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Abstract

Introduction: Sitting patterns predict several healthy aging outcomes. These patterns can
potentially be measured using hip-worn accelerometers, but current methods are limited by an
inability to detect postural transitions. To overcome these limitations, we developed the
Convolutional Neural Network Hip Accelerometer Posture (CHAP) classification method.
Methods: CHAP was developed on 709 older adults who wore an ActiGraph GT3X+
accelerometer on the hip, with ground truth sit/stand labels derived from concurrently worn
thigh-worn activPAL inclinometers for up to 7 days. The CHAP method was compared to
traditional cut-point methods of sitting pattern classification as well as a previous machine
learned algorithm (Two Level Behavior Classification [TLBC]). Results: For minute level sitting
vs. non-sitting classification, CHAP performed better (93% agreement with activPAL) than other
methods (74%-83% agreement). CHAP also outperformed other methods in its sensitivity to
detecting sit-to-stand transitions: cut-point (73%), TLBC (26%), and CHAP (83%). CHAP’s
positive predictive value of capturing sit-to-stand transitions was also superior to other methods:
cut-point (30%), TLBC (71%), and CHAP (83%). Day-level sitting pattern metrics, such as
mean sitting bout duration, derived from CHAP did not differ significantly from activPAL,
whereas other methods did: activPAL (15.4 mins mean sitting bout duration), CHAP (15.7
mins), cut-point (9.4 mins), TLBC (49.4 mins). Conclusion: CHAP was the most accurate
method for classifying sit-to-stand transitions and sitting patterns from free-living hip-worn
accelerometer data in older adults. This promotes enhanced analysis of older adult movement
data, resulting in more accurate measures of sitting patterns and opening the door for large scale
cohort studies into the effects of sitting patterns on healthy aging outcomes. Keywords: Machine

learning; healthy aging; sit-to-stand transitions; activPAL, ActiGraph; free-living



Introduction

Sedentary behavior is a severe and prevalent health risk for older adults comprising 10-14
hours of older adults’ days (1-6). Recent evidence suggests that there may be additional risk
associated with sitting for prolonged periods of time independent of the total time spent sitting
(7-9). The latter findings have led to increased interest in the study of “sitting patterns”, which
refers to the number and duration of sitting bouts (i.e., continuous periods of sitting) versus non-
sitting bouts (i.e., continuous periods of standing or stepping), as well as the postural transitions
between them. Sitting patterns can be quantified using metrics such as number of daily sit-to-
stand transitions, number of daily sitting bouts, number of daily prolonged sitting bouts (>30
mins), mean sitting bout duration (total daily sitting time/total sit-to-stand transitions), and usual
bout duration (the sitting bout duration at or above which 50% of an individual’s sitting time is

accumulated) (8,10).

Sitting patterns are generally measured using thigh or hip-worn accelerometers, however
to date hip-worn accelerometry is the best approach to measure motion and movement (sedentary
behavior) while thigh-worn devices are better at measuring posture and postural transitions
(sitting patterns) (11-13). While systems using several sensors can measure both sedentary
behavior and sitting patterns (14), it is desirable for participant ease and comfort to have one
device that can measure both with high validity. Measures of sitting patterns derived from cut-
point-based hip-worn accelerometer data do not adequately measure the postural transitions that
form the basis of sitting pattern metrics, including overestimating the number of sit-to-stand
transitions and underestimating prolonged sitting time (15—17). Progress in machine learning

techniques may make it possible to address hip-worn accelerometry’s major limitation and close



the gap in sitting pattern measurement between hip-worn and thigh-worn accelerometers, as
evidenced by developments in related areas such as activity type and intensity classification (18—
21). However, the ability of current algorithms to identify the postural transitions (sit-to-stand)
needed to measure sitting patterns in free-living populations is low, and there is a lack of

algorithms that are specifically trained to identify transitions (22-24).

Thigh-worn inclinometers such as activPAL have been shown to accurately capture sit-
to-stand transitions and can be used as high-frequency ground truth in posture labeling because
data are provided many times per second (25). In previous work we have demonstrated that
activPAL data can be used to train machine learning models for capturing postural transitions in
free-living hip-worn accelerometer data, though a small sample with low generalizability was
used (26,27). Here we build on this previous work and describe the training and validation of a
Convolutional Neural Network (CNN) + bi-directional long short-term memory network
(BILSTM) model designed to classify sitting patterns as well as sedentary behavior from hip-
worn ActiGraph accelerometer data. We dub this algorithm the CNN Hip Accelereometer
Posture (CHAP) method and detail its superior accuracy for identifying sit-to-stand transitions
using data from 709 older men and women who concurrently wore hip-worn ActiGraph

accelerometers and thigh-worn activPAL inclinometers for up to 7 days.



Methods

Parent Study

Data were obtained from the Adult Changes in Thought (ACT) study, an ongoing
longitudinal cohort study that maintains an active enrollment of approximately 2,000 older adults
(> 65 y old) in Washington State. The ACT study began in 1994 to investigate risk factors for
development of dementia and has since provided a unique opportunity to additionally study a
wide range of non-cognitive factors of healthy aging. Starting in 2016, the ACT activity monitor
sub-study (ACT-AM) was initiated, adding a device-based activity monitoring component to
capture the spectrum of sedentary and physically active patterns (28). Participants were excluded
from ACT-AM if they were wheelchair bound, receiving hospice or care for a critical illness,
resided in a nursing home, or if memory problems became evident during testing. The remaining
participants were asked to wear a hip-worn ActiGraph wGT3X+ (ActiGraph LLC, Pensacola,
FL, USA), activated using ActiLife software to capture 30 Hz triaxial (i.e. data captured from
three spatial axes) data and worn on an elastic belt situated so the device rests on the right side at
the level of the suprailiac crest, and a thigh-worn activPAL micro3 (PAL Technologies,
Glasgow, Scotland, UK), activated using a 10s minimum threshold for labeling postural
transitions and secured to the front, center thigh with waterproofed materials. Participants were
asked to wear both devices 24-hours/day for 1 week. While some participants elected only to
wear one device, most wore both simultaneously. Participants also recorded self-reported sleep
logs throughout their device wear. Ethics approval was obtained from the Kaiser Permanente
Washington institutional review board (approval #821300). All participants provided written

informed consent.



Data Cleaning and Pre-Processing

In-bed and accelerometer non-wear time was removed from the device data. The
collected self-reported sleep logs were used to identify and remove in-bed time. Missing sleep
log information was imputed using person-specific means, when available, or using the sample
average. To identify and remove periods of non-wear, ActiGraph accelerometer data were
processed using the Choi algorithm (29,30) applied to vector magnitude counts per minute using

a 90-minute window, 30-minute streamframe, and 2-minute tolerance.

For inclusion in this study, data was required from both the ActiGraph and activPAL
devices simultaneously. Participants were excluded if data from either of the monitors were
missing or invalid. No minimum wear time criteria were required; all days with concurrent
device wear for any length of time were considered valid days and were included in the sample.
After restricting to waking wear time on both devices, visual inspection was used to define
invalid data based on time drift between the monitors, a phenomenon in which data collected
from one device appears to gradually lose or gain time when compared to another device
resulting in the two data streams no longer aligning (see Figure, Supplemental Digital Content—

Appendix, which depicts an example of drift between activPAL and ActiGraph) (31).

CHAP Design

The CHAP method was developed using a deep neural network (32) to classify sitting
versus non-sitting behavioral postures and postural transitions from 10 Hz triaxial ActiGrah data
(downsampled from 30 Hz via boxcar aggregation to reduce the size of the dataset). All

computations were made on 10-second non-overlapping windows of continuous 10 Hz data, each



containing 100 triaxial acceleration values. The 10-second window size was chosen to align with
activPAL’s 10-second minimum threshold for labeling postural transitions. We used a model
architecture family called CNN-BiLSTM architecture (33), which has three main components: 1)
a CNN base (34), 2) a BILSTM network (35), and 3) a softmax output layer akin to a logistic
regression classifier (36). The first component automatically extracted features for identifying
sitting versus non-sitting for each time point; the second component refined these features by
considering neighboring time points and the most likely sequence of events; the third component
converted the extracted features to a final classification label (sitting or non-sitting).. Below,
detailed descriptions are given for each component of CHAP and the unique way these

components work synergistically.

CNN. After partitioning both activPAL and triaxial ActiGraph data into non-overlapping
10 second increments, features were extracted for each window. Unlike traditional machine
learning models that target certain pre-defined features (e.g. time- or frequency-domain summary
values), the CNN automaticaly learned its own features by repeatedly convolving the raw triaxial
data, with each convolution using a different kernel. During training, the model learned the
parameters of each kernel, which enabled the convolution-based features to capture the relevant

information for the posture classification task.

BiLSTM. The CNN classifications were made under the assumption that all 10-second
windows contained independent and identically-distributed data (37). Human behavior does not
meet these conditions, as a given action will generally be influenced by the preceding actions.

Therefore, it was important to account for this temporal dependence (38), which necessitated



layering the BiLSTM on top of the CNN. The BiLSTM component automatically learned
temporal features from the patterns of variations across time to differentiate activities. The
BiLSTM component took in a sequence of features produced by the CNN component for a
window of input data and output another sequence of BiILSTM extracted features corresponding
to each 10-second window of the input. During training, the parameters of the BiLSTM
component were adjusted to properly smooth the output so that there was minimal opportunity

for the model to insert spurious interruptions during continuous sitting or non-sitting bouts.

CNN and BIiLSTM Featurization Relationship. The CNN and BiLSTM components
have a complementary relationship in how they featurized the data for classification. The CNN
captured behaviors at a lower temporal granularity using the immediate temporal relationships
within the classification window (10 seconds). This helped identify sudden changes in the base
accelerometer features, e.g., those caused by transitions. In a sense, similar to how 2-D CNNs
exploit spatial dependencies in image pixels to extract relevant features, our 1-D CNN
effectively treated time series as “l1-D images” across time. The BiLSTM’s memory cells
“remembered” patterns in the extracted CNN features over time to discern higher-level behaviors
with longer temporal relationships. This helped identify both non-changes in the base features,
e.g., those during sitting (or non-sitting) bouts, as well as reoccurring changes, e.g., back-to-back
transitions. Together, these capabilities demonstrated the power of modern deep learning in
automatically featurizing low-level sequence data: myriad manually tuned temporal thresholds

are replaced with compact end-to-end learned neural architectures.



Softmax Output Layer. The output of the BILSTM component was a sequence of
intermediate features corresponding to a window of input data. To perform the final behavior
classification on the extracted features we used a Softmax layer. The Softmax layer converts
input features to final probabilities of each 10 second time interval belonging to sitting or non-

sitting behavior. We then selected the most probable label as the final classification.

CHAP Development and Evaluation

The sample was divided into a training sample (n = 399 participants), a holdout
validation sample (n = 97), and a test sample (n = 213). The training and validation samples were
used to determine the optimal settings for CHAP, while the test sample was withheld until final
models were selected and used for a performance comparison of CHAP and two other
commonly-used sitting pattern classification methods (described below). Given the large number
of steps and parameter tuning that occurs when building CNN models, a test dataset was critical

for obtaining unbiased estimates of model performance.

Model Development. The CHAP method was trained end to end using the
backpropagation technique (32), meaning that output from each layer was sequentially fed into
the subsequent layer to generate a final output. During training, we fed each window of input
ActiGraph data through CHAP, generating classifications for each 10-second time interval in
each input window. We then compared classifications with the activPAL-derived ground truth
labels corresponding to the same 10-second input window in question, which are assigned based
on the majority activPAL designated posture in a given 10-second window (note: in the case of a

tie, the sitting label was chosen). Based on this comparison, we then used the backpropagation



method to update the learnable parameters in the model in order to minimize the cross-entropy of
classifications (i.e., maximize accuracy) between the predicted classifications and the ground

truth labels. This process was completed for all input training data and repeated several times.

Training neural networks is a complex process involving multiple parameters and tuning
steps which could lead to models that overfit the data. Thus, it is unwise to use training data
alone for model selection given that the goal is to apply the algorithm on future data that is
independent of the training set (39). Therefore, we fitted several model configurations on the
training data, and compared their performance when applied to the holdout validation data.
Model configurations varied on four dimensions: BiLSTM window size (7 and 9 min), number
of neurons in a CNN layer (3200 and 6400 neurons), learning rate (0.001 and 0.0001), and
regularization coefficient (0.001 and 0.0001). All possible unique combinations of domain values
were tested, for a total of 16 unique model configurations tested. These comparisons enabled us
to identify the best model configuration, based on several performance metrics (Table 1). Metrics
included overall and balanced classification accuracy, ability to accurately capture transitions
(i.e., changes in posture), sitting and non-sitting bout deviations, and Kolmogorov-Smirnov
statistics for comparing CHAP-predicted vs true (activPAL) probability distributions of sitting
and non-sitting bouts. Models with low accuracy or high variance, relative to competing models,
on any of these metrics were eliminated. Three models performed equally well on all metrics,
and these models were used to create a hybrid ensemble model that made classifications based
on the majority vote. This ensemble model represented the complete CHAP method. For each of

the three models that performed best in the validation set, and the final ensemble model, we



calculated the means and standard deviations (SD) of the evaluation metrics described in Table

1.

Model Evaluation. Using data from the test set, we compared the performance of CHAP
to the performance of two other classification approaches that are commonly used in the field: 1)
the standard ActiGraph cut-point (AG cut-point) method, and 2) a previously developed two
level behavior classification (TLBC) machine learned model designed to differentiate sitting
from standing postures. The AG cut-point method is designed to capture sedentary, non-
movement bouts, which are sometimes used as a proxy for sitting bouts (7). Sedentary bouts
were defined using 1-minute epoch data, in which minutes were classified as sedentary if the
vertical axis counts were less than 100 (40). Consecutive sedentary minutes were classified as
bouts with no minimum duration required and no allowance for interruptions. TLBC sequentially
applies a pre-trained random forest and hidden Markov model (hmm) to 30 Hz tri-axial
accelerometer data and was trained using annotated images captured from person-worn
SenseCams (41-43). TLBC first converts the 30 Hz tri-axial accelerometer data into a set of 41
engineered features that are used to classify minutes of sitting, riding in a vehicle (which
collectively represent sitting), standing, and walking/running (which collectively represent non-
sitting). We defined sitting bouts as any period labeled by TLBC as a sitting posture, specifically

sitting and riding in a vehicle.

The methods were compared using the same classification metrics that were used during
validation (see Table 1). Because TLBC and AG cut-point methods yielded results at minute-

level, for model comparison purposes, CHAP’s 10-second-level classifications were aggregated



to minute-level, using majority vote for sitting vs. non-sitting labels. We also included
comparisons of common person-level sitting pattern metrics, including mean sitting bout
duration (total sitting time/ number of sitting bouts), average daily sitting time (total sitting time/
number of days), and average daily number of sitting bouts (number of sitting bouts / number of
days). A final performance indicator was how well each method was able to predict the timing of
postural transitions at a 10-second granularity within a one-minute window. This analysis was
done using the transition pairing method (44), which uses an extended Gale-Shapley algorithm to
pair actual and predicted transitions together for analysis. The method allowed exclusion of non-
sequential pairings and any pairings that exceeded a specified lag time (tolerance), which was 1
minute for this study. One minute was the minimum tolerance level after which the number of
successful pairings levelled off (See Supplemental Table 1, Supplemental Digital Content—
Appendix, which shows transition pair sensitivity and precision results at different tolerance
levels, from no tolerance to 5 minutes, across methods). The pairings were analyzed to determine
the true positive rate (recall) and positive predictive value (PPV; precision), of predicted

transitions.

Performance metrics were calculated for each person and method. Summary statistics
were then calculated across participants, and boxplots were used to visually examine variability
across test subjects. In addition to model performance metrics, we also compared commonly
used sitting pattern metrics (mean sitting bout duration, mean daily sitting time, and mean
number of daily sitting bouts), derived using each method to the activPAL ground truth. General
estimating equations (GEE), accounting for nesting of methods within participants, were used to

evaluate differences of performance between methods as well as whether sitting pattern metrics



derived from different methods were significantly different from those derived from activPAL.
GEE was implemented using an exchangeable correlation structure and robust standard errors.
Finally, to allow inference about individual-level, in addition to sample-level, agreement, sitting
pattern metrics derived from each modeling approach (AG cut-point, TLBC, and CHAP) were

also compared to activPAL using mean absolute error (MAE).

Results

Sample Partitioning and Characteristics

Figure 1 summarizes data loss and partitioning, and Table 2 shows participant
characteristics for the final sample. Participant characteristics for the included overall ACT-AM
sample were similarly distributed in the training (N=399), validation (N=97), and test sets

(N=213).

Model Accuracy

Ten-second-level summary statistics of the three best CNN model configurations (labeled
A, B, C), as well as the CHAP model are displayed in Table 3. Here we focus on the accuracy
and mean absolute percent error (MAPE) metrics defined in Table 1 between the three CNN
model configurations, which estimate agreement and deviation between the actual and predicted

values.

Across all performance metrics, CHAP was superior to the other methods (Figure 2) at
the minute level. For balanced accuracy, which is the average of sensitivity and specificity, the

AG cut-point method performed worst, with a value of 74%, followed by 83% for TLBC versus



93% for the CHAP model. All models had high sensitivity for classifying sitting, ranging from
88% (AG cut-point) to 97% (CHAP). Specificity varied markedly between models: 60% for AG
cut-point, 74% for TLBC, and 89% for CHAP. The differences in performance in balanced
accuracy, sensitivity and specificity between CHAP and the AG cut-point method, and between
CHAP and TLBC were statistically significant at the 5% level. The MAPEs of sitting versus
non-sitting classification were not similar. While all methods were able to accurately classify
true sitting, the AG cut-point and TLBC methods classified between 25 — 40% of true (activPAL
registered) non-sitting as sitting. Of note, the variation in these metrics was also higher for the
AG cut-point and TLBC versus CHAP, indicating superior individual-level agreement for the

latter method.

Participant-level Sitting Pattern Classification

Figure 3 shows results of the sitting pattern analyses. The average mean bout duration
from CHAP, 15.7 minutes per day, did not significantly differ relative to activPAL, 15.4 minutes
per day (MAEcyap = 2 minutes). Average mean bout duration using AG cut-point, 9.4 minutes
per day, and TLBC method, 49.4 minutes per day, did significantly differ at the 5% level relative
to activPAL (MAEAG cut-point = 6 minutes, and MAEr gc = 34 minutes). Average daily sitting
time derived using AG cut-point, 643.2 minutes per day, and using TLBC method, 616.2 minutes
per day, was significantly different relative to activPAL, 594.6 minutes per day (MAEAG cut-point =
75 minutes, and MAEr gc = 50 minutes), but average daily sitting time derived from CHAP,
595.4 minutes per day, was not significantly different relative to activPAL (MAEcpap = 31
minutes). Average daily number of sitting bouts using all three methods were significantly

different from activPAL. Of the three methods, average daily number of sitting bouts derived



using CHAP, 41.8 per day, was the closest to activPAL, 43.9 per day (MAEcyap = 5) and the
difference was not deemed to be relevant in practice. The average daily number of sitting bouts
derived using AG cut-point, 79.2 per day, and TLBC, 14.1 per day, had much larger deviations
relative to activVPAL (MAEAG cut-point = 35, and MAErgc = 30). The results suggest that the latter
two methods are unable to accurately capture sitting patterns. AG cut-point over-predicted the
number of transitions by two times explaining why its mean bout duration was lower than
activPAL, whereas TLBC under-predicted relative to activPAL by two thirds, hence why its
mean bout duration was higher. Despite its superior performance to the other two methods, the
CHAP method had slightly lower person-to-person variability (i.e., lower SDs) compared to

activPAL.

Classifying the timing of Sit-to-Stand Transitions

We examined accuracy in predicting sit-to-stand transitions within a 1-minute window by
the three methods compared to the activPAL (Figure 4). Transition sensitivity estimates the
percent of true transitions (as registered by the activPAL), that were captured by the different
methods. Sensitivity for transition detection was similar for the AG cut-point (72%) and CHAP
(83%), whereas it was only 26% for TLBC, likely due to over-smoothing. Transition PPV or
precision estimates the proportion of predicted transitions which are true activPAL transitions. In
contrast to the sensitivity results, PPV was similar for CHAP (83%) and TLBC (71%), whereas it
was only 30% for the AG cut-point. The differences in performance in transition sensitivity and
transition PPV between CHAP and the AG cut-point method, and between CHAP and TLBC

were statistically significant at the 5% level.



Discussion

The CHAP model had higher accuracy than existing methods for classifying sitting bouts
and sit-to-stand transitions from free-living hip-worn accelerometer data in older adults. As such,
it represents an important step forward in the field of sitting pattern measurement in this
population. CHAP will allow for less cumbersome protocols for studies in older adults by
necessitating only one hip-worn device to measure both posture and motion. CHAP can be used
to re-process previously collected hip-worn accelerometer data among older adults, resulting in
more accurate measures of true sitting time and patterns in existing cohort studies as well as

future studies that choose to use hip-worn accelerometers.

The AG cut-point method over-estimated true sitting time and failed to capture sit-to-
stand transitions that are key to the measurement of sitting patterns (15—17,45). This underscores
the importance of using methods for their intended use. That is, cut-point methods are meant to
capture movement intensity and non-movement but not changes in posture. The main
shortcoming of the cut-point method was that it misclassified approximately 40% of activPAL
registered non-sitting time as sitting, while simultaneously over-predicting sit-to-stand transitions
such that approximately 70% of the transitions it predicted were not activPAL transitions,
resulting in inaccurate measures of sitting patterns. These findings are in line with other studies
that support the use of hip-worn accelerometry for measuring motion and movement but suggest
thigh-worn devices for measuring posture and postural transitions (11-13,15-17). Thus,
evidence on sitting patterns measured using ActiGraph cut-points should be interpreted with
caution. It is not clear whether such misestimation has major impacts on the ability to detect

associations between sitting patterns and health. Nonetheless, there is sufficient evidence to



suggest that sitting pattern estimates, derived from ActiGraph cut-points should not be compared
to studies that employed posture-based measures such as activPAL or used to inform specific

thresholds of sitting patterns when generating intervention or public health recommendations.

Transitions have been a large issue for the field even with application of machine learned
algorithms. Machine learning approaches most often rely on single label classification within a
given window or period (e.g., 5 minutes), and therefore an inherent assumption is that only one
activity type occurs within each interval window (22). Lab-based training data reduces the
amount of transitions, resulting in algorithms with high predictive accuracy, but algorithms
trained on data obtained from free-living populations must account for the inherent messiness of
human postural changes and movement. The TLBC method was designed to address some of
these limitations by training it against free-living images collected by a body-worn camera.
However, the body-worn camera captured images triggered by changes in light and movement,
meaning TLBC was unable to reliably capture postural transitions or their exact timing, leading
to an underestimation of postural transitions (44). Solutions have been proposed in the literature
to allow for better identification of transitions by machine learning models including activity-
based windowing and adaptive sliding window segmentation, where for both solutions windows
are adjusted to ensure one activity is represented per window and windows can vary in size
throughout the dataset (46,47). Alternatively, CHAP uses a BiLSTM component with a fixed
window that automatically learns to capture the transitions during training. We found that even
though the model accuracy did not significantly vary (at most 2% variation) with the chosen
BiLSTM window size, it significantly affected the ability of the model to capture transitions

correctly. As the window size was increased from 1 minute to 9 minutes, the transition capturing



recall reduced by 6% from 83% to 77% and the PPV increased by 23% from 56% to 79%. In
practice, we found that a window size of 7-9 minutes works well for our data, which had a mean
activPAL sitting bout time of 15.4 minutes and mean non-sitting bout time of 7.9 minutes. More
experimental results on the model sensitivity for the chosen BiILSTM window size are provided

in Supplemental Table 2 (see Table, Supplemental Digital Content—Appendix).

Deep learning methods to improve measures derived from accelerometer data are of
growing interest in the field. For instance, Nawaratne et al leverage a CNN model architecture to
derive measures of physical activity intensity from wrist-worn ActiGraph that are of equal
caliber to those measured from the hip-worn ActiGraph. While the goals of Nawaratne et al’s
model differ from those of CHAP, making the results not directly comparable, their work
demonstrates the utility of CNN model architecture in constructing machine learned approaches
to processing accelerometer data (48). CHAP builds on this approach, adding a BiLSTM layer

for improved measurement of activity transitions.

We were able to find only one other study that uses hip-worn ActiGraph data to classify
sedentary behavior and sitting patterns in a free-living population with high accuracy. Kuster et
al developed an algorithm utilizing hip-worn ActiGraph data in a sample of office workers
(N=38) to detect prolonged sitting bouts (>5 and >10 minutes). Their method used a random
forest classifier on 563 engineered ActiGraph signal features, followed by a bagged classification
tree ensemble method. The model achieved a low bias of <7 minutes/d, when classifying time
spent in prolonged sitting bouts (= 5 minutes and > 10 minutes) relative to activPAL (49). CHAP

builds on the model of Kuster et al in several ways. Most importantly, it was developed,



validated, and tested on a larger and more representative cohort (N=709) of free-living older
adults. Through the CNN + BiLSTM architecture, CHAP was also able to automate the
featureextraction process rather than relying on human engineered features. As a result, CHAP
requires less human input than the Kuster et al. model and is a versatile and flexible model that
can be used to derive various person-level sitting pattern variables beyond prolonged sitting
bouts. This application in the older adult population of the ACT cohort represents only the first
test-case for CHAP. Future work will apply this method in other populations to assess
performance and generalizability of CHAP in other age groups, and refine the model for broader

generalizability across age, sex, and other key demographic factors.

Researchers interested in more deeply exploring the CHAP algorithm or applying CHAP
to their existing hip-worn accelerometer data to derive postural transition and sitting pattern
metrics are invited to explore the study’s GitHub repository. CHAP and associated user
documentation are available for download from

https://github.com/ADALabUCSD/DeepPostures.

Our study has several limitations that should be considered. We used thigh-worn
activPAL data as ground truth rather than direct observation, which could lead to compounding
of the activPAL’s inherent measurement error. However, we believe the benefit of obtaining
large amounts of free-living data outweighs limitations of activPAL. Furthermore, activPAL has
been shown to be a highly valid instrument for measuring postural transitions (25). Notably,
CHAP had slightly lower person-to-person variability (i.e., lower SDs for derived sitting pattern

metrics) compared to activPAL, which could potentially result in reduced statistical power in



studies of associations between sitting patterns and health outcomes, and should be addressed in
future studies. However, since our CHAP model predictions have similar probability
distributions to that of the ground-truth (activPAL), in practice, we do not expect substantial
negative effects on study power when using CHAP predictions. Despite these limitations, our
study had considerable strengths, including the large sample size and rigorous machine learning
procedures employed. Although CHAP allows posture-based classification from a single device,
the hip-worn ActiGraph, it is important to acknowledge that methods for integrating both types
of sensors (e.g., activPAL and ActiGraph) to achieve systems for postural and motion
measurement have been previously developed (14). Additionally, recent studies have developed
accurate classification methods of wrist-worn accelerometer data for both sedentary behavior and

sitting patterns (50, 51).

CHAP performed much better than currently available methods, and it established a
novel and powerful framework for models that use hip-worn data. This advance will allow
researchers to better understand the epidemiology of sitting patterns, including norms among
healthy and unhealthy people and how sitting patterns are causally associated with a myriad of
healthy aging outcomes. Additionally, it will reduce participant burden by allowing for accurate
measurement of posture and motion using one hip-worn device, rather than necessitating several
devices. Ultimately, this data will be needed to help inform future guidelines for sedentary

behavior among older adults.
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Figure Captions

Figure 1. Flow diagram from ACT study for inclusion into this study and random division into
training and testing data sets.

"Non-concurrent wear represents data in which the devices are not worn concurrently.

*Drift is a phenomenon in which data collected from one device appears to gradually loose or
gain time when compared to another device, such that, over time, the two data streams no longer

align. See Figure, Supplemental Digital Content for an example of drift in this sample.

Figure 2. Minute-level performance (balanced accuracy, sensitivity/recall, specificity) in

classifying sitting versus not sitting comparing AG cut-point (peach), TLBC (blue), and CHAP

(green).

Figure 3. Person-level sitting pattern metrics (mean sitting bout duration, average daily sitting
time in minutes, average daily number of sitting bouts) comparing activPAL (orange), AG cut-

point (peach), TLBC (blue), and CHAP (green).

Figure 4. Assessment of minute-level performance in timing of classification of sit-to-stand
transitions within I-minute window (tolerance) using paired actual and predicted transitions for

AG cut-point (peach), TLBC (blue), and CHAP (green).
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Figure 3
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Figure 4
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Table 1. Definitions and interpretations of accuracy and error metrics

Confusion matrix of actual and predicted 10s segments
Predicted Sitting Predicted Non-Sitting
Actual Sitting a b
Actual Non-Sitting c d
YA
Metric Definition’ Interpretation
Accuracy (a+d)/(a+b+c+d) Proportion of segments correctly predicted.
Sensitivity al(a+b) Proportion of activPAL sitting segments that were

predicted sitting. Shows out of all the activPAL
sitting segments how many were correctly

precited as sitting.

Specificity d/(c+d) Proportion of activPAL non-sitting segments that
were predicted non-sitting. Shows out of all the
activPAL not sitting minutes, how many were

correctly predicted as non-sitting.

Balanced Accuracy 0.5a/(a+b) + 0.5d/(c+d) Average of sensitivity and specificity.

Sitting time Mean 100*(|(a+b) — (a+c)|)/(a+b) | Absolute percent error in total predicted sitting
Absolute Percent time (versus total actual sitting time).

Error (MAPE)

Not-Sitting time 100*(|(c+d) — (b+d)|)/(c+d) | Absolute percent error in total predicted non-
MAPE sitting time (versus total actual non-sitting time).

'Refers to letters defined in the confusion matrix.



Table 2. Participant characteristics for the full, training, validation, and test sets.

Full Sample Training Validation Test
Characteristics N =709 N=399 N=97 N=213
mean (SD)
Age (years) 76.70 (6.52) 76.87 (6.38) 76.60 (6.84) 76.44 (6.64)
Gender N (%)
Female 415 (58.5%) 234 (58.6%) 54 (55.7%) 127 (59.6%)

Race ethnicity

Hispanic or non-white 70 (9.9%) 31 (7.8%) 16 (16.5%) 23 (10.9%)
Education

Less than High School 10 (1.4%) 7 (1.8%) 1 (1.0%) 2 (0.9%)

Completed High School 52 (7.3%) 25 (6.3%) 8 (8.2%) 19 (8.9%)

Some College

113 (15.9%)

68 (17.0%)

13 (13.4%)

32 (15.0%)

Completed College 534 (75.3%) 299 (74.9%) 75 (77.3%) 160 (75.1%)
BMI

BMI 29 or below 537 (77.4%) 293 (74.7%) 81 (88.0%) 163 (77.6%)

BMI greater than 29 157 (22.6%) 99 (25.3%) 11 (12.0%) 47 (22.4%)

Self-Rated Health




Good, poor, or very poor 279 (39.4%) 164 (41.1%) 37 (38.1%) 78 (36.6%)

Difficulty in walking half a

mile

Some or more 168 (23.7%) 99 (24.8%) = 21 (21.6%) = 48 (22.5%)

"Differences between training + validation sets and the test set were not statistically significant at
the 5% level using two-sample t-test for continuous variables and chi-square test for categorical

variables.




Table 3. Test set performance of top three performing CNN models and ensemble CHAP at the

10-second level (mean (SD) of metrics).

Models Accuracy Balanced | Sitting Non- Transition Transition
(%) Accuracy | time sitting sensitivity PPV
(%) MAPE time (recall) % at 1 | (precision) %
(%) MAPE minute at 1 minute
(%) tolerance' tolerance'
A 93.5(3.9) 91.8(4.7) |5.3 7.7 76.7 (10.3) 74.5 (12.6)
B 93.7 (3.8) 919 (5.1) |5.2 8.7 76.2 (11.1) 76.7 (12.3)
C 93.7 (3.6) 92.4(4.2) |55 9.8 75.8 (9.9) 77.0 (11.6)
CHAP 94.1 (3.6) 92.6 (4.5) |5.2 8.2 77.1 (10.8) 80.0 (12.5)
(ensemble)

1 Detection of transitions within £6 10-s epochs of ActiGraph data.
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Example of drift.

0:00 6:00 12:00 18:00 24:00

91-80-L102
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- Sitting from activPAL - Stepping from activPAL I:I Actigraph non-wear from Choi
- Standing from activPAL Self-reported sleep period !"I“ Vector magnitude from ActiGraph

Figure. Example of Drift. Sample heat map of participant with device drift. Each rectangle is
one 24-hour day. The horizontal outer bars represent sleep diaries (yellow bar), and Choi
ActiGraph non-wear periods (grey bars). The horizontal inner bars represent activPAL postures;
sitting (red), standing (dark blue), stepping (aquamarine). The white etching represents vector
magnitude from the ActiGraph, plotted at one-minute epoch, truncated at 1500 counts per

minute.



Transition recall and precision sensitivity to transition pairing tolerance window size

Supplemental Table 1. Minute-level test set transition analysis sensitivity to transition pairing

tolerance window size (mean (SD) of metrics)

Sensitivity / Recall (%)

Positive Predictive Value / Precision

(%)
Transition
AG AG
pairing TLBC CHAP TLBC CHAP
cut-point cut-point
tolerance
No tolerance | 48.2 (12.9) | 17.7(7.2) | 63.8 (16.2) | 20.2 (6.6) | 48.5(17.2) | 63.7 (16.5)
1 minute 723 (11.1) | 26.1(7.9) | 83.2(9.2) | 30.3(7.3) | 71.2(15.5) | 82.9(9.6)
2 minutes 79.3 (10.0) | 27.8(8.0) | 84.7(8.2) | 33.2(7.1) | 75.9(14.7) | 84.4(8.7)
3 minutes 82.7(9.6) | 28.8(7.9) | 85.3(7.8) | 34.7(7.1) | 79.0 (13.7) | 85.0(8.4)
4 minutes 84.9(9.3) | 29.6(7.8) | 85.9(7.4) | 35.6(7.3) | 81.4(13.0) | 85.5(8.1)
5 minutes 86.4(9.1) | 30.2(7.8) | 86.2(7.3) | 36.3(7.3) | 83.3(12.4) | 85.8(8.0)




Model sensitivity to the BILSTM window size.

Supplemental Table 2. Test set performance of models at the 10-second level with different

BiLSTM window sizes when all other model configuration parameters kept fixed (mean (SD) of

metrics).
BiLSTM Accuracy (%) | Balanced Transition sensitivity | Transition PPV
Window Size Accuracy (%) | (recall) % at 1 (precision) % at 1
(min) minute tolerance minute tolerance
1 92.1(4.2) 90.2 (4.2) 83.5(7.9) 56.0 (13.1)
3 93.1(3.7) 91.5(4.1) 79.4 (8.7) 69.3 (12.3)
5 93.1(3.8) 91.9 (4.3) 77.4 (10.2) 74.3 (12.3)
7 93.2(3.7) 92.1 (4.1) 75.9 (10.2) 73.8 (11.8)
9 93.9 (3.6) 92.4 (4.5) 76.9 (9.7) 78.5 (11.3)




