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Abstract 

Introduction: Sitting patterns predict several healthy aging outcomes. These patterns can 

potentially be measured using hip-worn accelerometers, but current methods are limited by an 

inability to detect postural transitions. To overcome these limitations, we developed the 

Convolutional Neural Network Hip Accelerometer Posture (CHAP) classification method. 

Methods: CHAP was developed on 709 older adults who wore an ActiGraph GT3X+ 

accelerometer on the hip, with ground truth sit/stand labels derived from concurrently worn 

thigh-worn activPAL inclinometers for up to 7 days. The CHAP method was compared to 

traditional cut-point methods of sitting pattern classification as well as a previous machine 

learned algorithm (Two Level Behavior Classification [TLBC]). Results: For minute level sitting 

vs. non-sitting classification, CHAP performed better (93% agreement with activPAL) than other 

methods (74%-83% agreement). CHAP also outperformed other methods in its sensitivity to 

detecting sit-to-stand transitions: cut-point (73%), TLBC (26%), and CHAP (83%). CHAP’s 

positive predictive value of capturing sit-to-stand transitions was also superior to other methods: 

cut-point (30%), TLBC (71%), and CHAP (83%). Day-level sitting pattern metrics, such as 

mean sitting bout duration, derived from CHAP did not differ significantly from activPAL, 

whereas other methods did: activPAL (15.4 mins mean sitting bout duration), CHAP (15.7 

mins), cut-point (9.4 mins), TLBC (49.4 mins). Conclusion: CHAP was the most accurate 

method for classifying sit-to-stand transitions and sitting patterns from free-living hip-worn 

accelerometer data in older adults. This promotes enhanced analysis of older adult movement 

data, resulting in more accurate measures of sitting patterns and opening the door for large scale 

cohort studies into the effects of sitting patterns on healthy aging outcomes. Keywords: Machine 

learning; healthy aging; sit-to-stand transitions; activPAL, ActiGraph; free-living  
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Introduction 

Sedentary behavior is a severe and prevalent health risk for older adults comprising 10-14 

hours of older adults’ days (1–6). Recent evidence suggests that there may be additional risk 

associated with sitting for prolonged periods of time independent of the total time spent sitting 

(7–9). The latter findings have led to increased interest in the study of “sitting patterns”, which 

refers to the number and duration of sitting bouts (i.e., continuous periods of sitting) versus non-

sitting bouts (i.e., continuous periods of standing or stepping), as well as the postural transitions 

between them. Sitting patterns can be quantified using metrics such as number of daily sit-to-

stand transitions, number of daily sitting bouts, number of daily prolonged sitting bouts (≥30 

mins), mean sitting bout duration (total daily sitting time/total sit-to-stand transitions), and usual 

bout duration (the sitting bout duration at or above which 50% of an individual’s sitting time is 

accumulated) (8,10).  

 

Sitting patterns are generally measured using thigh or hip-worn accelerometers, however 

to date hip-worn accelerometry is the best approach to measure motion and movement (sedentary 

behavior) while thigh-worn devices are better at measuring posture and postural transitions 

(sitting patterns) (11–13). While systems using several sensors can measure both sedentary 

behavior and sitting patterns (14), it is desirable for participant ease and comfort to have one 

device that can measure both with high validity. Measures of sitting patterns derived from cut-

point-based hip-worn accelerometer data do not adequately measure the postural transitions that 

form the basis of sitting pattern metrics, including overestimating the number of sit-to-stand 

transitions and underestimating prolonged sitting time (15–17). Progress in machine learning 

techniques may make it possible to address hip-worn accelerometry’s major limitation and close 
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the gap in sitting pattern measurement between hip-worn and thigh-worn accelerometers, as 

evidenced by developments in related areas such as activity type and intensity classification (18–

21). However, the ability of current algorithms to identify the postural transitions (sit-to-stand) 

needed to measure sitting patterns in free-living populations is low, and there is a lack of 

algorithms that are specifically trained to identify transitions (22–24).   

 

Thigh-worn inclinometers such as activPAL have been shown to accurately capture sit-

to-stand transitions and can be used as high-frequency ground truth in posture labeling because 

data are provided many times per second (25). In previous work we have demonstrated that 

activPAL data can be used to train machine learning models for capturing postural transitions in 

free-living hip-worn accelerometer data, though a small sample with low generalizability was 

used (26,27). Here we build on this previous work and describe the training and validation of a 

Convolutional Neural Network (CNN) + bi-directional long short-term memory network 

(BiLSTM) model designed to classify sitting patterns as well as sedentary behavior from hip-

worn ActiGraph accelerometer data. We dub this algorithm the CNN Hip Accelereometer 

Posture (CHAP) method and detail its superior accuracy for identifying sit-to-stand transitions 

using data from 709 older men and women who concurrently wore hip-worn ActiGraph 

accelerometers and thigh-worn activPAL inclinometers for up to 7 days. 
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Methods 

Parent Study 

Data were obtained from the Adult Changes in Thought (ACT) study, an ongoing 

longitudinal cohort study that maintains an active enrollment of approximately 2,000 older adults 

(≥ 65 y old) in Washington State. The ACT study began in 1994 to investigate risk factors for 

development of dementia and has since provided a unique opportunity to additionally study a 

wide range of non-cognitive factors of healthy aging. Starting in 2016, the ACT activity monitor 

sub-study (ACT-AM) was initiated, adding a device-based activity monitoring component to 

capture the spectrum of sedentary and physically active patterns (28). Participants were excluded 

from ACT-AM if they were wheelchair bound, receiving hospice or care for a critical illness, 

resided in a nursing home, or if memory problems became evident during testing. The remaining 

participants were asked to wear a hip-worn ActiGraph wGT3X+ (ActiGraph LLC, Pensacola, 

FL, USA), activated using ActiLife software to capture 30 Hz triaxial (i.e. data captured from 

three spatial axes) data and worn on an elastic belt situated so the device rests on the right side at 

the level of the suprailiac crest, and a thigh-worn activPAL micro3 (PAL Technologies, 

Glasgow, Scotland, UK), activated using a 10s minimum threshold for labeling postural 

transitions and secured to the front, center thigh with waterproofed materials. Participants were 

asked to wear both devices 24-hours/day for 1 week. While some participants elected only to 

wear one device, most wore both simultaneously. Participants also recorded self-reported sleep 

logs throughout their device wear.  Ethics approval was obtained from the Kaiser Permanente 

Washington institutional review board (approval #821300).  All participants provided written 

informed consent. 
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Data Cleaning and Pre-Processing 

In-bed and accelerometer non-wear time was removed from the device data. The 

collected self-reported sleep logs were used to identify and remove in-bed time. Missing sleep 

log information was imputed using person-specific means, when available, or using the sample 

average. To identify and remove periods of non-wear, ActiGraph accelerometer data were 

processed using the Choi algorithm (29,30) applied to vector magnitude counts per minute using 

a 90-minute window, 30-minute streamframe, and 2-minute tolerance.   

 

For inclusion in this study, data was required from both the ActiGraph and activPAL 

devices simultaneously. Participants were excluded if data from either of the monitors were 

missing or invalid. No minimum wear time criteria were required; all days with concurrent 

device wear for any length of time were considered valid days and were included in the sample. 

After restricting to waking wear time on both devices, visual inspection was used to define 

invalid data based on time drift between the monitors, a phenomenon in which data collected 

from one device appears to gradually lose or gain time when compared to another device 

resulting in the two data streams no longer aligning (see Figure, Supplemental Digital Content–

Appendix, which depicts an example of drift between activPAL and ActiGraph) (31).  

 

CHAP Design 

The CHAP method was developed using a deep neural network (32) to classify sitting 

versus non-sitting behavioral postures and postural transitions from 10 Hz triaxial ActiGrah data 

(downsampled from 30 Hz via boxcar aggregation to reduce the size of the dataset). All 

computations were made on 10-second non-overlapping windows of continuous 10 Hz data, each 
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containing 100 triaxial acceleration values. The 10-second window size was chosen to align with 

activPAL’s 10-second minimum threshold for labeling postural transitions. We used a model 

architecture family called CNN-BiLSTM architecture (33), which has three main components: 1) 

a CNN base (34), 2) a BiLSTM network (35), and 3) a softmax output layer akin to a logistic 

regression classifier (36). The first component automatically extracted features for identifying 

sitting versus non-sitting for each time point; the second component refined these features by 

considering neighboring time points and the most likely sequence of events; the third component 

converted the extracted features to a final classification label (sitting or non-sitting)..   Below, 

detailed descriptions are given for each component of CHAP and the unique way these 

components work synergistically. 

 

CNN. After partitioning both activPAL and triaxial ActiGraph data into non-overlapping 

10 second increments, features were extracted for each window. Unlike traditional machine 

learning models that target certain pre-defined features (e.g. time- or frequency-domain summary 

values), the CNN automaticaly learned its own features by repeatedly convolving the raw triaxial 

data, with each convolution using a different kernel. During training, the model learned the 

parameters of each kernel, which enabled the convolution-based features to capture the relevant 

information for the posture classification task. 

 

BiLSTM. The CNN classifications were made under the assumption that all 10-second 

windows contained independent and identically-distributed data (37). Human behavior does not 

meet these conditions, as a given action will generally be influenced by the preceding actions. 

Therefore, it was important to account for this temporal dependence (38), which necessitated 
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layering the BiLSTM on top of the CNN. The BiLSTM component automatically learned 

temporal features from the patterns of variations across time to differentiate activities. The 

BiLSTM component took in a sequence of features produced by the CNN component for a 

window of input data and output another sequence of BiLSTM extracted features corresponding 

to each 10-second window of the input. During training, the parameters of the BiLSTM 

component were adjusted to properly smooth the output so that there was minimal opportunity 

for the model to insert spurious interruptions during continuous sitting or non-sitting bouts. 

 

CNN and BiLSTM Featurization Relationship. The CNN and BiLSTM components 

have a complementary relationship in how they featurized the data for classification. The CNN 

captured behaviors at a lower temporal granularity using the immediate temporal relationships 

within the classification window (10 seconds). This helped identify sudden changes in the base 

accelerometer features, e.g., those caused by transitions. In a sense, similar to how 2-D CNNs 

exploit spatial dependencies in image pixels to extract relevant features, our 1-D CNN 

effectively treated time series as “1-D images” across time. The BiLSTM’s memory cells 

“remembered” patterns in the extracted CNN features over time to discern higher-level behaviors 

with longer temporal relationships. This helped identify both non-changes in the base features, 

e.g., those during sitting (or non-sitting) bouts, as well as reoccurring changes, e.g., back-to-back 

transitions. Together, these capabilities demonstrated the power of modern deep learning in 

automatically featurizing low-level sequence data: myriad manually tuned temporal thresholds 

are replaced with compact end-to-end learned neural architectures. 
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Softmax Output Layer. The output of the BiLSTM component was a sequence of 

intermediate features corresponding to a window of input data. To perform the final behavior 

classification on the extracted features we used a Softmax layer. The Softmax layer converts 

input features to final probabilities of each 10 second time interval belonging to sitting or non-

sitting behavior. We then selected the most probable label as the final classification. 

 

CHAP Development and Evaluation 

The sample was divided into a training sample (n = 399 participants), a holdout 

validation sample (n = 97), and a test sample (n = 213). The training and validation samples were 

used to determine the optimal settings for CHAP, while the test sample was withheld until final 

models were selected and used for a performance comparison of CHAP and two other 

commonly-used sitting pattern classification methods (described below). Given the large number 

of steps and parameter tuning that occurs when building CNN models, a test dataset was critical 

for obtaining unbiased estimates of model performance.  

 

Model Development. The CHAP method was trained end to end using the 

backpropagation technique (32), meaning that output from each layer was sequentially fed into 

the subsequent layer to generate a final output. During training, we fed each window of input 

ActiGraph data through CHAP, generating classifications for each 10-second time interval in 

each input window. We then compared classifications with the activPAL-derived ground truth 

labels corresponding to the same 10-second input window in question, which are assigned based 

on the majority activPAL designated posture in a given 10-second window (note: in the case of a 

tie, the sitting label was chosen). Based on this comparison, we then used the backpropagation 

AC
CE
PT
EDDD

tion.

EDEDn = 399 participants), n = 399 participants)

The training and validatioThe training and validati

while the test sample wwhile the test samp

erformance comparison rformance co

cation methods (describedcation methods (de

at occurs when building Coccurs when building 

mates of model performanmates of model performan

CCDevelopment. The CH

AC
n technique (32)

ACbsequent layer to geneAph data througAwin



method to update the learnable parameters in the model in order to minimize the cross-entropy of 

classifications (i.e., maximize accuracy) between the predicted classifications and the ground 

truth labels. This process was completed for all input training data and repeated several times.  

 

Training neural networks is a complex process involving multiple parameters and tuning 

steps which could lead to models that overfit the data. Thus, it is unwise to use training data 

alone for model selection given that the goal is to apply the algorithm on future data that is 

independent of the training set (39). Therefore, we fitted several model configurations on the 

training data, and compared their performance when applied to the holdout validation data. 

Model configurations varied on four dimensions:  BiLSTM window size (7 and 9 min), number 

of neurons in a CNN layer (3200 and 6400 neurons), learning rate (0.001 and 0.0001), and 

regularization coefficient (0.001 and 0.0001). All possible unique combinations of domain values 

were tested, for a total of 16 unique model configurations tested. These comparisons enabled us 

to identify the best model configuration, based on several performance metrics (Table 1). Metrics 

included overall and balanced classification accuracy, ability to accurately capture transitions 

(i.e., changes in posture), sitting and non-sitting bout deviations, and Kolmogorov-Smirnov 

statistics for comparing CHAP-predicted vs true (activPAL) probability distributions of sitting 

and non-sitting bouts. Models with low accuracy or high variance, relative to competing models, 

on any of these metrics were eliminated. Three models performed equally well on all metrics, 

and these models were used to create a hybrid ensemble model that made classifications based 

on the majority vote. This ensemble model represented the complete CHAP method. For each of 

the three models that performed best in the validation set, and the final ensemble model, we 
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calculated the means and standard deviations (SD) of the evaluation metrics described in Table 

1.  

 

Model Evaluation. Using data from the test set, we compared the performance of CHAP 

to the performance of two other classification approaches that are commonly used in the field: 1) 

the standard ActiGraph cut-point (AG cut-point) method, and 2) a previously developed two 

level behavior classification (TLBC) machine learned model designed to differentiate sitting 

from standing postures. The AG cut-point method is designed to capture sedentary, non-

movement bouts, which are sometimes used as a proxy for sitting bouts (7). Sedentary bouts 

were defined using 1-minute epoch data, in which minutes were classified as sedentary if the 

vertical axis counts were less than 100 (40). Consecutive sedentary minutes were classified as 

bouts with no minimum duration required and no allowance for interruptions. TLBC sequentially 

applies a pre-trained random forest and hidden Markov model (hmm) to 30 Hz tri-axial 

accelerometer data and was trained using annotated images captured from person-worn 

SenseCams (41–43). TLBC first converts the 30 Hz tri-axial accelerometer data into a set of 41 

engineered features that are used to classify minutes of sitting, riding in a vehicle (which 

collectively represent sitting), standing, and walking/running (which collectively represent non-

sitting). We defined sitting bouts as any period labeled by TLBC as a sitting posture, specifically 

sitting and riding in a vehicle.   

 

The methods were compared using the same classification metrics that were used during 

validation (see Table 1). Because TLBC and AG cut-point methods yielded results at minute-

level, for model comparison purposes, CHAP’s 10-second-level classifications were aggregated 
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to minute-level, using majority vote for sitting vs. non-sitting labels. We also included 

comparisons of common person-level sitting pattern metrics, including mean sitting bout 

duration (total sitting time/ number of sitting bouts), average daily sitting time (total sitting time/ 

number of days), and average daily number of sitting bouts (number of sitting bouts / number of 

days). A final performance indicator was how well each method was able to predict the timing of 

postural transitions at a 10-second granularity within a one-minute window. This analysis was 

done using the transition pairing method (44), which uses an extended Gale-Shapley algorithm to 

pair actual and predicted transitions together for analysis. The method allowed exclusion of non-

sequential pairings and any pairings that exceeded a specified lag time (tolerance), which was 1 

minute for this study. One minute was the minimum tolerance level after which the number of 

successful pairings levelled off (See Supplemental Table 1, Supplemental Digital Content–

Appendix, which shows transition pair sensitivity and precision results at different tolerance 

levels, from no tolerance to 5 minutes, across methods). The pairings were analyzed to determine 

the true positive rate (recall) and positive predictive value (PPV; precision), of predicted 

transitions. 

 

Performance metrics were calculated for each person and method. Summary statistics 

were then calculated across participants, and boxplots were used to visually examine variability 

across test subjects. In addition to model performance metrics, we also compared commonly 

used sitting pattern metrics (mean sitting bout duration, mean daily sitting time, and mean 

number of daily sitting bouts), derived using each method to the activPAL ground truth. General 

estimating equations (GEE), accounting for nesting of methods within participants, were used to 

evaluate differences of performance between methods as well as whether sitting pattern metrics 
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derived from different methods were significantly different from those derived from activPAL. 

GEE was implemented using an exchangeable correlation structure and robust standard errors. 

Finally, to allow inference about individual-level, in addition to sample-level, agreement, sitting 

pattern metrics derived from each modeling approach (AG cut-point, TLBC, and CHAP) were 

also compared to activPAL using mean absolute error (MAE). 

 

Results 

Sample Partitioning and Characteristics 

Figure 1 summarizes data loss and partitioning, and Table 2 shows participant 

characteristics for the final sample. Participant characteristics for the included overall ACT-AM 

sample were similarly distributed in the training (N=399), validation (N=97), and test sets 

(N=213).  

 

Model Accuracy  

Ten-second-level summary statistics of the three best CNN model configurations (labeled 

A, B, C), as well as the CHAP model are displayed in Table 3. Here we focus on the accuracy 

and mean absolute percent error (MAPE) metrics defined in Table 1 between the three CNN 

model configurations, which estimate agreement and deviation between the actual and predicted 

values.  

 

 Across all performance metrics, CHAP was superior to the other methods (Figure 2) at 

the minute level. For balanced accuracy, which is the average of sensitivity and specificity, the 

AG cut-point method performed worst, with a value of 74%, followed by 83% for TLBC versus 
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93% for the CHAP model. All models had high sensitivity for classifying sitting, ranging from 

88% (AG cut-point) to 97% (CHAP). Specificity varied markedly between models: 60% for AG 

cut-point, 74% for TLBC, and 89% for CHAP. The differences in performance in balanced 

accuracy, sensitivity and specificity between CHAP and the AG cut-point method, and between 

CHAP and TLBC were statistically significant at the 5% level. The MAPEs of sitting versus 

non-sitting classification were not similar. While all methods were able to accurately classify 

true sitting, the AG cut-point and TLBC methods classified between 25 – 40% of true (activPAL 

registered) non-sitting as sitting. Of note, the variation in these metrics was also higher for the 

AG cut-point and TLBC versus CHAP, indicating superior individual-level agreement for the 

latter method.  

 

Participant-level Sitting Pattern Classification 

 Figure 3 shows results of the sitting pattern analyses. The average mean bout duration 

from CHAP, 15.7 minutes per day, did not significantly differ relative to activPAL, 15.4 minutes 

per day (MAECHAP = 2 minutes). Average mean bout duration using AG cut-point, 9.4 minutes 

per day, and TLBC method, 49.4 minutes per day, did significantly differ at the 5% level relative 

to activPAL (MAEAG cut-point = 6 minutes, and MAETLBC = 34 minutes). Average daily sitting 

time derived using AG cut-point, 643.2 minutes per day, and using TLBC method, 616.2 minutes 

per day, was significantly different relative to activPAL, 594.6 minutes per day (MAEAG cut-point = 

75 minutes, and MAETLBC = 50 minutes), but average daily sitting time derived from CHAP, 

595.4 minutes per day, was not significantly different relative to activPAL (MAECHAP = 31 

minutes). Average daily number of sitting bouts using all three methods were significantly 

different from activPAL. Of the three methods, average daily number of sitting bouts derived 
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using CHAP, 41.8 per day, was the closest to activPAL, 43.9 per day (MAECHAP = 5) and the 

difference was not deemed to be relevant in practice. The average daily number of sitting bouts 

derived using AG cut-point, 79.2 per day, and TLBC, 14.1 per day, had much larger deviations 

relative to activPAL (MAEAG cut-point = 35, and MAETLBC = 30).  The results suggest that the latter 

two methods are unable to accurately capture sitting patterns. AG cut-point over-predicted the 

number of transitions by two times explaining why its mean bout duration was lower than 

activPAL, whereas TLBC under-predicted relative to activPAL by two thirds, hence why its 

mean bout duration was higher. Despite its superior performance to the other two methods, the 

CHAP method had slightly lower person-to-person variability (i.e., lower SDs) compared to 

activPAL.  

 

Classifying the timing of Sit-to-Stand Transitions 

 We examined accuracy in predicting sit-to-stand transitions within a 1-minute window by 

the three methods compared to the activPAL (Figure 4). Transition sensitivity estimates the 

percent of true transitions (as registered by the activPAL), that were captured by the different 

methods. Sensitivity for transition detection was similar for the AG cut-point (72%) and CHAP 

(83%), whereas it was only 26% for TLBC, likely due to over-smoothing. Transition PPV or 

precision estimates the proportion of predicted transitions which are true activPAL transitions. In 

contrast to the sensitivity results, PPV was similar for CHAP (83%) and TLBC (71%), whereas it 

was only 30% for the AG cut-point. The differences in performance in transition sensitivity and 

transition PPV between CHAP and the AG cut-point method, and between CHAP and TLBC 

were statistically significant at the 5% level. 
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Discussion 

The CHAP model had higher accuracy than existing methods for classifying sitting bouts 

and sit-to-stand transitions from free-living hip-worn accelerometer data in older adults. As such, 

it represents an important step forward in the field of sitting pattern measurement in this 

population. CHAP will allow for less cumbersome protocols for studies in older adults by 

necessitating only one hip-worn device to measure both posture and motion. CHAP can be used 

to re-process previously collected hip-worn accelerometer data among older adults, resulting in 

more accurate measures of true sitting time and patterns in existing cohort studies as well as 

future studies that choose to use hip-worn accelerometers.  

 

The AG cut-point method over-estimated true sitting time and failed to capture sit-to-

stand transitions that are key to the measurement of sitting patterns (15–17,45). This underscores 

the importance of using methods for their intended use. That is, cut-point methods are meant to 

capture movement intensity and non-movement but not changes in posture. The main 

shortcoming of the cut-point method was that it misclassified approximately 40% of activPAL 

registered non-sitting time as sitting, while simultaneously over-predicting sit-to-stand transitions 

such that approximately 70% of the transitions it predicted were not activPAL transitions, 

resulting in inaccurate measures of sitting patterns. These findings are in line with other studies 

that support the use of hip-worn accelerometry for measuring motion and movement but suggest 

thigh-worn devices for measuring posture and postural transitions (11–13,15–17). Thus, 

evidence on sitting patterns measured using ActiGraph cut-points should be interpreted with 

caution. It is not clear whether such misestimation has major impacts on the ability to detect 

associations between sitting patterns and health. Nonetheless, there is sufficient evidence to 
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suggest that sitting pattern estimates, derived from ActiGraph cut-points should not be compared 

to studies that employed posture-based measures such as activPAL or used to inform specific 

thresholds of sitting patterns when generating intervention or public health recommendations.  

 

Transitions have been a large issue for the field even with application of machine learned 

algorithms. Machine learning approaches most often rely on single label classification within a 

given window or period (e.g., 5 minutes), and therefore an inherent assumption is that only one 

activity type occurs within each interval window (22). Lab-based training data reduces the 

amount of transitions, resulting in algorithms with high predictive accuracy, but algorithms 

trained on data obtained from free-living populations must account for the inherent messiness of 

human postural changes and movement. The TLBC method was designed to address some of 

these limitations by training it against free-living images collected by a body-worn camera. 

However, the body-worn camera captured images triggered by changes in light and movement, 

meaning TLBC was unable to reliably capture postural transitions or their exact timing, leading 

to an underestimation of postural transitions (44). Solutions have been proposed in the literature 

to allow for better identification of transitions by machine learning models including activity-

based windowing and adaptive sliding window segmentation, where for both solutions windows 

are adjusted to ensure one activity is represented per window and windows can vary in size 

throughout the dataset (46,47). Alternatively, CHAP uses a BiLSTM component with a fixed 

window that automatically learns to capture the transitions during training. We found that even 

though the model accuracy did not significantly vary (at most 2% variation) with the chosen 

BiLSTM window size, it significantly affected the ability of the model to capture transitions 

correctly. As the window size was increased from 1 minute to 9 minutes, the transition capturing 
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recall reduced by 6% from 83% to 77% and the PPV increased by 23% from 56% to 79%. In 

practice, we found that a window size of 7-9 minutes works well for our data, which had a mean 

activPAL sitting bout time of 15.4 minutes and mean non-sitting bout time of 7.9 minutes. More 

experimental results on the model sensitivity for the chosen BiLSTM window size are provided 

in Supplemental Table 2 (see Table, Supplemental Digital Content–Appendix). 

 

Deep learning methods to improve measures derived from accelerometer data are of 

growing interest in the field. For instance, Nawaratne et al leverage a CNN model architecture to 

derive measures of physical activity intensity from wrist-worn ActiGraph that are of equal 

caliber to those measured from the hip-worn ActiGraph. While the goals of Nawaratne et al’s 

model differ from those of CHAP, making the results not directly comparable, their work 

demonstrates the utility of CNN model architecture in constructing machine learned approaches 

to processing accelerometer data (48). CHAP builds on this approach, adding a BiLSTM layer 

for improved measurement of activity transitions.  

 

We were able to find only one other study that uses hip-worn ActiGraph data to classify 

sedentary behavior and sitting patterns in a free-living population with high accuracy. Kuster et 

al developed an algorithm utilizing hip-worn ActiGraph data in a sample of office workers 

(N=38) to detect prolonged sitting bouts (≥5 and ≥10 minutes). Their method used a random 

forest classifier on 563 engineered ActiGraph signal features, followed by a bagged classification 

tree ensemble method. The model achieved a low bias of ≤ 7 minutes/d, when classifying time 

spent in prolonged sitting bouts (≥ 5 minutes and ≥ 10 minutes) relative to activPAL (49). CHAP 

builds on the model of Kuster et al in several ways. Most importantly, it was developed, 
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validated, and tested on a larger and more representative cohort (N=709) of free-living older 

adults. Through the CNN + BiLSTM architecture, CHAP was also able to automate the 

featureextraction process rather than relying on human engineered features. As a result, CHAP 

requires less human input than the Kuster et al. model and is a versatile and flexible model that 

can be used to derive various person-level sitting pattern variables beyond prolonged sitting 

bouts. This application in the older adult population of the ACT cohort represents only the first 

test-case for CHAP. Future work will apply this method in other populations to assess 

performance and generalizability of CHAP in other age groups, and refine the model for broader 

generalizability across age, sex, and other key demographic factors.   

 

Researchers interested in more deeply exploring the CHAP algorithm or applying CHAP 

to their existing hip-worn accelerometer data to derive postural transition and sitting pattern 

metrics are invited to explore the study’s GitHub repository. CHAP and associated user 

documentation are available for download from 

https://github.com/ADALabUCSD/DeepPostures. 

 

Our study has several limitations that should be considered. We used thigh-worn 

activPAL data as ground truth rather than direct observation, which could lead to compounding 

of the activPAL’s inherent measurement error. However, we believe the benefit of obtaining 

large amounts of free-living data outweighs limitations of activPAL. Furthermore, activPAL has 

been shown to be a highly valid instrument for measuring postural transitions (25). Notably, 

CHAP had slightly lower person-to-person variability (i.e., lower SDs for derived sitting pattern 

metrics) compared to activPAL, which could potentially result in reduced statistical power in 
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studies of associations between sitting patterns and health outcomes, and should be addressed in 

future studies.  However, since our CHAP model predictions have similar probability 

distributions to that of the ground-truth (activPAL), in practice, we do not expect substantial 

negative effects on study power when using CHAP predictions. Despite these limitations, our 

study had considerable strengths, including the large sample size and rigorous machine learning 

procedures employed. Although CHAP allows posture-based classification from a single device, 

the hip-worn ActiGraph, it is important to acknowledge that methods for integrating both types 

of sensors (e.g., activPAL and ActiGraph) to achieve systems for postural and motion 

measurement have been previously developed (14). Additionally, recent studies have developed 

accurate classification methods of wrist-worn accelerometer data for both sedentary behavior and 

sitting patterns (50, 51).   

 

CHAP performed much better than currently available methods, and it established a 

novel and powerful framework for models that use hip-worn data. This advance will allow 

researchers to better understand the epidemiology of sitting patterns, including norms among 

healthy and unhealthy people and how sitting patterns are causally associated with a myriad of 

healthy aging outcomes. Additionally, it will reduce participant burden by allowing for accurate 

measurement of posture and motion using one hip-worn device, rather than necessitating several 

devices. Ultimately, this data will be needed to help inform future guidelines for sedentary 

behavior among older adults. 
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Figure Captions 

 

Figure 1. Flow diagram from ACT study for inclusion into this study and random division into 

training and testing data sets.  

1Non-concurrent wear represents data in which the devices are not worn concurrently. 

2Drift is a phenomenon in which data collected from one device appears to gradually loose or 

gain time when compared to another device, such that, over time, the two data streams no longer 

align. See Figure, Supplemental Digital Content for an example of drift in this sample. 

 

Figure 2. Minute-level performance (balanced accuracy, sensitivity/recall, specificity) in 

classifying sitting versus not sitting comparing AG cut-point (peach), TLBC (blue), and CHAP 

(green).  

 

Figure 3. Person-level sitting pattern metrics (mean sitting bout duration, average daily sitting 

time in minutes, average daily number of sitting bouts) comparing activPAL (orange), AG cut-

point (peach), TLBC (blue), and CHAP (green).  

 

Figure 4. Assessment of minute-level performance in timing of classification of sit-to-stand 

transitions within 1-minute window (tolerance) using paired actual and predicted transitions for 

AG cut-point (peach), TLBC (blue), and CHAP (green). 
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Supplemental Digital Content 

 

APPENDIX: OlderAdult_ML_NIDDK_FINAL_2-10-2021_Supplemental Content.docx 
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Table 1. Definitions and interpretations of accuracy and error metrics  

Confusion matrix of actual and predicted 10s segments 

 Predicted Sitting Predicted Non-Sitting 

Actual Sitting a b 

Actual Non-Sitting c d 

 

Metric Definition1 Interpretation 

Accuracy (a+d)/(a+b+c+d) Proportion of segments correctly predicted. 

Sensitivity a/(a+b) Proportion of activPAL sitting segments that were 

predicted sitting. Shows out of all the activPAL 

sitting segments how many were correctly 

precited as sitting.  

Specificity d/(c+d) Proportion of activPAL non-sitting segments that 

were predicted non-sitting. Shows out of all the 

activPAL not sitting minutes, how many were 

correctly predicted as non-sitting. 

Balanced Accuracy 0.5a/(a+b) + 0.5d/(c+d) Average of sensitivity and specificity. 

Sitting time Mean 

Absolute Percent 

Error (MAPE) 

100*(|(a+b) – (a+c)|)/(a+b) Absolute percent error in total predicted sitting 

time (versus total actual sitting time). 

Not-Sitting time 

MAPE 

100*(|(c+d) – (b+d)|)/(c+d) Absolute percent error in total predicted non-

sitting time (versus total actual non-sitting time). 

  1Refers to letters defined in the confusion matrix. 
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Table 2. Participant characteristics for the full, training, validation, and test sets.  

  Full Sample Training Validation Test 

Characteristics N = 709 N = 399 N = 97 N = 213 

 mean (SD) 

Age (years) 76.70 (6.52) 76.87 (6.38) 76.60 (6.84) 76.44 (6.64) 

Gender N (%) 

   Female 415 (58.5%) 234 (58.6%) 54 (55.7%) 127 (59.6%) 

Race ethnicity     

   Hispanic or non-white 70 (9.9%) 31 (7.8%) 16 (16.5%) 23 (10.9%) 

Education     

   Less than High School 10 (1.4%) 7 (1.8%) 1 (1.0%) 2 (0.9%) 

   Completed High School 52 (7.3%) 25 (6.3%) 8 (8.2%) 19 (8.9%) 

   Some College 113 (15.9%) 68 (17.0%) 13 (13.4%) 32 (15.0%) 

   Completed College 534 (75.3%) 299 (74.9%) 75 (77.3%) 160 (75.1%) 

BMI     

   BMI 29 or below 537 (77.4%) 293 (74.7%) 81 (88.0%) 163 (77.6%) 

   BMI greater than 29 157 (22.6%) 99 (25.3%) 11 (12.0%) 47 (22.4%) 

Self-Rated Health     
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   Good, poor, or very poor 279 (39.4%) 164 (41.1%) 37 (38.1%) 78 (36.6%) 

Difficulty in walking half a 

mile 
 

 
  

   Some or more 168 (23.7%) 99 (24.8%) 21 (21.6%) 48 (22.5%) 

1Differences between training + validation sets and the test set were not statistically significant at 

the 5% level using two-sample t-test for continuous variables and chi-square test for categorical 

variables. 
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Table 3. Test set performance of top three performing CNN models and ensemble CHAP at the 

10-second level (mean (SD) of metrics). 

Models Accuracy 

(%) 

Balanced 

Accuracy 

(%) 

Sitting 

time 

MAPE 

(%) 

Non-

sitting 

time 

MAPE 

(%) 

Transition 

sensitivity 

(recall) % at 1 

minute 

tolerance1  

Transition 

PPV 

(precision) % 

at 1 minute 

tolerance1 

A 93.5 (3.9) 91.8 (4.7) 5.3 7.7 76.7 (10.3) 74.5 (12.6) 

B 93.7 (3.8) 91.9 (5.1) 5.2 8.7 76.2 (11.1) 76.7 (12.3) 

C 93.7 (3.6) 92.4 (4.2) 5.5 9.8 75.8 (9.9) 77.0 (11.6) 

CHAP 

(ensemble) 

94.1 (3.6) 92.6 (4.5) 5.2 8.2 77.1 (10.8) 80.0 (12.5) 

1 Detection of transitions within ±6 10-s epochs of ActiGraph data. 
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Supplemental Digital Content 

 

Example of drift. 

 

 

 

 

 

Figure. Example of Drift. Sample heat map of participant with device drift. Each rectangle is 

one 24-hour day. The horizontal outer bars represent sleep diaries (yellow bar), and Choi 

ActiGraph non-wear periods (grey bars). The horizontal inner bars represent activPAL postures; 

sitting (red), standing (dark blue), stepping (aquamarine). The white etching represents vector 

magnitude from the ActiGraph, plotted at one-minute epoch, truncated at 1500 counts per 

minute. 

  

Sitting from activPAL 
Standing from activPAL 

Stepping from activPAL 
Self-reported sleep period 

Actigraph non-wear from Choi 
Vector magnitude from ActiGraph 
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Transition recall and precision sensitivity to transition pairing tolerance window size  

 

Supplemental Table 1. Minute-level test set transition analysis sensitivity to transition pairing 

tolerance window size (mean (SD) of metrics) 

 
Sensitivity / Recall (%) 

Positive Predictive Value / Precision 

(%) 

Transition  

pairing  

tolerance 

AG  

cut-point 
TLBC CHAP 

AG  

cut-point 
TLBC CHAP 

No tolerance 48.2 (12.9) 17.7 (7.2) 63.8 (16.2) 20.2 (6.6) 48.5 (17.2) 63.7 (16.5) 

1 minute 72.3 (11.1) 26.1 (7.9) 83.2 (9.2) 30.3 (7.3) 71.2 (15.5) 82.9 (9.6) 

2 minutes 79.3 (10.0) 27.8 (8.0) 84.7 (8.2) 33.2 (7.1) 75.9 (14.7) 84.4 (8.7) 

3 minutes 82.7 (9.6) 28.8 (7.9) 85.3 (7.8) 34.7 (7.1) 79.0 (13.7) 85.0 (8.4) 

4 minutes 84.9 (9.3) 29.6 (7.8) 85.9 (7.4) 35.6 (7.3) 81.4 (13.0) 85.5 (8.1) 

5 minutes 86.4 (9.1) 30.2 (7.8) 86.2 (7.3) 36.3 (7.3) 83.3 (12.4) 85.8 (8.0) 
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Model sensitivity to the BiLSTM window size. 

Supplemental Table 2. Test set performance of models at the 10-second level with different 

BiLSTM window sizes when all other model configuration parameters kept fixed (mean (SD) of 

metrics). 

BiLSTM 

Window Size 

(min) 

Accuracy (%) Balanced 

Accuracy (%) 

Transition sensitivity 

(recall) % at 1 

minute tolerance 

Transition PPV 

(precision) % at 1 

minute tolerance 

1 92.1 (4.2) 90.2 (4.2) 83.5 (7.9) 56.0 (13.1) 

3 93.1 (3.7) 91.5 (4.1) 79.4 (8.7) 69.3 (12.3) 

5 93.1 (3.8) 91.9 (4.3) 77.4 (10.2) 74.3 (12.3) 

7 93.2 (3.7) 92.1 (4.1) 75.9 (10.2) 73.8 (11.8) 

9 93.9 (3.6) 92.4 (4.5) 76.9 (9.7) 78.5 (11.3) 
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