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We compute rarefactive solitary wave solutions in a nonlinear lattice with nearest-neighbor in-
teraction forces that are sublinear near the undeformed state. This setting includes bistable bonds
governed by a double-well potential. In contrast to the prototypical KdV-type delocalization, the
obtained solutions feature a nontrivial sonic limit (Chapman-Jouguet regime) with nonzero energy
and algebraic decay at infinity. In the bistable case the waves are strongly localized and have high
energy over the entire velocity range. Direct numerical simulations suggest stability of the computed
solitary waves. We consider several quasicontinuum models that mimic some features of the obtained
solutions, including the nontrivial nature of the sonic limit, but fail to accurately approximate their
core structure for all velocities in the bistable regime.

I. INTRODUCTION

Since the pioneering studies [1, 2] of the Fermi-Pasta-
Ulam (FPU) problem that have revolutionized the non-
linear science, there has been a considerable interest in
understanding the properties of nonlinear waves in dis-
crete Hamiltonian systems and the extent to which they
can be captured by dispersive continuum models. Among
the large body of work on this topic that has emerged
over the last six decades much attention has been devoted
to lattice solitary waves, traveling pulses that carry en-
ergy through the system and have been experimentally
observed in various settings, including electrical networks
[3, 4], granular materials [5, 6], mechanical metamateri-
als [7–10] and lipid monolayers [11]. Most theoretical
studies of solitary waves in FPU lattices, from the earlier
work on the integrable Toda lattice [12] to more recent
investigations of such waves in generic non-integrable lat-
tices, have either considered convex interaction potentials
or focused on solutions confined to the convex region.
In particular, existence of supersonic solitary waves in
FPU lattices with superquadratic potentials was proved
in [13, 14] and these results were later extended in [15] to
potentials with saturable nonlinearity. Small-amplitude
solitary waves and their connection to the integrable
Korteweg-de-Vries (KdV) system near the sonic limit,
where the low-energy waves delocalize to zero, was rig-
orously investigated in [16–22]. The hard-sphere limit of
high-energy waves was studied in [23–25]. To obtain soli-
tary wave solutions away from these asymptotic limits in
the original FPU problem and its various extensions, nu-
merical [26–29], quasicontinuum [30–38] and asymptotic
[39–43] methods have been developed for fully nonlinear
potentials, and Fourier transform techniques have been
used to construct solutions in lattices with piecewise lin-
ear interaction forces [44–47].

In this work we investigate rarefactive solitary waves
in a nonlinear lattice with interaction forces that are sub-
linear near the undeformed state. Of particular interest
in this class of problems are bistable lattices with an in-
teraction potential that has two convex regions separated
by a nonconvex (spinodal) one, so that its derivative is
nonmonotone, as depicted in Fig. 1. Such bistable in-

teractions, with the two convex regions corresponding
to different phases, are typically used to model phase
transitions in crystals [48–55], biological macromolecules
and polymers [56–58]. Most studies of the nonlinear
waves arising in the Hamiltonian systems of this type
have focused on spatially extended traveling waves rep-
resenting shock waves, cracks and subsonic phase bound-
aries [50, 53, 55, 59–64]. While existence of solitary
waves in bistable lattices has been proved in [65], there
have been few systematic investigations of their proper-
ties until very recently. In [66, 67] the authors employ
a combination of impact-induced numerical simulations
and exact solutions of quasicontinuum models for three-
parabola nonconvex potentials to identify two dimension-
less parameters that determine the shape of the wave.
Semianalytical solitary wave solutions in a chain with bi-
parabolic bistable interactions have been constructed in
[46]. While much insight can be gained from considering
piecewise quadratic models, the greater analytical trans-
parency such models provide comes at a cost of certain
degeneracies. In particular, velocity of the solitary waves
in this setting is bounded from above as well as below,
which is not a generic feature in nonlinear lattices. More
importantly, as the lower sonic limit is approached, the
energy of the waves tends to infinity in both convex [44]
and nonconvex cases [46, 67] due to delocalization of the
solutions to nonzero values at infinity. Meanwhile, in
fully nonlinear lattices the limiting energy equals zero in
the case of KdV-type delocalization [16] and, as we will
show, is finite but nonzero for rarefactive waves consid-
ered here. Finally, the waves tend to be wider in lattices
with piecewise linear interaction forces, so that quasi-
continuum approximations such as the ones employed in
[66, 67] are closer to the corresponding solutions of the
discrete problem than they might be in the fully nonlin-
ear case.

Motivated by these considerations, we use the spec-
tral numerical method developed in [27] to compute rar-
efactive solitary waves in a fully nonlinear FPU lat-
tice governed by a cubic interaction force with a nega-
tive quadratic coefficient. When the magnitude of the
coefficient is sufficiently large, the interactions become
bistable. Direct numerical simulations initiated by the
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obtained solutions show steady propagation with the
same velocity and suggest their stability. The most inter-
esting feature of the computed solutions, brought about
by the sublinearity of the interaction force near the un-
deformed state, is the nontrivial sonic limit, a localized
wave with nonzero amplitude and finite energy that fea-
tures an algebraic decay at infinity. This sonic regime
is an analog of the Chapman-Jouguet detonation in the
theory of shock waves [68–70]. The nontrivial sonic limit
is in stark contrast with the typical scenario for locally
convex potentials, where the wave’s delocalization to zero
in the sonic limit is well described by the KdV solitons
[16, 21]. Moreover, in the case of bistable interactions,
rarefactive solitary waves are strongly localized and carry
high energy for all velocities, far from the KdV regime.

To further understand these results and the extent to
which they can be captured in a continuum setting, we
consider two local quasicontinuum models that have been
investigated in detail in [35] for fully nonlinear potentials
and used to construct approximate solutions in [66, 67] in
the piecewise quadratic case. Both models are based on
the Padé expansions of the Fourier image of the discrete
operator. The first approximation, originally suggested
by Collins [30] and Rosenau [33], yields a simple explicit
solution that can be directly expanded to obtain the sonic
limit, where the exponential decay at infinity is replaced
by an algebraic one. The resulting solitary waves capture
some features of the numerical solutions of the discrete
problem but have larger amplitude and smaller width.
The other model is based on a higher-order expansion
and provides solutions that are generally closer to their
discrete counterparts but does not yield a simple analyt-
ical expression. Its solutions have somewhat smaller am-
plitude and wider width compared to the discrete case.
The two quasicontinuum models by design capture the
near-sonic decay of the lattice solitary wave at infinity.
When the quadratic coefficient is sufficiently small, they
also provide a good approximation of the core structure
of the near-sonic waves, which in this case have small
but nonzero amplitude. However, when the magnitude
of the coefficient becomes sufficiently large, including the
case of bistable interactions, solutions obtained from the
quasicontinuum models deviate from their discrete coun-
terparts in the core region over the entire velocity interval
due to the strong localization of the waves. These find-
ings suggest that a new paradigm is necessary to describe
strongly localized solitary waves in a lattice with bistable
interactions.

The rest of the paper is organized as follows. In Sec. II
we formulate the problem and discuss parameter bounds.
Numerical and asymptotic results for the discrete prob-
lem are presented in Sec. III. Quasicontinuum models
are analyzed in Sec. IV, which also includes the com-
parison to the discrete problem and a brief discussion of
another model, based on the global approximation of the
discrete operator. We summarize and discuss our find-
ings in Sec. V.

II. PROBLEM FORMULATION

Consider an infinite chain of particles with equal
masses and nearest-neighbor interactions governed by a
nonlinear potential. In terms of dimensionless variables,
the total energy (Hamiltonian) of the system is

H =

∞∑
n=−∞

(
1

2
u̇2
n + φ(un − un−1)

)
, (1)

where un(t) is the displacement of nth particle, u̇n(t) =
u′
n(t) is its velocity and φ(w) is the interaction potential.

The equations of motion,

ün = f(un+1 − un)− f(un − un−1),

where f(w) = φ′(w) is the interaction force, can be
rewritten in terms of the strain variable wn = un−un−1,
yielding

ẅn = f(wn+1)− 2f(wn) + f(wn−1). (2)

In what follows, we assume that upon an appropriate
rescaling the potential φ(w) and its derivative f(w)
satisfy the following requirements:

(A1) φ(0) = f(0) = 0 and f ′(0) = 1;

(A2) f ′′(0) < 0;

(A3) f ′(w) > 1 for large enough w > 0.

The conditions (A2) and (A3) are needed for the exis-
tence of homoclinic orbits corresponding to sonic and su-
personic rarefactive solitary waves, as discussed below.
Note that (A1) and (A2) imply that the interaction force
f(w) is sublinear, f(w) < w, for small enough nonzero
|w|, as illustrated in the right panel of Fig. 1.

Of particular interest is a subclass of potentials that
in addition to (A1)-(A3) satisfy

(A4) there exist w− > 0 and w+ > w− such that
f ′(w−) = f ′(w+) = 0, f ′(w) > 0 for w < w− and for
w > w+, while f ′(w) < 0 for w− < w < w+.

This means that the potential is nonconvex inside the
spinodal region (w−, w+). The convex regions w < w−
and w > w+ can represent two different material phases,
phase I and phase II, respectively. The elastic modulus of
phase I corresponding to the homogeneous deformation
w ≡ 0 is rescaled to unity by (A1).

As a prototypical example of potentials satisfying
(A1)-(A3), we consider the cubic interaction force

f(w) =
α

3
w3 +

β

2
w2 + w, (3)

where we assume that

α > 0, β < 0. (4)
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For nonconvex potentials satisfying (A4), we also require
that

β2 − 4α > 0 (5)

which ensures the existence of the spinodal region of

width
√
β2 − 4α/α. Examples of convex and double-well

potentials satisfying these conditions are shown in Fig. 1.

We now seek solitary wave solutions of (2). These are
localized traveling wave solutions of the form

wn(t) = w(ξ), ξ = n− V t, (6)

where V > 0 is the velocity of the wave, so they satisfy
the advance-delay differential equation

V 2w′′ = f(w(ξ + 1))− 2f(w(ξ)) + f(w(ξ − 1)) (7)

and vanish at infinity:

w(ξ) → 0 as |ξ| → ∞. (8)

We seek positive solutions w(ξ) > 0 (rarefactive waves)
that are even in ξ, w(ξ) = w(−ξ). Note that the velocity
V must satisfy

V ≥ 1, (9)

since the presence of radiation modes at subsonic veloc-
ities 0 < V < 1 generally precludes the formation of
solutions satisfying (8) [35]. Under our assumptions on
the interaction potential, for V ≥ 1 the straight line ema-
nating from w = 0 with the slope V 2 intersects the graph
of f(w) at w = w∗ > 0 satisfying f(w∗) = V 2w∗ and lies
above the graph of f(w) between the two points. Here
w∗ is the center of the homoclinic orbit in (w,w′) plane
that corresponds to the solitary wave we are seeking. For
bistable potentials satisfying (A1)-(A4), w = 0 < w− is
in phase I and w∗ > w+ is in phase II, so the solitary
wave connects the two phases.

III. SOLITARY WAVE SOLUTIONS

A. Numerical results

To find solitary wave solution numerically, we use the
Fourier spectral method outlined in [27]. We approx-
imate w(ξ) by an L-periodic even function with large
enough period L and that can be represented by Fourier
cosine series:

w(ξ) ≈
N−1∑
j=0

cj cos
2πjξ

L
, (10)

with collocation points set to be ξi = iL/(2(N − 1)), i =
0, . . . , N−1. We substitute the series approximation (10)
into (7) evaluated at ξi, i = 0, . . . , N − 2. An additional

equation is the trapezoidal approximation (utilizing the
collocation points) of

V 2

∫ ∞

−∞
w(ξ)dξ =

∫ ∞

−∞
f(w(ξ))dξ,

which is obtained by multiplying (7) by ξ2 and integrat-
ing by parts under the assumption that w(ξ) and w′(ξ)
decay sufficiently fast at infinity. This last condition en-
sures that (8) holds. In the end, we get a system of N
nonlinear algebraic equations for N unknown coefficients
in (10), which is solved using the trust-region dogleg al-
gorithm in Matlab. We used L = 160, N = 2001 for most
computations and L = 320, N = 4001 to compute wider
waves.

The amplitude-velocity relation for the obtained solu-
tions for the cubic interaction force (3) with α = 4 and
different values of β satisfying (4) is shown in Fig. 2(a).
Here β = −1 and β = −3 correspond to convex po-
tentials, while the potentials with β = −19/4 and β =
−21/4 are bistable (β < −4 at α = 4).

Importantly, when V approaches the sound speed V =
1, the solutions tend to a limit with a nonzero amplitude.
This is illustrated in Fig. 2(b), which shows near-sonic
solutions at V = 1.001. This limiting behavior is a sig-
nature feature of the interaction forces that are sublin-
ear near the origin (see the right panel Fig. 1) due to
f ′′(0) < 0 and thus prevent homoclinic connections that
correspond to small-amplitude rarefactive solitary waves,
while supporting such orbits for compressive waves [20].
When they exist, small-amplitude solutions delocalize to
zero in the sonic limit and are well described by the KdV
equation near this limit [16]. Such an approximation is
clearly not valid in this case. At larger |β|, which includes
nonconvex potentials (represented here by examples with
β = −21/4 and β = −19/4), the solutions are more lo-
calized, with smaller width and higher amplitude. As the
negative β tends to zero, approaching the case of FPU-β
potential with purely quartic anharmonic term in φ(w),
the sonic limit tends to zero.

The details of the near-sonic solution behavior at larger
ξ are shown in Fig. 3, where we also include the case
β = −5. In addition to greater localization at larger |β|,
one can see that the combination of the advance-delay
terms in (7) and nonmonotonicity of f(w) for bistable
potentials results in oscillations of w′(ξ), so that for large
enough |β| (β = −21/4 and β = −5 in the figure) w(ξ) is
nonmonotone at ξ > 0. The oscillatory nature of the so-
lutions, which is not typically observed in lattice solitary
waves in the absence of competing interactions [37, 45]
persists at larger velocities, as shown in the insets of
Fig. 4. At fixed β, solutions decay faster at infinity at
larger V . At given V , the waves have higher amplitude
and are more localized at larger |β|.

To check the obtained solutions and probe their stabil-
ity, we ran numerical simulations of (2) in a finite chain
of M particles (typically, we set M = 400) initialized by
the computed solitary wave solutions. Typical results are
shown in Fig. 5, where the simulations initialized by the
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FIG. 1: (a) Quartic potentials φ(w) and (b) their derivatives f(w) given by (3), with parameters satisfying (4) at α = 4 and
different values of β. At β = −19/4 the parameters also satisfy (5), and the potential is nonconvex. The blue (dashed) and
red (dark gray) parts of the β = −19/4 curves correspond to the two phases, and the spinodal region is marked by green (light
gray). The thin straight line through the origin in (b) has unit slope.
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FIG. 2: (a) Amplitude wmax = w(0) of the solitary wave solutions as a function of V at α = 4 and different values of β. (b)
Solutions near the sonic limit (V = 1.001). Due to the even symmetry of solitary wave solutions, only the part with ξ ≥ 0 is
shown in this and subsequent figures.
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FIG. 3: Detailed view of (a) the near-sonic solution at V = 1.001 and (b) its derivative at larger ξ. Here α = 4.
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FIG. 4: Solitary wave solutions at α = 4 and different values of β with velocities (a) V = 1.2; (b) V = 2; (c) V = 3; (d) V = 4.
Insets show the solution behavior at larger ξ.

computed solution with V = 1.2 and V = 4 at α = 4,
β = −19/4 yielded steadily propagating solitary waves.
Both the solitary wave profile obtained from the numer-
ical simulations and their velocities differ from the com-
puted ones by O(10−8) and O(10−9) for V = 1.2 and
V = 4, respectively.

Similar agreement between computed solitary waves
and the ones obtained from numerical simulations was
found for all solutions that were probed, with velocities
ranging from V = 1.001 to V = 4, and different values
of β. This suggests stability of the computed solitary
waves. This observation is consistent with the mono-
tonic increasing of their energies H with V , as shown in
Fig. 6, and hence nonzero H ′(V ), a necessary condition
for stability [18, 71, 72].

B. Some asymptotic results

We now derive asymptotic behavior at infinity for the
solutions of the discrete problem. To this end, we start
by transforming (7) to the Fourier space:

V 2W (k) = Λ(k)F (k), Λ(k) =
4 sin2(k/2)

k2
, (11)

where k is the wave number, and W (k) and F (k) are
the Fourier transforms of w(ξ) and f(w(ξ)), respectively.
Writing F (k) = W (k)+N (k), where N (k) is the Fourier
transform of the nonlinear contribution to f(w(ξ)), we
obtain

(V 2 − Λ(k))W (k) = Λ(k)N (k).

We are interested in the behavior of solutions at large
|ξ|, where w(ξ) is small. For V > 1, we can thus ne-
glect the nonlinear part N (k), obtaining the character-
istic equation V 2 = Λ(k) for the discrete problem lin-
earized about w = 0. This equation has purely imagi-
nary roots k = ±ip at V > 1, where V -dependent p > 0
satisfies 2 sinh(p/2) = V p. This leads to the exponential
decay w(ξ) ∼ e−p|ξ| at large |ξ|. The decay rate increases
with V , in agreement with our numerical findings.

The sonic limit V = 1 needs to be considered sepa-
rately. In this case we have

(1− Λ(k))W (k) = Λ(k)N (k).

For small k (slowly varying solutions), Λ(k) ≈ 1−k2/12,
so we have

k2

12
W (k) ≈ N (k). (12)
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FIG. 5: Space-time plots of wn(t) from the numerical simulations initialized by the computed solitary waves with (a) V = 1.2;
(b) V = 4. Here α = 4, β = −19/4.

1.0 1.5 2.0 2.5 3.0 3.5

100

200

300

1.1 1.2 1.3 1.4

2

4

6

8

10

12

H

V

H

V
(a) (b)

FIG. 6: (a) Energy H of the computed solitary waves as the function of their velocity V at different β. (b) Enlarged view of
the plot near the sonic limit.

Consider now the cubic nonlinearity (3), so that N (k) is
the Fourier transform of (β/2)w2(ξ) + (α/3)w3(ξ). Tak-
ing inverse Fourier transform of (12) and neglecting the
cubic term under the assumption that w(ξ) > 0 is small,
we obtain w′′ ≈ −6βw2, which in view of (8) yields

w′ ≈ ±2
√

−βw3/2. (13)

Here we used the fact that β < 0 (recall (4)), and thus
(13) has a nontrivial solution. Hence in the sonic limit
the exponential decay of w(ξ) at infinity is replaced by
an algebraic one:

w ≈ − 1

βξ2
as |ξ| → ∞. (14)

We emphasize that this nonlinear effect is due to the
sublinearity of f(w) near the origin, which is imposed by

β < 0, and the fact that we consider rarefactive waves.
When β ≥ 0, such waves have small amplitude at near-
sonic velocities and tend to w ≡ 0 in the sonic limit, and
the same is true for compressive waves at β < 0 [20].

IV. QUASICONTINUUM MODELS

To better understand some of the observations de-
scribed in the previous section, we now turn to quasi-
continuum descriptions that replace the advance-delay
differential equation (7) by an ordinary differential equa-
tion (ODE). Local quasicontinuum models, based on the
expansion of the discrete operator near the long-wave
limit, are usually derived under the assumption that the
solutions are slowly varying (have a small high-frequency
component), which does not hold for tall and narrow soli-
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tary waves in discrete chains. Nevertheless, in some cases
such models have been shown to capture at least some
features of the discrete problem far outside the regime
of their validity [35, 44, 66, 67]. Although, as we have
seen, solitary wave solutions we obtained in the discrete
case may vary rather rapidly even in the sonic limit, we
proceed below to consider two local quasicontinuum ap-
proximations of the discrete model. In addition, we will
investigate a global approximation that was proposed in
[35] and aims to capture the higher frequencies.

Following [35], we consider Padé approximations of
Λ(k) defined in (11) and use these approximations to re-
place (7) by an ODE. A comprehensive review of various
quasicontinuum models can be found in [35].

A. Collins-Rosenau model

We start by considering the (0, 2) Padé approximation
of Λ(k) in (11), which leads to a model proposed in [30]
and [33] and henceforth referred to as the CR model. In
this approach we use

Λ(k) ≈ 1

1 + k2

12

,

an O(k2) approximation of Λ(k) near k = 0 which yields
the second-order ODE

V 2w(ξ)− 1

12
V 2w′′(ξ) = f(w(ξ)). (15)

Multiplying both sides of (15) by w′(ξ), integrating and
using the fact that both w(ξ) and w′(ξ) tend to zero at
infinity, we obtain

1

2
V 2w2(ξ)− 1

24
V 2(w′(ξ))2 − φ(w(ξ)) = 0,

and thus the homoclinic orbit corresponding to a solitary
wave solution with velocity V is described by [35]

w′ = ±2
√
6

V

√
V 2

2
w2 − φ(w). (16)

This immediately implies that the amplitude wmax =
w(0) of the wave and its velocity are related by

V 2w2
max = 2φ(wmax). (17)

The homoclinic orbit goes through the origin and
(0, wmax) point in the (w,w′) plane.
In the case of the cubic nonlinearity (3), equation (16)

can be integrated in quadratures. Indeed, we have∫ w

wmax

dy

y
√

1− γy − δy2
= ±2

√
3(V 2 − 1)

V
ξ, (18)

where we define

γ =
β

3(V 2 − 1)
, δ =

α

6(V 2 − 1)
(19)

and the amplitude of the wave wmax = w(0) is the posi-
tive root of 1− γy − δy2 = 0:

wmax =

√
γ2 + 4δ − γ

2δ
=

√
β2 + 6α(V 2 − 1)− β

α
. (20)

Integrating (18) and recalling (19), we obtain

w(ξ) =
6(V 2 − 1)

β +
√
β2 + 6α(V 2 − 1) cosh

[
2
√
3
√
V 2 − 1

V
ξ

] .
(21)

Implicit in these calculation is the assumption that V
satisfies (9). Note that in the special cases α = 0, β > 0
and α > 0, β = 0 solution (21) reduces to the rarefactive
waves obtained in [26, 35].

If α = 0, β > 0 or α > 0, β ≥ 0, the obtained positive
solution tends to zero in the sonic limit when V → 1
from above. This mimics the well-known KdV localiza-
tion in the sonic limit of the solutions of the lattice soli-
tary waves with such interaction potentials [16]. How-
ever, in the case α > 0, β < 0 considered here, w(ξ) has
a nonzero sonic limit instead. More precisely, a simple
Taylor expansion at small V 2 − 1 yields

w(ξ) = − 2β

α+ 2β2ξ2
(22)

as the limiting sonic strain profile (recall that β < 0, and
thus w(ξ) > 0). Note that, as in the discrete problem, we
have the algebraic decay (14) in this limit. The nonzero
amplitude of the limiting solution equals −2β/α.

B. (2, 2) Padé approximation

To obtain a more accurate quasicontinuum model, we
now consider (2, 2) Padé approximation of Λ(k) that we
will call the P22 model :

Λ(k) ≈ 1− 1
20k

2

1 + 1
30k

2
.

This approximation is O(k4) accurate near k = 0 but still
yields a second-order ODE:

V 2w(ξ)− 1

30
V 2w′′(ξ) = f(w(ξ))+

1

20
f ′′(w(ξ))(w′(ξ))2 +

1

20
f ′(w(ξ))w′′(ξ).

(23)

Taking into account the fact that w and w′ vanish at
infinity, one can obtain the first integral [35]

1

2
(2V 2 + 3f ′(w(ξ)))2(w′(ξ))2 − 60V 4w2(ξ)

− 180V 2w(ξ)f(w(ξ)) + 300V 2φ(w(ξ))

+ 90(f(w(ξ)))2 = 0.

(24)
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This yields the amplitude-velocity relation [35]

V 2 =
1

2w2
max

[5φ(wmax)− 3wmaxf(wmax)

+
√

10φ2(wmax) + 15(wmaxf(wmax)− φ(wmax))2]

(25)

for general interaction potential. In the cubic case (3)
this yields

V 2 =
1

24

{− (6 + 8βwmax + 7αw2
max) +

√
5
[
180

+ wmax(56β
2wmax + 16β(12 + 5αw2

max)

+ αwmax(132 + 29αw2
max))

]1/2}
,

(26)

which can be inverted to obtain wmax as a function of V
but the resulting expression is too unwieldy to include
here.

In the cubic case (3) the first integral (24) yields the
homoclinic orbit in (w,w′) plane defined by

w′ = ±
√
5w

2V 2 + 3(1 + βw + αw2)
[2V 2(6 + 8βw

+ 7αw2) + 24V 4 − (6 + 3βw + 2αw2)2]1/2.

(27)

This equation can be solved for ξ as a function of w in
terms of elliptic integrals. To ensure the existence of the
relevant solution within our parameter bounds, we need

to assume that α > 0 and −(1/3)
√
10(3 + 2

√
3)α < β <

0, which holds for all numerical examples in Sec. III. One
can show that in this case for each V satisfying (9), the
fourth-degree polynomial under the square root in (27)
has two V -dependent real roots, w = wmax and w = −e,
where e is strictly positive for V > 1 and tends to zero
in the limit V → 1. In addition, there are two complex
conjugate roots c ± id, where c and d are positive and
depend on V . This yields

ξ = ± 1

2α
√
5
(I(wmax)− I(w)), (28)

where

I(y) =

∫
2V 2 + 3(1 + βy + αy2)

y
√

(wmax − y)(y + e)((y − c)2 + d2)
dy

= − 2

wmax

√
c− id− wmax

c− id+ e
×{

2V 2 + 3(1 + βwmax + αw2
max)√

(c− wmax)2 + d2
F (z(y)|μ)

+

√
(c− wmax)2 + d2

(c− id)(c+ id− wmax)

[
3α(c− id)wmaxΠ(ν; z(y)|μ)

− (3 + 2V 2)Π

(
ν
wmax

c− id
; z(y)|μ

)]}
.

(29)

Here F (z(y)|μ) and Π(ν; z(y)|μ) are elliptic integrals of
the first and third kind, respectively, with V -dependent

μ =
2id(e+ wmax)

(c− id+ e)(c+ id− wmax)
, ν =

2id

c+ id− wmax

and

z(y) = arcsin

√
(c+ id− wmax)(c− id− y)

2id(wmax − y)

=
π

4
− i ln[

√
2(Re ζ(y)− Im ζ(y))],

where

ζ(y) =
1√
2

(
1− i

c2 + d2 − c(wmax + y) + wmaxy

d(wmax − y)

)1/2

.

Unlike the simpler special cases α = 0 and β = 0 consid-
ered in [35], the solution (28) cannot be written in terms
of elementary functions, and even in those cases inverting
the resulting expression to obtain w as a function of ξ re-
quires solving a nonlinear transcendental equation, which
in practice calls for an iterative approach [35]. Thus,
while the P22 approximation is more accurate than the
CR model, it does not yield explicit waveforms even in
the case of polynomial nonlinearity f(w).

We remark that when β < −2
√
5α/3, the numerator

of the integrand of I(y) in (29) has two zeroes, w1 and
w2 > w1, which correspond to zero ξ′(w), or, equiva-

lently, infinite w′(ξ), for 1 ≤ V <
√

(3/2)(β2/(4α)− 1).
In this case ξ(w) > 0 defined by the plus sign in (28)
is a nonmonotone function, with a local minimum at w1

and a local maximum at w2. This means in this param-
eter regime solution (28) cannot be inverted to yield a
single-valued function w(ξ). Instead, the corresponding
profile is triple-valued in the intervals (ξ(w1), ξ(w2)) and
(−ξ(w2),−ξ(w1)). This is clearly an artifact of the Padé
approximation and does not reflect a property of the dis-
crete problem.

We now consider the asymptotic behavior of w(ξ) at
infinity. Since w is small at large |ξ|, it suffices to expand
(27) about w = 0. For V > 1 this yields

w′ = ±2
√
15

√
2V 4 + V 2 − 3

3 + 2V 2
w +O(w2), (30)

yielding exponential decay at infinity with the rate that
is strictly greater than that of the CR solution (21) for
all supersonic velocities:

2
√
15

√
2V 4 + V 2 − 3

3 + 2V 2
>

2
√
3
√
V 2 − 1

V
, V > 1. (31)

In the sonic limit V = 1 (30) is no longer valid. Instead,
we obtain

w′ = ±2
√
−βw3/2 +O(w5/2),

which coincides to the leading order with (13) in the dis-
crete case and yields the same algebraic decay (14) as in
the discrete and CR models.

C. Global approximation

In addition to the local quasicontinuum models inves-
tigated above, which rely on approximating Λ(k) in (11)
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in the small-wavelength region, one could attempt to ap-
proximate Λ(k) globally over the entire spectrum. Such
an approach is considered, for example, in [35], where
the author seeks a global approximation of Λ(k) in the
form Ω(k) = 1/(a+bk2) in order to take the advantage of
the availability of explicit solutions in this case, and finds
that the best approximation is achieved when a = 1 and
b = 1/4, which force Ω(0) = Λ(0) and minimize the L2

norm of Λ(k)− Ω(k). This sacrifices the accuracy of the
approximation at smaller k but improves it at the higher
values. As designed, this approach yields the explicit so-
lution

w(ξ) =
6(V 2 − 1)

β +
√
β2 + 6α(V 2 − 1) cosh

[
2
√
V 2 − 1

V
ξ

] ,
(32)

which has the same amplitude as the CR one but larger
width and slower decay at infinity. We will refer to this
model as the GA model below.

D. Comparison of discrete and quasicontinuum
models

We now compare the results of the discrete and quasi-
continuum models for the specific examples considered in
Sec. III, with fixed α = 4 and different negative β values.
We start by considering the solution amplitudes for the
three models shown in Fig. 7. One can see that for each
velocity the CR and GA models (dashed curve), which
yield solutions with the same maximum value, overesti-
mate the amplitude of the solitary waves in the discrete
case (solid curve), while the P22 approximation (dotted
curve) underestimates it, though the values it provides
are closer to the ones for the discrete model. For smaller
|β|, e.g. β = −1, the quasicontinuum models provide
a good approximation of the relatively small amplitude
of the discrete solution near the sonic limit but devi-
ate from their discrete counterpart at larger velocities.
For larger |β|, such as β = −19/4 and β = −21/4 corre-
sponding to the bistable interactions, the models capture
the overall trend of the amplitude-velocity relation in the
discrete model, such as its near-linear form and nonzero
sonic limit, but the quantitative difference in amplitudes
is significant over the entire velocity range, though it de-
creases as the sonic limit is approached.

We now consider the strain profiles at various velocities
shown in Fig. 8 and Fig. 9 for β = −1 and β = −21/4,
respectively, and α = 4. We first consider the local ap-
proximations. One can see that the CR model produces
more narrow and taller waves, while the P22 approxima-
tion yields waves that are wider than their discrete coun-
terparts and have smaller amplitude. As expected due
to the higher accuracy of the P22 model, it yields strain
profiles that are overall closer to the ones for the discrete
problem. Note that while the waves have wider core re-
gions in this case compared to both discrete problem and

CR approximation, their decay at infinity is faster than
that of the CR solutions (recall (31)), though it is slower
than in the discrete case. Recall that in the sonic limit
all three models yield the same algebraic decay (14) at
infinity.

One can see that at smaller |β| the CR and P22 mod-
els work very well in the near-sonic regime, where solu-
tions have relatively small amplitude and decay slowly;
see Fig. 8. The P22 model continues to work reasonably
well at larger velocities. However, at larger |β|, including
values that correspond to nonconvex interaction poten-
tials, the solutions are strongly localized over the entire
velocity range, and the two models yield solutions that
deviate substantially from their discrete counterparts in
the core region; see Fig. 9. They also completely miss the
oscillations observed in the discrete case due to noncon-
vexity, as shown in the insets. We remark that the P22
solution at V = 1.001 in the upper left panel of Fig. 9
is triple-valued for 0.826 < ξ < 0.835, due to an artifact
of the Padé approximation in this parameter regime, as
explained in Sec. IVB.

Solitary waves for the GA model have the same am-
plitude as the CR model but are significantly wider and
decay slower than for the other three models due to its
poor approximation of the long-wave k = 0 limit. When
solutions of the discrete model are sufficiently localized,
which is the case for larger velocities at smaller |β| and
for the entire velocity range at larger |β|, the GA model
does a good job of capturing the middle part of the wave,
yielding a better approximation of its width in the dis-
crete case than the two local models. But its solutions de-
viate considerably from their discrete counterparts near
ξ = 0 and also at large |ξ|, due to the much slower decay.

V. CONCLUDING REMARKS

We considered a one-dimensional nonlinear lattice with
interaction forces f(w) that are sublinear near the unde-
formed state and include the case of bistable bonds. Us-
ing Fourier spectral numerical method, we constructed
rarefactive solitary wave solutions propagating with su-
personic velocities. These results are in excellent agree-
ment with direct numerical simulations initiated by the
computed waves, suggesting their stability. In contrast to
the typical sonic delocalization, our solutions have a non-
trivial Chapman-Jouguet sonic limit with nonzero energy
and O(1/ξ2) decay at infinity.

We then investigated in detail two local quasicontin-
uum models that mimic some results of the discrete
model, such as the overall trend of the amplitude-velocity
relation and the nontrivial nature of the sonic limit, and
predict the correct asymptotic behavior of the limiting
solution at infinity. When β = f ′′(0) < 0 is sufficiently
small, the models yield results that are also in a very good
quantitative agreement with the discrete model at veloc-
ities that are close enough to the sonic limit. However, at
larger |β|, which importantly includes the case of bistable
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FIG. 7: Amplitude wmax = w(0) of the solitary wave solutions as a function of V for the discrete, CR, P22 and GA models at
(a) β = −1; (b) β = −3; (c) β = −19/4; (d) β = −21/4. Here α = 4.

interactions, solitary waves obtained from the quasicon-
tinuum approximation deviate from their discrete coun-
terparts in the core region for the entire velocity range
due to their strongly localized nature. They also fail to
capture some finer details of the solutions such as os-
cillations due to the combination of nonconvexity and
advance-delay terms in the traveling wave equation for
the discrete problem. An attempt to use a global ap-
proximation of the discrete operator instead of local ex-
pansion near the long-wave limit did not eliminate these
shortcomings.

Our findings demonstrate that standard methods of
approximating lattice solitary waves in the continuum
setting are not in general appropriate in the case of
bistable interactions, and new approaches need to be de-
veloped. In particular, this includes deriving an equa-
tion for the near-sonic rarefactive solutions that replaces
the no longer relevant KdV equation in this setting. It

is already clear that such an approximation must have a
global character in order to capture a wider range of wave
lengths, though it needs to be more sophisticated than
the relatively simple form we considered in Sec. IVC.
The challenge is to include enough terms in the Fourier
space while preserving some degree of analytical trans-
parency that would make such a description useful in
providing insights about the discrete model.
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