1 − rdrill−down fraction of the
heatmap). Our automated tuning process sets S1 using these two user-given settings. Unlike the
tuning of τ , setting S1 is more direct, since this optimization relies on the number of re-inference
queries, not SSIM. Let target denote the target speedup; the original occlusion patch stride is S2.
Equation (39) shows how we calculate S1; it is obtained by making S1 the subject of Equation (38).
Since S1 cannot be larger than the image widthWimg (similarly Himg) and due to the constraint of
(1 − rdrill−down · speedup) being positive, we also have an upper bound on the possible speedups
as per Equation (40):

S1 =

√
target

1 − rdrill−down · target · S2, (39)

speedup < min
�
W 2

img

S22 + rdrill−down ·W 2
imд

,
1

rdrill−down
�. (40)

6 APPROXIMATE INFERENCE OPTIMIZATIONS FOR ORV

We first explain the idea and the intuition behind our approach to support ORV using Krypton’s
incremental inference engine. We then dive into the two main stages in our approach: (1) frame

differencing and (2) scene separation. We conclude by presenting the end-to-end workflow for ex-
ecuting ORV using Krypton.
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Fig. 16. The process of frame differencing. To better illustrate the frame differencing scheme, we select a

subsequent frame some significant distance away from the base frame.

6.1 High-level Idea

Krypton’s ability to reduce the necessary recalculations across similar images provides a unique
opportunity for accelerating CNN-based object recognition in fixed-angle camera videos. Frame-
to-frame differences in video are unlikely to be significant, and Krypton can exploit the simi-
larities between frames to limit re-inferencing to only the region of change. After performing an
initial full inference using a base frame, Krypton only needs to perform incremental inference on
the changed regions, whereas the naive approach will perform full inference for all video frames.
Reducing strain on systems for video analytics is an area of high importance, as the various appli-
cations of ORV—trafficmonitoring, surveillance, animal tracking—will largely run on edge devices
without high compute power. In these settings, using Krypton can allow for faster and more ef-
ficient inference on video inputs, thus improving the operation of these devices.
However, accelerating ORV using Krypton poses several unique challenges. First, unlike in

OBE where the changed region is exact and of rectangular shape, changed region in ORV can be
of arbitrary shape. Furthermore, due to the inherent noise in video frames there can be more than
one potentially small changed regions. Hence, finding the most important changed region from a
given frame is non-trivial. Second, over time the materialized intermediate features can get invalid.
This can happen in various ways such as due to a slight movement in the camera and change in the
lighting levels. To overcome these issues, we develop techniques for frame differencing and scene

separation, which essentially incorporate approximations to cast ORV as an OBE problem. Next,
we dive into these techniques in more detail.

6.2 Frame Differencing

We use an approximate frame differencing approach to identify the single most important changed
region for incremental inference in each frame. Algorithm 2 formally and Figure 16 pictorially
present our approach. It gets three inputs: base_f rame , which is treated as the background;
new_f rame , from which we want to find the changed region; and threshold , which will be use
to identify the changed pixels. By using pixel-subtraction, we identify all of the changes between
current frame and the base frame on a per-pixel basis. Thresholding the resultant data eliminates
noise and restricts the necessary re-inferencing to a more limited scope. We calculate bounding
boxes for the remaining areas of difference to provide a more regular shape for feeding them into
Krypton. These bounding boxes can often overlap, so we collapse them into larger bounding
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boxes to eliminate any overlaps. The largest of the resultant bounding boxes is selected as the
most important changed region for incremental inference, and we return the coordinates and di-
mensions of this box. Smaller threshold values tend to select smaller changed regions and hence
higher speedups. But they also reduce the accuracy of the generated predictions. The most opti-
mal value for threshold (value between 0 and 255) is largely dependent on the chosen use case.
In our experiments, we found that a threshold value of 40 provides a reasonable tradeoff between
runtime and accuracy.

ALGORITHM 2: FrameDifferencing

Input:

base_frame : Base frame (background of the video)

new_frame : New frame with a potential object

threshold : Pixel-wise change identification threshold

Output:

xP , yP : Starting coordinates of the largest changed region

wP , hP :Width and the height of the largest changed region

1: procedure FrameDifferencing(base_frame, new_frame, threshold)

2: binary_img← abs(new_frame - base_frame) // threshold

3: bboxes ← Calculate bounding boxes for objects in binary_imд
4: collapsed_bboxes ← Collapse overlapping bounding boxes in bboxes
5: xP , yP ,wP , hP ← Find the largest bounding box from collapsed_bboxes
6: return xP , yP ,wP , hP

6.3 Scene Separation

Our approach for ORV assumes there is a fixed background on which an object may appear. We
call it a base frame. When starting, we use the first frame in the video as the base frame. However,
as time passes it is possible that the actual background of the current frame is different to the
selected base frame. This interferes with our frame differencing approach and ends up generating
very large changed regions, which diminishes the gains of incremental inference. To address this
problem, we introduce the notion of a scene to ORV. When the size of the selected changed region
is larger than some significant fraction of the size of the base frame, we create a new scene and
reset the base frame to the current frame. This fraction controls the tradeoff between how often we
need to fully materialize a frame and how often the materialized features get reused subsequently.
As a practical rule of thumb, we find that a fraction of 50% suffices to balance this tradeoff and still
obtain good speedups without affecting accuracymuch. At this point Krypton also re-materializes
all the intermediate features for the current base frame that will be used in subsequent incremental
inference of the next scene.

6.4 Putting It All Together

We summarize the end-to-endworkflow for supporting ORV using Krypton. Algorithm 3 presents
it formally.We are given a videoV , threshold for frame differencing,max_patch_size for scene sep-
aration, KryptonGraph kд, which performs the incremental inference, and the batch_size, which
will be used for batching multiple incremental inference requests. We first initialize the base frame
to the first frame in the video. We then start iterating through frames in V , find the changed re-
gion by calling FrameDifferencing, and append them to a batch. Two possible events can occur
to trigger incremental inference to be run on the compiled batch of changed regions. First, if the
changed region size exceeds max_patch_size and encounters a new scene. Second, the current
batch size reaches themax_batch_size . Thismax_batch_size is necessary to avoid the possibility
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ALGORITHM 3: ObjectRecognitionInVideo

Input:

V : Input Video

threshold : Pixel-wise change identification threshold

max_patch_size : Maximum size of a patch for separating scenes

batch_size : Batch size for incremental inference

kд : KryptonGraph
Output:

predictions : Predicted label for each frame

1: procedure ObjectRecognitionInVideo

2: XP ← []; YP ← [];WP ← []; HP ← []; f rames ← []; predictions ← []

3: base_f rame ← V .next (); new_f rame ← V .next ()
4: while new_f rame � NULL do

5: xP , yP ,wP , hP ← FrameDifferencing(base_f rame , new_f rame , threshold)
6: if wP × hP ≥max_patch_size then � new scene

7: labels ← RunIncrementalInference(f rames , XP , YP ,WP , HP , kд)
8: predctions .extend(labels)
9: label ← kд.materialize_intermediate_data(new_f rame)
10: predictions .append(label )
11: base_f rame ← new_f rame
12: XP ← []; YP ← [];WP ← []; HP ← []; f rames ← []

13: else � same scene

14: XP .append(xP ), YP .append(yP ),WP .append(wP ), HP .append(hP )
15: f rames .append(new_f rame)
16: if len(f rames) == batch_size then � batch size reached

17: labels ← RunIncrementalInference(f rames , XP , YP ,WP , HP , kд)
18: predctions .extend(labels)
19: XP ← []; YP ← [];WP ← []; HP ← []; f rames ← []

20: new_f rame ← V .next()

21: return predictions

22:

23: procedure RunIncrementalInference(f rames , XP , YP ,WP , HP , kд)
24: WPmax ← max(WP ); HPmax ← max(HP ); P ← []

25: for i ∈ [1, . . . , len(XP )] do
26: if XP [i] +WPmax > width(f rames[i]) then
27: XP [i]← width(f rames[i]) -WPmax

28: if YP [i] + HPmax > height(f rames[i]) then
29: YP [i]← height(f rames[i]) - HPmax

30: P.append(f rames[i][XP[i]:XP[i]+WPmax , YP[i]:YP[i]+HPmax ])

31: labels ← kд.incremental_inference(P, XP , YP ,WPmax , HPmax )

32: return labels

of exhausting hardware resource such as GPU memory. Unlike in OBE where all patches are of
same size, changed regions in ORV are of arbitrary size. Thus, when invoking incremental infer-
ence on a batch of changed regions, we first find the maximum size as the final patch size. This
is formally presented in the RunIncrementalInference procedure. Finally, we return predicted
class labels for all the frames in V as the output.
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7 EXPERIMENTAL EVALUATION

We integrated our optimization techniques with the popular deep learning framework PyTorch to
create a tool we call Krypton. We now evaluate the speedups yielded by Krypton for OBE and
ORV for different deep CNNs and datasets. We also deep dive into the contributions of each of our
optimization techniques.

Datasets. For OBE, we use four diverse real-world datasets: OCT, Chest X-Ray, ImageNet, and
HAR. OCT has about 84,000 optical coherence tomography retinal images with four classes: CNV,
DME, DRUSEN, and NORMAL; CNV (choroidal neovascularization), DME (diabetic macular
edema), and DRUSEN are varieties of diabetic retinopathy. Chest X-Ray has about 6,000 X-ray
images with three classes: VIRAL, BACTERIAL, and NORMAL; VIRAL and BACTERIAL are
varieties of pneumonia. HAR is a time series dataset of sensor data collected from body-worn
accelerometers and gyroscopes at 50 Hz and has six modalities (acceleration and orientation along
x,y,z axes). It has about 10,000 data points with each having a window size of 2.56 secs and has
six classes: SITTING; STANDING; WALKING; WALKING UP; WALKING DOWN; and LAYING.
Both OCT and Chest X-Ray are from a recent radiology study that applied deep CNNs to detect
the respective diseases [2]. ImageNet is a benchmark dataset in computer vision [32]; we use a
sample of 1,000 images with 200 classes. HAR is also a benchmark dataset used for human activity
recognition [33]. For ORV, we use a sample (n = 5) of fixed-angle trail camera videos collected
from [34]. Collectively they have 106 seconds of video data.

Workloads. For OBE on image data, we use three diverse ImageNet-trained deep CNNs:
VGG16 [9], ResNet18 [35], and Inception3 [36], obtained from Reference [37]. They complement
each other in terms of model size, architectural complexity, computational cost, and our predicted
theoretical speedups (Figure 6 in Section 4). For OCT and Chest X-Ray, the three CNNs were fine-
tuned by retraining their final Fully-Connected layers as per standard practice. The OBE heatmaps
are plotted using Python Matplotlib’s imshow method using the jet_r color scheme; we set the
maximum threshold to min(1, 1.25p) and minimum to 0.75p, where p is predicted class probability
on a given image. All images are resized to the input size required by the CNNs (224 × 224 for
VGG16 and ResNet18; 299 × 299 for Inception3); no additional pre-processing was done. For OBE
on HAR data, we use a custom one-dimensional CNN. The architecture of the CNN is similar to
other one-dimensional CNNs used in similar tasks in practice and is shown in Figure 19(a). We
use a window size of 2.56 seconds and after training it yielded a test accuracy of 85%. For ORV,
we use ImageNet-trained VGG16 model to recognize animals from video frames. All CPU-based
experiments were executed with a thread parallelism of 8.

Experimental Setup. We use a machine with 32 GB RAM, Intel i7-6700 3.40 GHz CPU, and
NVIDIA Titan X (Pascal) GPU with 12 GB memory. The machine runs Ubuntu 16.04 with Py-
Torch version 0.4.0, CUDA version 9.0, and cuDNN version 7.1.2. All reported runtimes are the
average of three runs, with 95% confidence intervals shown.

7.1 End-to-end Runtimes for OBE

OBE for two-dimensional CNNs. We focus on the most common OBE scenario of producing
the whole heatmap; G is automatically created (“non-interactive” mode). We use an occlusion
patch of size 16 and stride of 4. We compare two variants of Krypton: Krypton-Exact uses only
incremental inference (Section 3), while Krypton-Approximate uses our approximate inference
optimizations, too (Section 4). The main baseline is Naive, the current dominant practice of per-
forming full inference for OBE with just only batching. We have another baseline on GPU: Naive
Inc. Inference-Exact, which is a direct implementation of Algorithm 1 in PyTorch/Python without
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Fig. 17. End-to-end runtimes of Krypton and baselines for OBE on three image datasets, three CNNs, and

both GPU and CPU.

using our GPU-optimized CUDA kernel (Section 3.4). Note that Naive Inc. Inference-Exact is not
relevant on CPU.
We set the adaptive drill-down parameters based on the semantics of each dataset’s prediction

task (Section 4.3). For OCT, since the region of interest is likely to be small, we set rdrill−down = 0.1
and target = 5. For Chest X-Ray, the region of interest can be large; so, we set rdrill−down = 0.4 and
target = 2. For ImageNet, which is in between, we use the Krypton default of rdrill−down = 0.25
and target = 3. Throughout, τ is auto-tuned with a target SSIM of 0.9 (Section 4.3). All GPU-based
experiments use a batch size of 128; for CPUs, the batch size is 16. Figure 17 presents the results.

Overall, we see Krypton offers significant speedups across the board on both GPU and CPU,
with the highest speedups seen by Krypton-Approximate on OCT with VGG16: 16× on GPU and
34.5× on CPU. The highest speedups of Krypton-Exact are also on VGG16: 3.9× on GPU and
5.4× on CPU. The speedups of Krypton-Exact are identical across datasets for a given CNN, since
it does not depend on the image semantics, unlike Krypton-Approximate due to its parameters.
Krypton-Approximate sees the highest speedups on OCT, because our auto-tuning yielded the
lowest rdrill−down, highest target speedup, and lowest τ on that dataset.

The speedups are lower with ResNet18 and Inception3 than VGG16 due to their architectural
properties (kernel filter dimensions, stride, etc.) that make the projective field grow faster. More-
over, Inception3 has a complex DAG architecture with more branches and depth-wise concate-
nation, which limits GPU throughput for incremental inference. In fact, Krypton-Exact on GPU
shows a minor slowdown (0.7×) with Inception3. But Krypton-Approximate still offers speedups
on GPU with Inception3 (up to 4.5×). We also see that ResNet18 and VGG16 almost near their the-
oretical speedups (Figure 6) but Inception3 does not. Note that the theoretical speedup definition
only counts FLOPs and does not account for memory stalls.
Finally, the speedups are higher on CPU than GPU; this is because CPU suffers less from mem-

ory stalls during incremental inferences. But the absolute runtimes are much lower on GPU as
expected. Overall, Krypton reduces OBE runtimes substantially for multiple datasets and deep
CNNs.We also ran an experiment in the “interactive” mode by reducing |G |. As expected, speedups
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Fig. 18. Occlusion heatmaps for sample images (CNN model = VGG16, occlusion patch size = 16, patch

color = black, occlusion patch stride (S or S2) = 4. For OCT rdr ill_down = 0.1 and target = 5. For Chest

X-Ray rdr ill_down = 0.4 and target = 2. For ImageNet rdr ill_down = 0.25 and target = 3). For a projective

field threshold value of 0.3, we see significant degradation of heatmap quality due to the significant infor-

mation loss from truncation.

go down with |G | due to the reduction in amortization benefits. These additional results are pre-
sented in Section 7.2. Figure 18 presents occlusion heatmaps for a sample image from each dataset
with (a) incremental inference for different projective field threshold values and (b) incremental in-

ference with adaptive drill-down for different projective field threshold values. The predicted class
label for OCT, Chest X-Ray, and ImageNet are DME, VIRAL, and OBOE, respectively.

OBE for one-dimensional CNNs. We compare full CNN inference time versus incremental in-
ference time for running OBE using a CNN trained to identify different human postures from
body-worn sensor data [33]. We use a zero valued occlusion patch of size 4, stride of 1, batch
size of 125, and compare runtimes on both CPU and GPU environments. Figure 19(b) presents the
results.
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Fig. 19. (a) Architecture of the one-dimensional CNN used for the human activity classification task.

(b) Runtimes and theoretical FLOP counts for full inference and incremental inference (τ = 1) when run-

ning OBE using the one-dimensional CNN (occlusion patch size = 4, occlusion patch value = 0, occlusion

patch stride = 1, batch size = 125).

One full inference through the one-dimensional CNN requires performing 106 Mega floating
point operations (MFLOPs) and performing incremental inference drops it to 19 MFLOPs resulting
in a theoretical speedup of 5×. It should be noted that the amount of computations performed by
a typical one-dimensional CNN is relatively smaller than the amount of computations performed
by a two-dimensional image CNN. For example, VGG16 performs 16 GFLOPs versus 19 MFLOPs
by our one-dimensional CNN. On the CPU environment incremental inference reduces the OBE
runtime for a single time series window by 3×. However, on the GPU environment it did not yield
any speedups. This is because on the GPU the relatively low amount of computations needed
for OBE makes the overheads of invoking GPU kernels dominate the overall runtime. Figure 20
presents visuals on how the probability for the predicted class label change for a sample of time
series windows as we slide the occlusion patch.

7.2 Deep Dive into OBE Optimizations

We now analyze the contributions of our optimizations individually in the context of OBE. We
compare the speedups of Krypton over Naive (batched inference) on both CPU and GPU, termed
Empirical-CPU and Empirical-GPU, respectively, against the theoretical speedups (explained in
Sections 3 and 4).

Only Incremental Inference.We vary the patch size and set the stride to 4. Figure 21 shows the
results. As expected, the speedups go down as the patch size increases. Empirical-GPUNaive yields
no speedups, because it does not use our GPU-optimized kernel, while Empirical-GPU does. But
Empirical-CPU is closer to theoretical speedup and almost matches it on ResNet18. Thus, there
is still some room for improvement to improve the efficiency of incremental inference in both
environments.
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Fig. 20. OBE outputs for sample time series windows corresponding to difference activities (occlusion patch

size = 4, occlusion patch value = 0, occlusion patch stride = 1, batch size = 125). Top row shows the input

data corresponding to tri-axial acceleration and orientation. Bottom row shows the change in probability for

the predicted class for each occlusion patch position.

Fig. 21. Speedups with only the incremental inference optimization (occlusion patch stride S = 4).

Fig. 22. Speedups with incremental inference combined with only projective field thresholding.

Projective Field Thresholding. We vary τ from 1.0 (no approximation) to 0.4. Adaptive drill-
down is disabled but note that this optimization builds on top of our incremental inference. The
occlusion patch size is 16 and stride is 4. Figure 22 shows the results. The speedups go up steadily as
τ drops for all three CNNs. Once again, Empirical-CPU nears the theoretical speedups on ResNet18,
but the gap between Empirical-GPU and Empirical-CPU remains due to the disproportionate im-
pact of memory stalls on GPU. Overall, this approximation offers some speedups in both environ-
ments but has a higher impact on CPU than GPU.
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Fig. 23. Speedups with incremental inference combined with adaptive drill-down. For (a), we set S1 = 16.

For (b), we set rdr ill_down = 0.25).

Adaptive Drill-down. Finally, we study the effects of adaptive drill-down (again, on top of incre-
mental inference) and disable projective field thresholding. The occlusion patch size is 16. Stage
two stride is S2 = 4. First, we vary rdr ill−down , while fixing stage one stride (S1 = 16). Figure 23(a)
shows the results. Next, we vary S1, while fixing rdr ill−down = 0.25. Figure 23(b) shows the results.
As expected, the speedups go up as rdr ill−down goes down or S1 goes up, since fewer re-inference
queries arise in both cases. Empirical-CPU almost matches the theoretical speedups across the
board; in fact, even Empirical-GPU almost matches theoretical speedups on Inception3. Empirical-
GPU flattens out at high S1, since the number of re-inference queries drops, thus resulting in di-
minishing returns for the benefits of batched execution on GPU. Overall, this optimization has a
major impact on speeding up OBE for all CNNs in both environments.

InteractiveMode Execution.We evaluate interactive-mode incremental inference execution (no
approximate inference optimizations) with Gs of different sizes. Similar to non-interactive mode
experiments presented in Section 5, all experiments are run in batched mode with a batch size of
16 for CPU based experiments and a batch size 128 for GPU-based experiments. If the size of G
(formally |G |) or the remainder of G is smaller than the batch size, that value is used as the batch
size (e.g., |G | = 16 results in a batch size of 16). Figure 24 presents the final results.

Memory Overhead. We evaluate the memory overhead of IVM approach, with no projective
field thresholding (τ = 1.0) and a projective field thresholding value of τ = 0.6, compared to the
full CNN inference. For this, we record the peak GPU memory utilization while the CNN models
perform inference on image batches of size 128. We found that incremental inference approach
can enable up to 58% lower memory overhead (see Figure 25). Krypton materializes a single copy
of all CNN layers corresponding to the unmodified image and reuses it across a batch of occluded
images with IVM. For IVM the size of required memory buffers are much smaller than the full
inference, as only the updated patches need to be propagated.
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Fig. 24. Interactive mode execution of incremental inference with Gs of different sizes.

Fig. 25. Peak GPU memory usage when performing CNN inference on a batch of 128 images.

Fig. 26. Comparison of integrated gradients method against OBE. (a) Heatmaps generated by integrated

gradients method with a step size of 50. The three color channel gradients of pixels at the same point are

aggregated using L2 norm.

Integrated Gradients Method. Explaining deep CNN predictions is still an active area of re-
search. While OBE is popular among many domain users, there are several other methods that
can be used for the same task. Integrated Gradients (IG) is one such recently proposed method
that claims to overcome many shortcomings of previous methods. We evaluate the runtime and
visual quality of the generated heatmaps for IG [38] and OBE methods on three representative
images from our datasets (see Figure 26). In general, OBE can better localize relevant regions from
the input images. IG method requires tuning a hyper-parameter called steps, which determines the
number of steps to be used in the gradient integration approximation. Increasing steps improves
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Fig. 27. Runtimes and theoretical FLOP counts for full inference and incremental inference for running ORV

(frame differencing threshold = 40, frame sampling rate = 30fps, CPU max batch size = 1, GPU max batch

size = 64).

both the runtime and heatmap quality of the IG method. For performing OBE, we used the same
hyper-parameters that were used in Section 7.1.

7.3 End-to-end Runtimes for ORV

We now compare the full CNN inference time versus incremental inference time for running ORV
on a sample of wildlife trail-camera videos. We set the frame differencing threshold to 40 and use a
frame sampling rate of 30 fps. For CPU, we use a maximum batch size of 1; for GPU, the maximum
batch size is 64. Figure 27 presents the results.

At the selected frame differencing threshold value and frame sampling rate, our approximate
incremental inference approach for ORV achieves 89% accuracy. Performing full inference for ORV
requires 53.4 Tera floating point operations (TFLOPs) and performing incremental inference drops
it to 9.3 TFLOPs, resulting in a 5.8× theoretical speedup. On CPU Krypton is able to yield a 4.4×
speedup and drop inference time from 41.6 mins to 9.4 mins. However, on GPU ORV with incre-
mental inference is unable to provide significant speedups at any threshold, in fact being slower at
some thresholds. As most use-cases for video-inferencing are on edge devices, CPU-based systems
are likely to be the more common choice for applications of ORV. Hence, we believe Krypton’s
incremental inference optimizations are more likely to be applicable in those settings.

7.4 Deep Dive into ORV Optimizations

We now dive into how the frame differencing threshold and the frame sampling rate affects the
speedup and accuracy for ORV on Krypton.

Frame Differencing Threshold. We vary the frame differencing threshold for ORV with incre-
mental inference and compare how it affects both the runtime and accuracy. The frame rate of the
videos are fixed at 30 fps. For CPU, we use a maximum batch size of 1; for GPU, the maximum
batch size is 64. Figure 28 presents the results.
OnCPU, ORVwith incremental inference provides significant speedups at all thresholds, though

higher thresholds do perform better than lower ones. This is because a lower threshold causes
larger areas to be selected for recalculation, increasing the runtime and inference costs. The effect
is mitigated by the choice to select only the largest region for recalculation, but higher thresholds
continue to have better runtime performance. The frame differencing threshold also presents a
tradeoff between runtime and accuracy, as these lower thresholds with larger areas of recalculation
make itmore likely that the incremental inference systemwill produce an accurate result compared
to the full inferencing system. For this particular dataset, we find a threshold value of 40 gives an
accuracy of 89% with 5× speedup on CPU.
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Fig. 28. (a) Speedups obtained by incremental inference for ORV on both CPU and GPU. (b) Accuracy

of ORV with incremental inference compared to full inference with varying frame differencing threshold.

(c) CDF plot of the speedup improvements at various frame differencing thresholds.

Fig. 29. (a) Runtimes of ORV with incremental and full inference on both CPU and GPU with varying frame

sampling rate. (b) Accuracy of ORV with incremental inference compared to full inference with varying

sampling rate. (c) CDF plot of the speedup improvements at various sampling rates.

GPU systems do not benefit much from Krypton’s application to ORV. The speedups there are
minimal at best. Due to the nature of ORV, the dimensions of different input batches are differ-
ent among multiple batches. Hence, it requires allocating new memory buffers on the fly, which
causes significant overheads. Another likely issue is the reduced effective batch sizes due to scene
separation triggering before reaching the max batch size, which reduces the hardware utilization.
Interestingly, the speedup does not monotonically increase with the threshold value. We see a

sudden drop in speedup from threshold value 40 to value 50 and it starts increasing thereafter. We
found that thresholds past 40 actually have fewer full materializations than those prior to 40. This
is because a too large threshold value eliminates too large of a region in each frame differencing,
so as it minimizes the patch size, the scene separation is unlikely to ever trigger. While this re-
duces computations performed by full inference, it adversely affects the subsequent incremental
inference operations by selecting relatively larger regions due not picking an appropriate base
frame. In other words, while the sizes of the changed regions are not too large—they are also not
too small! As a result, the gains achieved by reduced full inferences are not sufficient to offset the
added computations of larger incremental inference regions. The speedup CDF plots for thresh-
olds 40 and 50 also confirm our observation; CDF plot for 50 is towards the left of the CDF plot for
40 at lower speedup values. This issue is largely data-dependent—the intensity of changes across
frames would affect the prevalence of this phenomenon. It also explains the sudden drop in accu-
racy at threshold 50. Since this problem only begins past threshold 40, all subsequent thresholds
show significantly lower accuracy.

Frame SamplingRate.Wenow vary the frame sampling rate for ORVwith incremental inference
and compare how it affects both the runtime and accuracy. For these experiments, we fix the frame
differencing threshold to 40. On CPU, we use a maximum batch size of 1; for GPU, the maximum
batch size is 64. Figure 29 presents the results.
For both ORVwith incremental inference and ORVwith full inference, the relationship between

the sampling rate and runtime is generally linear and the results are not surprising. The speedups
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remain quite consistent on CPU systems, ranging between 3–4.5× improvements. On GPU, there
appears to be a more consistent improvement, but the rate of change is slight, and the difference is
between 1–1.6× improvement. Accuracy also appears to be affected, being reduced slightly as the
frame sampling rate increases.We could attribute this to the fact that between two directly adjacent
frames, there may not be a large (if one exists at all!) change region that gets past the threshold,
as not enough time has passed for any change to occur. Therefore, the incremental inference will
be applied to a very small portion of the image—limiting the model’s ability to update to the new
inputs.

7.5 Summary of Experimental Results

Overall, our experiments show that Krypton can substantially accelerate CNN inference for both
OBE and ORV workloads. For OBE it yields up to 16× speedups on GPU and 34.5× speedups on
CPU, and for ORV it yields up to 4.4× speedups on CPU. The benefits of our optimizations depend
on the CNN’s architectural properties. Our approximate inference optimizations also depend on
the dataset’s properties due to their tunable parameters, which Krypton can tune automatically or
easily set by the user based on her judgment. Finally, Krypton sees higher speedups on CPU than
GPU, but the runtimes are much lower on GPU. Overall, our optimizations in Krypton help reduce
runtimes for OBE and ORV by improving utilization of existing resources rather than forcing users
to buy more resources.

7.6 Extensions and Limitations

In this work, we use IVM-based incremental inference as a post hoc optimization to accelerate
CNN inference. Going further, “IVM-friendliness” can be baked into the very model selection pro-
cess that crafts the CNN architecture so the model is both accurate and amenable to fast explana-
tions [39] or fast video analytics. These extensions are complementary to our work and we leave
such extensions to future work.
Our approximate CNN inference optimizations rely on the domain expertise of the user to

pick configuration parameters such as target SSIM for projective field thresholding and drill-
down ratio for adaptive drill-down. Improperly choosing these parameters can lead to misleading
explanations.

8 OTHER RELATEDWORK

Methods for Explaining CNN Predictions. Perturbation-based and gradient-based are the two
main kinds of methods. Perturbation-based methods observe the output of the CNN by modify-
ing regions of the input image [10, 11, 17]. OBE belongs to this category. Gradient-based methods
generate a sensitivity heatmap by computing the partial derivatives of model outputs with re-
spect to every input pixel [38, 40, 41]. The recently proposed “Integrated Gradients” (IGD) method
belongs in this category [38]. Empirically, we found that OBE produces higher quality heatmaps
with better localized regions of interest compared to IGD, while being competitive on runtime. In
practice, however, OBE is usually the method of choice for scientific domain users, especially in
radiology [12, 42], since it is easy to understand for non-technical users and typically produces
high-quality and well-localized heatmaps.

Faster CNN Inference. Several techniques have been proposed to accelerate deep neural network
inference that are also applicable to CNNs. One such technique is model quantization technique
[43–45], which reduces the precision of model parameters and performs low-precision arithmetic
during inference. Another technique to reduce the inference times of CNNs is to prune the number
of channels in convolution layers [19, 46]. Furthermore, one can also train a computationally less
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expensive model using a technique called model distillation [47]. All these techniques trade off the
accuracy of a model for faster inference and are orthogonal to our work. Krypton’s incremental
and approximate inference optimizations are higher-level optimizations that can still operate on
quantized, pruned, or distilled CNN models.

Video Inference Optimization. DeepCache [48] is a system for accelerating CNN-based video
inference for mobile vision. Similar to Krypton, it exploits the temporal locality in input video
streams, but by using a cache of CNN features generated by previous frames. Given a new
frame, it tries to find reusable image regions and use their CNN features to reduce the amount of
required computations. Krypton’s focus is on fixed-angle camera videos, and hence it is sufficient
to materialize/cache the features only from the base frame in a scene. EVA2 [49] is a custom
software-hardware integrated stack for exploiting temporal redundancy in video frames. It does
so by performing motion estimation computations on video frames and incrementally updating
the activation values. Similarly, Diffy [50] is another custom hardware accelerator that exploits
the spatial correlation of activation values to reduce inference times. It performs differential
convolutions that operate on delta values instead of original values to reduce inference times.
These systems are complementary to our work, as our optimizations are at the logical level; they
are also applicable to any compute hardware. CBinfer performs change-based approximate CNN
inference to accelerate real-time object recognition on video [22]. Similar to Krypton, it also uses
thresholding to identify the changed region in video frames. However, it does this thresholding
to the outputs of all convolution layers to gain even higher speedups. NoScope accelerates object
classification on video streams using model cascades [16]. Panorama also accelerates unbounded
vocabulary object recognition on video streams using a deeply supervised cascade built into a
new CNN architecture that can be weakly supervised by a domain-specific CNN [51]. Krypton
uses frame differencing and incremental inference to accelerate ORV, not model cascades, and it
does not logically modify the CNN given for inference. Nexus [52] is a GPU cluster engine for
accelerating CNN-based video inference. It uses novel batching techniques, which are orthogonal
to the optimizations introduced in Krypton.

Query Optimization. Our work is inspired by the long line of work on relational IVM [53–55],
but ours is the first work to use the IVM lens for OBE with CNNs. Our novel algebraic IVM frame-
work is closely tied to the dataflow of CNN layers, which transform tensors in non-trivial ways.
Our work is related to the IVM framework for linear algebra in Reference [56]. They focus on bulk
matrix operators and incremental addition of rows. We do not deal with bulk matrix operators or
addition of rows but more fine-grained CNN inference computations and in-place updates to im-
age pixels due to occlusions. Also related is the IVM framework for distributed multi-dimensional
array database queries in Reference [57]. An interesting connection is that CNN layers with lo-
cal spatial context (Section 2.2) can be viewed as a variant of spatial array join-aggregate queries.
But our work enables end-to-end IVM for entire CNNs, not just one-off spatial queries involving
data materialization and loading. Our focus is on popular deep learning tools, not array databases.
Finally, we also introduce novel CNN-specific and human perception-aware optimizations to ac-
celerate OBE.
Our work is also inspired by relational MQO [24, 58], but our focus is on CNNs, not relational

queries. A recent line of work in the database community studies MQO-style techniques for
ML systems [59–61], both classical statistical ML systems [62–69] and deep learning systems
[70, 71]. Our work adds to this growing direction but to the best of our knowledge, ours is
the first work to combine MQO with IVM, at least in ML systems. Our approximate inference
optimizations are inspired by approximate query processing (AQP) techniques [72]. But unlike
statistical approximations of SQL aggregates, our techniques are CNN-specific. For OBE, we also
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take into account human perception-aware heuristics; for ORV, we take into account properties of
video data.
A shorter version of this article was published at ACM SIGMOD 2019 [73]. In that paper, we

introduced Krypton aimed only at OBE for images and outlined incremental and approximate
inference optimizations for OBE. We showcased the utility of our optimizations on three popu-
lar CNNs and real-world image datasets. Compared to that paper, in this article, we generalize
Krypton to support IVM for arbitrary CNNs by introducing the notion of KryptonGraph and
automating its generation and execution. To demonstrate the generality of our system, we also
present a new OBE experiment on time series data using a one-dimensional CNN. We also provide
a theoretical proof for our insights underpinning projective field thresholding. Finally, this article
also goes beyond OBE to show how the same IVM framework also helps accelerate ORV as an
extension of OBE.

9 CONCLUSIONS AND FUTUREWORK

Deep CNNs are gaining widespread adoption for analytics over images, video, and time series data.
Occlusion-based explanation (OBE) and object recognition in video (ORV) are two popular CNN-
based workloads on such data that are highly compute-intensive due to the large number of CNN
re-inference requests produced. In this work, we formalize OBE and ORV from a data management
standpoint by re-imagining CNN inference as queries and by devising a suite of novel database-
inspired query optimization techniques to accelerate these workloads. Our techniques span exact
incremental inference and multi-query optimization for CNN inference, as well as CNN-specific
and human-perception-aware approximate inference. Overall, our ideas yield over an order of
magnitude speedups for OBE and over 4× speedups for ORV.
An interesting avenue for future work is to extend our IVM and MQO techniques to reduce

computational costs and runtimes of more deep learning and other ML models and workloads,
as well as on other data types such as relational (tabular), text, and graph data. More broadly, we
believe database systems techniques can help reduce resource costs and improve usability of deep
learning and ML systems significantly, thus enabling a wider base of application users to benefit
frommodernML.We hope our work helps inspire more followupwork in the database community
on this interesting and important direction.
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