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Fig. 1: Given the image on the left, single view metrology can recover the scene and the
camera parameters in 3D only up to a global scale factor (for example, the two solutions
in the middle). Our method accurately estimates absolute 3D camera parameters and
object heights (middle, left) to produce realistic object insertion results (right).

Abstract. Most 3D reconstruction methods may only recover scene
properties up to a global scale ambiguity. We present a novel approach
to single view metrology that can recover the absolute scale of a scene
represented by 3D heights of objects or camera height above the ground
as well as camera parameters of orientation and field of view, using just a
monocular image acquired in unconstrained condition. Our method relies
on data-driven priors learned by a deep network specifically designed to
imbibe weakly supervised constraints from the interplay of the unknown
camera with 3D entities such as object heights, through estimation of
bounding box projections. We leverage categorical priors for objects such
as humans or cars that commonly occur in natural images, as references
for scale estimation. We demonstrate state-of-the-art qualitative and
quantitative results on several datasets as well as applications includ-
ing virtual object insertion. Furthermore, the perceptual quality of our
outputs is validated by a user study.

Keywords: Single view metrology, absolute scale estimation, camera
calibration, virtual object insertion
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1 Introduction

Reconstructing a 3D scene from images is a fundamental problem in computer
vision. Despite many successes on this task, most previous works only reconstruct
scenes up to an unknown scale. This is true for many problems including structure-
from-motion (SfM) from uncalibrated cameras [14], monocular camera calibration
in the wild [34,17,35] and single image depth estimation [9,24]. This ambiguity is
inherent to the projective nature of image formation and resolving it requires
additional information. For example, the seminal work “Single View Metrology’
of Criminisi et al. [6] relies on the size of reference objects in the scene.

In this work, we consider the problem of single view metrology “in the wild”,
where only a single image is available for an unconstrained scene composed of
objects with unknown sizes. In particular, we plan to achieve this via geometric
camera calibration with absolute scale estimation, i.e. recovering camera orienta-
tion (alternatively, the horizon in the image), field-of-view, and the absolute 3D
height of the camera from the ground. Given these parameters, it is possible to
convert any 2D measurement in image space to 3D measurements.

Our goal is to leverage modern deep networks to build a robust, automatic
single view metrology method that is applicable to a broad variety of images.
One approach to this problem could be to train a deep neural network to
predict the scale of a scene using a database of images with known absolute
3D camera parameters. Unfortunately, no such large-scale dataset currently
exists. Instead, our insight is to leverage large-scale datasets with 2D object
annotations [25,36,11,9]. In particular, we make the observation that objects
of certain categories such as humans and cars are ubiquitous in images in the
wild [25,36] and would make good “reference objects” to infer the 3D scale.

While the idea of using objects of known classes as references to reconstruct
camera and scene 3D properties has been used in previous work [16,18], we
significantly extend this work by making fewer approximations in our image
formation model (e.g. full perspective camera vs. zero camera pitch angle, infinite
focal length in [16]), leading to better modeling of images in the wild. Moreover,
our method learns to predict all camera and scene properties (object and camera
height estimation, camera calibration) in an end-to-end fashion; in contrast,
previous work relies on individual components that address each sub-task. We
demonstrate that this holistic approach leads to state-of-the-art results across
all these tasks on a variety of datasets (SUN360, KITTI, IMDB-23K). We also
demonstrate the use of our method for applications such as virtual object insertion,
where we may automatically create semantically meaningful renderings of a 3D
object with known dimensions (see Fig. 1).

In summary, we propose the following contributions:

)

— A state-of-the-art Single View Metrology method for images in the wild
that performs geometric camera calibration with absolute scale—horizon,
field-of-view, and 3D camera height—from a monocular image.

— A weakly supervised approach to train the above method with only 2D
bounding box annotations by using an in-network image formation model.

— Application to scale-consistent object insertion in unconstrained images.
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2 Related Work

Camera calibration To estimate the camera parameters, numerous efforts
have been made for estimating camera intrinsics [34,4,8,17] by explicit reasoning
or learning in a data-driven fashion. In addition, to estimate camera extrin-
sics, e.g. camera rotation angles or in the form of horizon estimation, classical
methods [38,3,7,22] look for low-level features such as line segments. More re-
cently, methods are proposed to directly regress the horizon from the input
image [26,35,20] by learning from large-scale datasets annotated with ground
truth horizons. The human sensitivity to calibration errors is studied in [17].

Depth prediction in the wild As we discussed in Section 1, the problem of
scene scale estimation will be solved if we are able to predict pixel-wise depth
for the scene. There has been a line of work in this topic. For domains which we
can acquire the ground truth absolute depth with depth sensors we may learn to
predict depth in a supervised fashion [9,32,19]. However given the limitation of
the range or mobility of the sensors, these datasets are more or less limited to
specific scenes. In other cases, people are able to acquire ground truth from stereo
matching [10,12,33] but a large-scale stereo depth dataset for images in the wild
is still absent. Other people have turn to proxy methods for collecting depth via
structure-from-motion (SfM) [24,23], or in the form of relative depth [5], or from
synthetic images [27,2]. However, these methods either produce depth without
absolute scale, or pose a domain gap to natural images.

Single view metrology Another line of work that seeks to estimate 3D scene
parameters from images is Single View Metrology [6], which recovers scene
structure in 3D from purely 2D measurements. These methods look for 2D
properties such as vanishing lines and vanishing points as well as object locations,
to establish relations among 3D sizes of objects in the image based on 2D
measurements. Some works have been done to embed Single View Metrology in a
framework to estimate the size of an unknown object in the scene or the camera
height itself [1,18,16,21], given at least one reference object with known size.

3 Method

3.1 Recovering 3D Parameters from 2D Annotations

We start by describing the image formation model that allows us to associate 3D
camera parameters, 3D object sizes (i.e. heights) and 2D bounding boxes. This
is also illustrated in Fig. 2.

We assume the world is composed of a dominant ground plane on which
all objects are situated, and a camera that observes the scene. We adopt a
perspective camera model similar to [16,17], which is parameterized by camera
angles (yaw ¢, pitch 6 and roll ), focal length f and camera height hcam to the
ground (see Fig. 2). For the measurements in the vertical axis of image frame,
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the location of the horizon is vy, while the vertical image center is at v.. Each
object bounding box have a top v; and bottom v, location in the image. We
assume all images were taken with zero roll, or were rectified beforehand [22]. We
further assume, without loss of generality, a null yaw and zero distortion from
rectification. Camera pitch 6 can be computed from v., vg and f using

0 = arctan < 7 %, (1)

Consider a thin object of height hp; with its bottom located at [z, 0, 2]7 in
world coordinates and its top at [z, hobj, 2]7. These points project to [u,vp]? and
[u, v¢]T respectively in the camera coordinates. Based on the perspective camera
model (see Eqn. 3 of the supplementary material), we have

(fcos@+ vesinb)hop; + (—fsin@ + v cos )z — fheam
honj tan 6 + z cos @ ’

—fsinfz + v, cos0z — fhcam (3)
zcosf ’

(2)

Ut

Vp =

where [u.,v.] € R? is the camera optical center which we assume is known.
Substituting z from Eqn. 3 into Eqn. 2, we may derive v; from camera focal
length f, pitch 6, camera height heam and object height hgpj. Hoeim et al. [16]
make a number of approximations including cos§ ~ 1, sinf ~ 6 and (v. — vg) X
(ve —v9)/f? & 0, to linearly solve for the object height:

UVt — Uy

(4)

hobj = hcam .
Vo — Up
In contrast, we model the full expression accounting for all the camera parameters.

Eqn. 2 and Eqn. 3 establish a relationship between the camera parameters,
including its 3D height, the 3D heights of objects in the scene, and the 2D
projections of these objects into the image. Moreover, note that once we can
estimate these parameters, we can directly infer the 3D size of any object from its
2D bounding box, thus resolving the scale ambiguity in monocular reconstruction.
In the following section, we introduce ScaleNet, a deep network that leverages
this constraint to create weak supervision to learn to predict 3D camera height.
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Fig. 3: Overview of our method. From the input image I, the camera calibration module
estimates pitch 6 and field of view hg, and the object estimation modules estimate
keypoints for person, object heights hobj and bounding boxes. The estimated horizon vy,
bounding boxes and object heights are fed into the camera height estimation module
to give an initial estimation hcam. The bounding box reprojection errors £,, are then
computed from the reprojection module (see Eqn. 2 and Eqn. 5), and together with
other variables are fed to the refinement network to estimate updates on the camera
height and object heights. Several layers of refinement are made to produce the final
estimation.

3.2 ScaleNet: Single View Metrology Network with Absolute Scale
Estimation

Previous work [16,18] has shown that when scene parameters (e.g. camera pa-
rameters, object sizes) are reasonable, reprojected 2D bounding boxes should
ideally fit the detected ones in the image frame. We follow a similar path in our
weakly-supervised learning framework and specifically focus on humans and cars,
given that they are the most commonly occurring object categories in datasets
of images in the wild (e.g. COCO dataset [25]).

Our end-to-end method, referred to as ScaleNet (SIN), is split into two parts,
which we describe in Fig. 3. First, all the object bounding boxes and camera
parameters except camera height are jointly estimated by a geometric camera
calibration network. These parameters are directly supervised during training.
Second, a cascade of PointNet-like networks [31] estimates and refines the camera
height (scene scale) based on the previous outputs. This second part is weakly
supervised at each stage using a bounding box reprojection loss.

Camera calibration module and object heads The camera calibration
module is inspired by [17], where we replace their backbone with Mask R-
CNN [15,28], to which we add heads to estimate the camera parameters. To train
the camera calibration module, we follow the representation of [17], including bins
and training loss. However, instead of predicting the focal length f (in pixels),
we find it easier to predict the vertical field of view hy, which can be converted
to the focal length and the horizon midpoint using:

him o = %him Ean& 4 hiim’
tan (5hg) 2
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where hip, is the height of the image in pixels. We also use additional heads to
estimate the object bounding box, height and person keypoints (since we find
that a person’s 3D height in an image is closely related to their pose) from ROI
features which share the same backbone as the camera estimation module. Please
refer to the supplementary material for the full architecture of this network. In
total, we enforce three losses on this part of the model, i.e. the camera calibration
loss Lealib (0, ho) and the detection losses Laet and Lips.

The iy, object leth detected 2D top position v is reprojected to the
image by Eqn. 2 to v; with estimated object height, camera height and camera
parameters, and we define the bounding reprojection error as

N
o (1H0) = 5 22 ot =l 9

Object height prior The above bounding box supervision has the same scale
ambiguity as previous work. However, explicitly modeling 3D object heights allows
us to use a prior on size to regularize the network to produce a meaningful object
height estimation. We follow [16] and use a Gaussian prior fit from statistics (i.e.
for 1.7040.09m for people and 1.59+0.21m for cars). For an object i of height
hf)bj and prior Gaussian distribution P(z; i, o), we define the height prior loss as

2

Lhp; ({hob] i= 1) = Z sty 0 (6)

Camera height estimation module Directly predicting camera height from
images would require the network to learn to be robust to a wide variety of
appearance properties (object, layout, illumination, etc. ). Instead, we design a
camera height estimation module that leverages the strong geometric relationship
between camera height, 2D bounding boxes and the horizon. As exemplified in Fig.
4, both images are composed of a group of standing people while the horizons are
not fully visible in the back. At first glance, both images seem to have the same
camera orientation, since the people take roughly the same space in the image.
However the camera height is quite different between both images. Based on
this observation, instead of estimating camera height from image appearance, we
take advantage of middle level representations of the scene (e.g. object bounding
boxes and estimated horizon line) and feed those to the camera height estimation
module which is derived from PointNet [30]. Its input is the concatenation of
all object bounding box coordinates and the offset between the bounding box
and horizon, i.e. o = [V0, Uiy, » Uraer s Vtaer s Vbaet s Vtaer — V05 Vbger — V05 Pobj]? € RE
where wu;,_, and wu,,,, are the left and right coordinates of the detected bounding
box. The network outputs the camera height as a discrete probability distribution.
Finally, a weighted sum after a softmax is applied to obtain the camera height
estimation.
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Camera height = 1.72m Camera height = 0.34m

Fig. 4: Example of images with different camera heights exhibiting similar bounding
boxes.

Camera height = 1.64m Camera height = 1.64m Camera height = 1.64m

Fig.5: Example of cascade refinements of camera height (top) and person heights
(bottom). The refined parameters are labelled in red.

Cascade refinement layers We observe that we can iteratively refine the
camera height by considering all scene parameters jointly. Inspired by the cascade
refinement scheme from [31], we propose to look at the error residual—in our
case the object bounding box reprojection error—and predict a difference to
the estimated parameters. The whole process is highlighted in Fig. 5, where the
reprojected object bounding boxes are shorter than the detected ones at first.
After a first step of refinement, the network reduces the camera height to reduce
the object bounding boxes error, and so on. To this end, we design layers of
refinement, where in layer j € {1,2,..., M} a camera height and object height
refinement module takes as input the object bounding box reprojection residuals
and the other camera parameters, formally as v, = [vo, (ul, u’, vfj_ o V1 )det véj_ L
Uzdet’hébjj717h0aH1171]T € R® where i € {1,2,... N} is the object index. Each

refinement layer j predicts updates Ahcam; and Ahly; so that hiy. = Ahly. +
. J J J
ébjj,l and hcam; = Ahcam; + hcam,_, - An object bounding box reprojection loss

ﬁvtj and object height prior £hobjj are enforced for each layer.
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The final training loss is a weighted combination of the losses, written as
L ({{WJ?LP {hobjlz}{il}jiu«g-, I he, (~-)dct-kPS) =m Z,\Ll Ly, +az Zj\ig Ly, + 3Leatin + aalaet + a5 Lips, (7)

where a5 are weighting constants to balance the losses during training.

3.3 Datasets

In the following, we describe the datasets and their preprocessing used for training
and evaluation. Data generation details, statistics, sampled visualization of all
datasets can be found in the supplemental material.

Calib: Camera calibration dataset To train the camera calibration module
to estimate camera pitch and field of view from a single image, we follow the
data generation pipeline from [17], where data are cropped from the SUN360
database [37] of 360° panoramas with sampled camera parameters. We split the
resulting camera calibration dataset into 397,987 images for training and 2,000
images for validation. For simplicity, we refer to this dataset as the Calib dataset.

COCO-Scale: Scale estimation dataset from COCO While the Calib
dataset provides a large and diversified dataset of images and many ground truth
camera pitch and field of view parameters, it does not provide camera height. To
complement this dataset, we use the COCO dataset [25], which allows us to train
our method in a weakly-supervised way. This dataset features 2D annotations of
object bounding boxes, keypoints of person, and stuff annotation. We further
extend these annotations by using Mask R-CNN [15] to infer objects of certain
categories, e.g. person and car. These additional annotations complement the
ones provided in the dataset, which together form our candidate object set. We
refer to this dataset as the COCO-Scale dataset.

We filter out invalid objects which do not satisfy our scene model, using the
stuff annotation (e.g. ground, grass, water) to infer the support relationship of
an object with its surrounding pixels; we only keep objects that are most likely
situated on a plane (e.g. people standing on grassland, cars on a street). For the
person category, we use the detected keypoints from Mask R-CNN [28] to detect
people with both head and ankles visible to ensure the obtained bounding box is
amodal as in [18]. We further filter the images based on aspect ratio, object size
and number of objects to keep bounding boxes of certain shape.

This pruning step yields 10,547 training images, 2,648 validation images, taken
from COCOQO’s train2017 and val2017 splits respectively. We further obtain test
test images from val2017 and ensure no overlap exists between the splits. We
call this person-only subset COCO-Scale-person. For the multi-category setting
(COCO-Scale-mulCat), we look for images including both cars and people, which
provides us with 12,794 images for training, 3,189 for validation, and 584 for
testing.
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Fig. 6: (Left) Annotated person bounding box (red) with ground truth height and
detected person (green) with keypoints (colored). (Right) Calculation of upright ratio.

KITTI We use the KITTI [11] dataset to evaluate our camera and object
height estimations. We apply the same filtering rules as used on COCO, yielding
298 images for person-only setting (KITTI-person), and 234 images for the
multi-category setting (KITTI-mulCat).

IMDB-23K celebrity dataset for person height evaluation IMDB-23K [13]
is a collection of online images of celebrities, with annotations of body height from
the IMDB website. We use this dataset to evaluate our object height prediction.
However, these height annotations may not be exact and we treat them as pseudo
ground truth to draw comparisons. We apply the same filtering rules as on COCO,
and the filtered dataset consists of 2,550 test images with one celebrity labelled
with height in each image. An image from this dataset is shown in Fig. 6.

4 Experiments

4.1 Baseline methods

We use Hoiem et al. [16] as the baseline method. For fair comparison, we employ
our object proposals or top predictions from Mask R-CNN [28] as input to this
method to replace the original detector [29], which enhances the original method.
We set up 2 baseline models: (1) PGM: the original model based on a Probabilistic
Graphical Model, which takes in object proposals and surface geometry, and
predicts camera height and horizon. Object heights can be computed from Eqn.
4 by directly minimizing the reprojection error; (2) PGM-fixzedH: same as PGM
but assumes all objects have canonical height. For people, we use 1.7m which is
the mean of the person height prior used in [16]). For cars we use 1.59m.

4.2 Training

We train our model in two stages. Firstly, we train the camera calibration network
with full supervision from the Calib dataset using camera calibration losses and
the detection & keypoint estimation heads with full supervision from COCO
ground truth with losses following [28]. The backbone, camera calibration head,
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jects

Table 1: £,, on COCO-Scale-person

| |PGM-fixedH |SN-L1 SN-L3 SN-L3-mulCat SN-L3-kps-can

9% of all objs

— SN-L3-kps-can
SN-L3.

—— SN-L1

— SN-L3-mulCat

mean|  0.1727  |0.1502 0.0717 0.0613 0.0540 01 T e
Ly, | std. 0.3598  |0.2579 0.1875 0.1874 0.1677 004
med. 0.0793 0.0693 0.0116 0.0074 0.0094 R e

Fig. 7: L,, of all objects on COCO-
Scale-person under varying thresh-
olds.

and detection & keypoint heads are initialized with a pre-trained Mask R-CNN
model [28].

For the second stage, the object height estimation module is trained together
while other modules are finetuned, in a weakly-supervised fashion, with the full
loss in Eqn. 7. Training details can be found in the supplemental material.

Variants of ScaleNet (SN) We evaluate several variations of ScaleNet (SN):
(1) SN-L1: one layer architecture with direct prediction of object height and
camera height without refinements. (2) SN-L3: one layer for initial prediction
with 2 additional refinement layers. (3) SN-L3-mulCat: same as SN-L3 but with
objects of multiple categories as input and trained on COCO-Scale-mulCat. (4)
SN-L3-kps-can: same as SN-L3 but training keypoints prediction and predicting
each person in upright height instead of actual height. An upright ratio computed
as lactual /lupright in Fig. 6 is an approximation of the actual ration in 3D that
takes into account the person’s pose. It is multiplied to the predicted upright
height to obtain actual height, and the height prior is applied to the predicted
upright height.

Training results on COCO-Scale We calculate the bounding reprojection
error from Eqn. 2 on the test split which is an indication of 2D bounding box
fits. The results are shown in Table 1 and Fig. 7.

4.3 Evaluation on COCO-Scale-person

Since we do not have ground truth 3D annotations on the COCO-Scale-person
dataset, we evaluate performance using a user study on virtual object insertion. We
evaluate the plausibility of our estimates on the resulting scale and perspective
effects of an inserted object via an A/B test on COCO-Scale-person. In our
evaluation, we render a 1m height chair alongside each object. For each of the 4
pairs of models, we insert the chair in 50 random test images. 10 users for each
pair of models were asked to choose which image of the pair is more realistic
w.r.t. the scales of all chairs.
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SN-L3-kps-can

Fig. 8: Scene parameters estimation and virtual object insertion results on COCO-Scale.
The detected boxes are shown in green and reprojected ones in blue. The horizon is
shown as dashed blue line. Camera parameters are overlaid on the top (camera height
as y., focal length in millimeters as fmm assuming 35mm full-frame sensor, and pitch as
0). A chair of 1m tall is inserted alongside each person with the estimated parameters.

As can be seen in Table 2, our results improve when adding multiple categories
(SN-L3-mulCat) or regress keypoint and account for the pose while computing
person height (SN-L3-kps-can). The best variant SN-LS3-kps-can outperforms
other methods significantly. This is consistent with the bounding box reprojection
error in Table 1 where SN-L3-kps-can is the best performing method.

Fig. 8 shows a qualitative evaluation of our method. The first row shows the
benefit of using the upright ratio, leading to better estimations in SN-L3-kps-can.
The second row shows our method displays better behavior in cases of multiple
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Table 2: A/B test results for scale on COCO-Scale-person
| SN-L3  SN-L1 | SN-L3 SN-L3-kps-can | SN-L3 SN-L3-mulCat | SN-L3-kps-can  PGM

preference | 54.6% 43.8% | 42.8% 57.2% | 50.7% 493% |  59.5% 40.5%

Table 3: Evaluation errors on all pedestrian objects of KITTI-person. PGM-fixedH
assumes a canonical object height, while PGM explicitly solves for the object height
that minimizes bounding box reprojection error £,, (ideally to zero), as a result of
which the £,, errors of PGM are grayed out as they are not directly comparable to
others. Best results in bold (lower is better).

| | PGM-fixedH ~PGM | SN-L1 SN-L3  SN-L3-kps-can SN-L3-mulCat
input car
p person v v v v v v
mean 0.0863 0.1358 | 0.0837 0.0956 0.1014 0.0849
ghobj std. 0.0570 0.1406 | 0.0610 0.0751 0.0864 0.0714
med. 0.0800 0.0916 | 0.0727 0.0770 0.0864 0.0685
mean 0.0767 0.0980 0.0331 0.0585 0.0283
Loy, std. 0.0638 0.1000 0.0644 0.0815 0.0415
med. 0.0618 0.0724 0.0128 0.0815 0.0127
mean 0.1408 0.2356  0.1988 0.2649 0.1264
Eheam | std. 0.1585 0.2860 0.3162 0.3207 0.1147
med. 0.1096 0.1821 0.1160 0.1666 0.0878

objects with diverse heights. In the third row, we demonstrate robustness to
outliers (the person on the bus).

4.4 Quantitative evaluation on KITTI

Since KITTTI provides ground truth for all of the parameters our method estimate,
we can directly evaluate the errors in bounding box reprojection £,,, camera
height estimation &, and object height estimation &, ; as shown in Table 3
and Table 4 on KITTI-person and KITTI-mulCat respectively, where

1 N
ghcam - Hhcam - hcamgt H 75hobj = N Z Hhobj - hobjgt (8)
i=1

hcam and hébj are the final estimated camera height and height of object i, and
heam,, and hgbjgt are their ground truth values respectively.

Our method SN-L3-mulCat outperforms previous work on both KITTI-person
and KITTI-mulCat. This method takes into account the cues from multiple
categories to perform inference, giving it an advantage on scenes with high-
diversity content (see Table 4). Qualitative results are shown in Fig. 9. Please

refer to the supplementary material for more results.
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Fig. 9: Scene parameters estimation results with SN-L3-mulCat
Reprojected pedestrians are in blue, while cars are in magenta.

on KITTI-mulCat.

Table 4: Evaluation errors on all pedestrian objects of KITTI-mulCat following specifi-
cations of Table 3

| | Pam PGM | SN-L3 SN-L3-mulCat SN-L3-mulCat
input car v v
p person v v v v v
mean 0.1198 0.1177 | 0.1266 0.1092 0.0956
ghobj std. 0.1007 0.0932 | 0.0994 0.0883 0.0811
med. 0.0896 0.0939 | 0.0968 0.0876 0.0780
mean 0.0647 0.0303 0.0712
Loy, std. 0.1124 0.0465 0.1153
med. 0.0166 0.0123 0.0297
mean 0.1379 0.1519 | 0.3464 0.1547 0.1222
Ehcam std. 0.1735 0.1676 | 0.3693 0.1687 0.1235
med. 0.0703 0.1096 | 0.2278 0.0991 0.0904

4.5 Quantitative evaluation on IMDB-23K

IMDB-23K provides annotation for the registered height of a person, which we
assume is the height of the person standing straight (the upright height). Since all
of our models except SN-L3-kps-can predict the actual person height (influenced
by the specific pose, viewpoint, bounding box drawing, etc.), we use the upright
ratio (see Fig. 6) computed from detected keypoints to convert the actual height
back to upright height. This upright ratio allows us to compute upright height
from all methods, and compare against the pseudo ground truth, as included
in Table 5 and Fig. 10. Since the ground truth annotations are only valid for
standing people, we further get a subset of the test set where the estimated
upright ratio from keypoint prediction is less than 0.90, which typically denotes
a non-standing person. Table 6 evaluates the methods on this subset and shows
that SN-L3-kps-can, which directly accounts for the upright ratio in training and



14 R. Zhu, X. Yang et al.

Table 5: & ,; and L., on IMDB-23K following specifications of Table 3

| | PGM-fixedH ~PGM | SN-L1 SN-L3  SN-L3-kps-can SN-L3-mulCat
mean 0.0843 0.2234 | 0.0832 0.0891 0.1003 0.0990
ghobj std. 0.0638 0.2246 | 0.0688 0.0818 0.0920 0.0915
med. 0.0700 0.1644 | 0.0706 0.0695 0.0920 0.0777
mean 0.0983 0.1011  0.0431 0.0920 0.0416
Loy, std. 0.0546 0.1706  0.1324 0.1257 0.1537
med. 0.0689 0.0441 0.0071 0.1257 0.0056

Table 6: &, on IMDB-23K (non-standing person).Best results in bold (lower is
better)

‘ ‘ PGM SN-L3  SN-L3-kps-can

0.1552  0.1591 0.1212
0.1379 0.1788 0.1072
0.1177 0.1013 0.0909

mean
std.

shobj
med.

y

ye: 178, finm: 51.16mm, 6: -10.61° m:(24.63mm, 8: :7.95

Fig. 10: Scene parameters estimation results with SN-L3-kps-can on IMDB-23K.

inference, performs better in getting upright heights compared to other models;
visual comparisons are shown in Fig. 10 and the supplementary material.

5 Conclusion and Future Work

We present, a learning-based method that performs geometric camera calibration
with absolute scale from images in the wild. We demonstrate that our method
provides state-of-the-art results on multiple datasets. Despite this advance, our
method is hindered by some limitations.

Our single dominant ground plane assumption does not always hold in the
wild. Urban scene may provide multiple supporting surfaces at different heights
(tables, balconies), so objects may not be laying on the assumed ground plane.
Also, the ground may be non-flat in nature environments.

Our method is highly biased on appearance. Adding amodal reasoning, as
proposed in [18], would be an interesting way forward to perform holistic scene
reasoning. We would like to tackle these limitations as future work.
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