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Abstract—Explainability is one of the key elements for building
trust in AI systems. Among numerous attempts to make AI
explainable, quantifying the effect of explanations remains a
challenge in conducting human-AI collaborative tasks. Aside
from the ability to predict the overall behavior of AI, in many
applications, users need to understand an AI agents competency
in different aspects of the task domain. In this paper, we evaluate
the impact of explanations on the users mental model of AI
agent competency within the task of visual question answering
(VQA). We quantify users understanding of competency, based
on the correlation between the actual system performance and
user rankings. We introduce an explainable VQA system that uses
spatial and object features and is powered by the BERT language
model. Each group of users sees only one kind of explanation
to rank the competencies of the VQA model. The proposed
model is evaluated through between-subject experiments to probe
explanations’ impact on the users perception of competency.
The comparison between two VQA models shows BERT based
explanations and the use of object features improve the users
prediction of the models competencies.

I. INTRODUCTION

Recent developments in the field of AI and specifically deep

neural networks (DNN) have brought them into a broad range

of applications. DNNs have automated a wide range of human

activities resulting in reduced complexity of many tasks. Users

of AI systems, though, need to maintain at least a minimal

level of understanding and trust in the system, i.e., they need

a proper mental model of the systems internal operations for

anticipating success and failure modes.

While accuracy is well-known as the primary metric for

AI efficiency, it cannot guarantee a collaborative human-

machine interaction in the absence of trust. If the users do

not trust a model or a prediction, they will not use it [1]. This

mistrust escalates in the presence of adversarial attacks where

imperceptible changes to the input lead to wrong outputs and

also the susceptibility of DNNs to non-intuitive errors.

Explainable AI aims to gain user’s trust on two major

steps of interpretability and explainability. Interpretable mod-

els provide a basic comprehension of their inner-processes

through visual or textual cues. On a higher level, explainable

models attempt to provide reason and causality behind their

decisions[2].

The appearance of various methods of explanations call for a

parallel effort to evaluate and quantify their efficiency. While

previous works introduce nominal visualizations and textual

justifications on the inner features of DNN models; yet it does

not evaluate the impact of explanations on various aspects of

users understanding and trust.

Evaluation techniques for explanations include automatic and

human methods. Automatic approaches provide quantifiable

measures over relevant benchmarks e. g. alignment with hu-

man attention datasets[3], however they still cannot propose

a straight-forward metric for trust in actual human-machine

task.

Furthermore, human-based approaches attempt to quantify

explanation effectiveness through collecting user ratings [4],

[5]. Despite their insightful results, these methods do not

measure user’s perception of AI competency in the whole

domain.

Users can benefit from AI systems more efficiently if they

are familiar with the AI agents competency in the operational

domain. The competency of AI can be impacted by the biases

in the training data or limited representation of crucial features.

An explanation system that provides case-by-case reasoning

for AI behavior does not automatically produce a higher

view of competency. Particularly, deep learning models are

notoriously opaque and difficult to interpret and often have

unexpected failure modes, making it hard to build trust.

As prior research shows explanations improve users prediction

of system accuracy [6]. Herein, we focus on the users mental

model of an AI system in terms of competency understanding.

Specifically, we evaluate the importance of explanations for

helping users interpret how a VQA system performs on

different types of questions. We model users learning process

under two different explanation systems to identify the role

of the attention-based explanations in users prediction of

competency. For this purpose, we evaluate the impact of

explanations on user learning rate and also their ultimate score

on the task of competency prediction.

II. RELATED WORK

Visual question answering (VQA). Originally introduced

by [7], the VQA problem involves the task of answering

questions about the visual content of an image. The VQA

task is specifically challenging due to the complex interplay

between the language and visual modalities[8]. Limited
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labeled data and the complex feature space complicate the

process of developing VQA models. These challenges result

in models with inconsistent outputs and serious logical

contradictions[9]. In such an environment, the choice of

hyper-parameters and architectural designs can have drastic

impacts on the performance of VQA models[10].

A common approach to VQA is to use DNNs with attention

layers that select specific regions of the image, guided by the

question for inferring an answer[11], [12], [13], [14]. Herein,

we also study two attention based VQA models with different

attention structures. As a baseline, we use a model based on

Kazemi and Elqursh [15] and Teney et al.[11] approaches. We

propose a new VQA architecture by replacing the attention

mechanism with a BERT model[16] in the baseline VQA

model.

The previous work in VQA includes various attempts to

optimize the attention mechanism. To improve the attention

on the question, Lu et al.[17] utilize a co-attention model

to jointly reason about image and question on hierarchical

levels. Anderson et al.[18] propose a combined bottom-up

and top-down attention mechanism to calculate attention

at the level of objects. The model is further upgraded and

fine-tuned to win the VQA Challenge 2018[19].

Despite all the advancement in the overall accuracy of VQA

models, their unbalanced performance in different aspects of

the task is overtly noticeable. Some prior approaches address

this issue by focusing on certain tasks such as reading text

in images[20] or counting objects[21]. Other works introduce

new datasets to reduce bias [22] or to enforce the logical

consistency of model through visual commonsense reasoning
(VCR) for challenging questions[23].

Explainable AI (XAI). The ever increasing complexity

of the modern AI machine demands a trustable source

of explanation for all the AI users. Generating automated

reasoning and explanations dates back to very early work in

the AI field with direct applications from medicine [24]and

education [25], [26], to robotics [27]. In the field of computer

vision, several explanation systems focus on the importance

of image features in the decision-making process [28], [29],

[30], [19].

AI explanations for the task of visual question answering

usually include image and language attentions [4], [15].

Besides saliency/attention maps, other efforts investigated

different explanation modes like layered attentions [31],

bounding boxes around important regions [32], textual

justifications [24], [33] or a combination of these modes [6].

We propose an explainable VQA system which produces

justifications for system answer in the form of an attention

map. Unlike previous post-hoc saliency approaches such as

GradCAM[34], our method seeks causal explanations by

providing attentions as an inherent step of answer inference.

Our proposed model uses visual features on both spatial

and object level. For better performance in VQA task, the

proposed model utilizes BERT language model to process

question features along with the visual features.

Explanation evaluation. As the AI machines enter the

daily life of people, a new interest has surged among the AI

community to make AI algorithms more understandable to

the lay users without the technical background[35]. In this

work, we choose the subjects for explanation evaluation from

a group of individuals with minimum knowledge about AI

and deep neural networks.

Evaluating the impact of explanations on user mental model

and human-machine performance is widely discussed in the

XAI literature. Some of the earlier works take on quantifying

the efficacy of explanations through user studies to assess the

role of explanations in building a better mental model of AI

systems for their human users.

Some of the previous studies introduced metrics to measure

trust with users [36], [1], or the role of explanations to

achieve a goal [37], [38], [39]. Dodge et al. investigated the

fairness aspect of explanations through emperical studies[40].

Lai and Tan [41] assessed the role of explanations in user

success within a spectrum from human agency to full

machine agency. Lage et al. proposed a method to evaluate

and optimize human-interpretability of explanations based on

measures such as size and repeated terms in explanations[42].

Other approaches measured the effectiveness of explanations

in improving the predictability of a VQA model [43], [6].

In this work, we conduct a user study to investigate the

impact of explanations on the users mental model of system

competency. Within the study, subjects attempt to rank system

performance among different types of input questions. The

results indicate a positive influence on the accuracy of the

users mental model in the presence of explanations. We detail

the overall and temporal effect of explanations on the users

interpretation in two explainable VQA models.

III. METHODS

Our approach aims at evaluating the role of attentional

explanations in the user’s mental model of AI competency.

To accomplish this task, we compare two explainable VQA

models and test them through user studies.

In this section, we cover the architecture details for these VQA

models and the differences in their attention mechanisms. The

section later follows with sample cases from both explanation

models and the differences between them.

A. Explainable VQA (XVQA) models

Our work compares two VQA agents: spatial attention VQA

(SVQA) and spatial-object attention BERT VQA (SOBERT).

Both agents are trained on VQA 2.0 dataset. SVQA is based on

a 2017 SOTA VQA model with a ResNet [44] image encoder

(figure 2). The agent uses an attention mechanism to select

visual features generated by an image encoder and an answer

classifier that predicts an answer from 3000 candidates.

As shown in figure 2, SVQA takes as input a 224×224 RGB

image and question with at most 15 words. A ResNet subnet



Fig. 1. The workflow for user study groups: Left shows the baseline group where the users only view the top five answers from the model along with the
probability of the answers. As shown on the right, users inside the explanation group, also view the attention maps generated by the model. Each group views
blocks of trials. At the end of each block, users are asked to rank the question-images based on how well they seem to be understood by the model.

encodes the image into a 14×14×2048 feature representation.

An LSTM model (GloVe [45]) encodes the input question

word embeddings into a feature vector of 512 dimensions.

The attention layer in the SVQA model transfers the question

and image features to a set of attention weights on the image

features. The model convolves the concatenation of weighted

image features and question features to produce the attention

layer with 14 × 14 × 1024 dimensions. The model predicts

the probability of the final answer from a set of 3000 answer

choices using a multilayer perceptron (MLP). The attention

layer also goes through a convolution block to generate the

spatial attention map.

Fig. 2. The architecture of explainable SVQA model.

On the other hand, the SOBERT agent uses a combination

of visual embeddings of the image from ResNet and Faster

RCNN (FRCNN)[46] alongside question embeddings (figure

3). SOBERT accepts questions with a maximum length of 30

words and the input question embeddings contain the location

and token information of words. The location features are

encoded in both ResNet and question embeddings.

SOBERT agent uses a BERT model with 4 layers and 12

attention heads. BERT transfers the hidden features (115×768)

into spatial attention heads (12× 7× 7) and output layer. An

MLP maps the output layer to the final answer prediction out

of 3129 candidates.

Based on their training process and their characteristics, VQA

agents can reach certain levels of accuracy in each type of

question. For our tests, we limit the cases into a subset of

VQA 2.0 validation set with questions about action, attribute,

Fig. 3. The architecture of the explainable SOBERT model. This model passes
the combination of visual features from ResNet and FRCNN and question
embeddings into a BERT model to produce answers and spatial attention.

object, and count. We classified the question using a set of

automated methods including word matching in questions and

also their answers.

Questions about activity inside an image are labeled as ”Ac-

tion”. Questions about objects inside the image are labeled

as ”Object”. Questions that are specific about attributes of

entities in the image (e.g. color) are labeled as ”Attribute”.

Finally, questions about counting entities on the image are

categorized as ”Count”. Table I shows the accuracy of SVQA

and SOBERT agents in these four categories. The accuracy

of models are computed over the four categories within VQA

validation dataset.

As numbers in table I show, the two models pose a similar

ranking between the four categories of questions, while the

SOBERT model can reach a higher accuracy in all of them

compared to the SVQA model.

B. Explanations

The VQA agents can produce a spatial attention map to

visualize the areas of focus while producing the answer. SVQA

model convolves the attention tensor into a 14×14 spatial map.

In the SOBERT model, the attention tensor is averaged over

the 12 attention heads into a 7× 7 spatial attention map.

The attention maps generated by the VQA agents provide

a causal explanation to the users as they illustrate AI spa-

tial/object attentions as an inherent step in answer inference.



Action: Is the animal sitting or standing?

SVQA SOBERT

Ans: Sitting Ans: Standing

Object: What is on the shelf?

SVQA SOBERT

Ans: Cat Ans: Books

Attribute: What color is the cat?

SVQA SOBERT

Ans: Brown Ans: Black

Count: How many zebras on there?

SVQA SOBERT

Ans: 1 Ans: 2

Fig. 4. Attention maps generated by the AI agents for questions in different question type categories. As illustrated in the results, the SOBERT model
produces attention maps with more focus on the areas related to the question.

Action Attribute Object Count

SVQA 81.21% 70.83% 64.46% 45.78%

SOBERT 88.35% 86.63% 71.84% 60.14%

TABLE I
THE ACCURACY OF VQA AGENTS IN FOUR SELECTED CATEGORIES OF

QUESTION.

Both models use spatial features from the images while

gaining a general representation of image content. SOBERT

model also incorporates object-level F-RCNN features into the

process.

One major impact of including object-level attention emerges

in the attention map outputs of the model. As can be seen in

figure 4, the attentions from the SOBERT model cover broader

areas that are associated with objects on the scene. Also,

the averaging layer that generates attention produces smooth

attention distributions in the SOBERT model compared to

more localized and scattered attention in SVQA.

IV. EXPERIMENTS

We designed an interface for an in-person user study to

evaluate the impact of explanations on the users understanding

of AI agent competency among different question types. At

the introductory section of each study session, subjects are

reminded that the model competency and accuracy of the AI

model is unknown to minimize their prior knowledge and

judgment of the AI agent competency.

In this user study, subjects go through a set of trial blocks

where the AI agent answers questions about images. Each

block consists of four trials with one image-question of each

type: object, attribute, action, and count. On each trial, subjects

first see the input image and question and then they proceed

to see the outputs of the AI agents.

For each model, the study is divided into two groups of

baseline and explanation. Each study group contains 10 sub-

jects and each subject goes through 100 trials (25 blocks).

In all groups, users see the agents top five answers, their

probabilities, and agents Shannon’s confidence in each trial.

In the explanation group, subjects first view the attention map

from the model and then see the top answers and confidence

value. Subjects are asked to rank the helpfulness of attention

maps on understanding AI’s performance on that trial.

At the end of each block, subjects rank the trials within

the block based on system performance in each question

type. Comparing question type rankings from subjects between

baseline and explanations measures the explanation on subjects

opinions of system competency (figure 5).

In each block of trials, four question-images show up in

random order. The AI agent’s success ratio in each block

is also random. Among the baseline group, users can rely



Model Condition Final ranking corr. Max. user learning rate (corr. / blocks)

SVQA
Baseline 0.757 0.0105

Explanation 0.805 0.0769

SOBERT
Baseline 0.611 0.0253

Explanation 0.921 0.0468

TABLE II
THE MAXIMUM LEARNING RATE OF USERS AND THE FINAL VALUE OF CORRELATION IN COMPETENCY RANKING TASK. BOTH EXPLANATION MODELS

SHOW AN IMPROVEMENT IN EARLY LEARNING RATES. WHILE EXPLANATION FROM THE SOBERT MODEL DOES INCREASE THE LEARNING RATE AS

MUCH AS SVQA, HOWEVER, SOBERT REACHES A RELATIVELY HIGHER FINAL LEARNING RATE.

Fig. 5. The average of all rankings entered by the subjects at the end of every
block of trials (Top: SVQA model, Bottom: SOBERT model).

on the top answers and their probabilities to understand

system performance on that question and image. On the other

hand, subjects from the explanation groups have the extra

information provided by the attention maps (figure 1).

A. Explanation helpfulness

In the explanation group, subjects view the attention ex-

planations before they see the final answers and accuracy of

AI. At this stage, subjects rate the explanations based on their

helpfulness towards understanding AI’s performance.

The helpfulness rankings are specifically interesting for action

and count question types within which the VQA agents show

their highest and lowest competencies. The helpfulness rank-

ings of within these categories on SOBERT explanations show

an increase compared to SVQA (figure 6). While subjects

rank 17% of SVQA explanations are ranked as not helpful

in count questions, this number is reduced to 7% by SOBERT

explanations. In action questions, SOBERT also reduces the

unhelpful explanations from 8% to 3%.

B. Competency ranking

We assess the accuracy of subjects ranking by measuring

the correlation between that and the ground truth competency

ranking of AI agents (figure I) and the collected rankings at

the end of each block. Figure 6 illustrates this correlation in

the starting and finishing blocks of each study group. The

start and finish values of correlation are the average of 1-5

and 20-25 blocks respectively.

Fig. 6. Histogram of ratings of how helpful explanations are for the
subjects. These helpfulness ratings are given by the subjects as they view the
explanations and before they see the system top 5 answers. So these ratings
are not confounded by the accuracy of the AI.

Overall, the ranking correlation shows an increase in both

models with a slightly higher slope in the presence of ex-

planations (table 8). To better picture the temporal impact of

explanations on the users mental model, figure 7 presents the

progress of ranking correlation throughout the study. In the

early blocks for both models, the explanation groups increase

their ranking correlation with a higher rate than baseline.



Fig. 7. Temporal impact of attention maps on user rankings. Left: the growth of correlation in baseline and explanation groups is compared between baseline
(blue) and explanation (orange) groups for two models SVQA (left) and SOBERT (right). T-test p-values for SVQA and SOBERT data are 0.07 and 3.7e− 8
respectively.

Fig. 8. The overall correlation between the users rankings and the systems
actual competencies. Comparing the results from the SVQA (left) model and
our SOBERT (right) model suggests a better improvement of correlations in
the presence of SOBERT attention maps.

C. Competency learning curves

We also investigate the temporal pattern of temporal ranking

correlation by fitting curves into the data in baseline and

explanation groups. This problem, in general, can be viewed

as modeling user learning curve for a certain task.

The modeling user learning curve is widely discussed in

cognitive science. In previous works, researchers analytically

derived exponential learning equations to describe user im-

provement in the task[47], [48]. The assumption of a monoton-

ically decreasing improvement is the main foundation beneath

the exponential learning curves.

Here in the context of learning AI competency rankings,

subjects start the study with no prior knowledge of the AI

agent’s rankings. Also, the correlation metric cannot exceed

the value of 1.0.

Considering these similarities to the general learning model,

we also considered an exponential curve with an upper bound

as blocks grow to infinity. With this analogy, we considered

the following curve to fit the ranking correlation trends:

c = α · e−β·b + δ

where b and c are the block count and ranking correlation

respectively. In this setting, the ranking correlation approaches

δ as the subjects continue the study. The value of δ is penalized

for curves fitting to satisfy the condition δ ≤ 1.0.

The slope of the fit curves in figure 7 represents the growth

rate of ranking correlations with respect to the number

of blocks. Higher rates of correlation growth show faster

learning by the subjects. To compare the learning rates, we

consider the maximum slope of each curve (table II).

The results indicate a higher rate of learning for users in

the presence of an explanation. The explanation from the

SVQA agent causes a higher increase in the learning rate

compared to SOBERT. However, the ultimate value of ranking

correlation in the SVQA model is bound to δ = 0.808 while

the SOBERT model approaches the maximum correlation at

δ = 1.0 (figure 7).

V. DISCUSSION

In these user studies, the overall progress of ranking

correlations is measured as a metric to evaluate the users

mental model of system competency. We test the user’s

mental model after they only see 100 instances (trials) of the

AI agent’s performance. However, the results strongly suggest

that even with this limited view of system performance, the

subjects learn the overall competency of AI agents throughout

these tests.

Adding the attentional explanations for both models results

in a significant improvement over competency rankings.

Comparing the early learning rates between baseline and

explanation groups suggests a significant improvement by

attention map explanations especially for the SVQA model.

However, the SVQA learning curve suggests an upper bound

to the correlation in the presence of explanations. On the

other hand, the SOBERT model shows a higher learning

rate with explanations compared to the baseline while still



reaching the maximum value of correlation.

These results highlight the effect of input features on the

information that the explanations can carry. The SOBERT

model uses object and spatial features vs. the spatial features

in the SVQA model. The SOBERT model also uses BERT

to transfer the features into attention maps. These changes w.

r. t. the SVQA has raised the upper bound on the maximum

reachable competency prediction by the subjects.

VI. CONCLUSION

In this paper, we evaluate the role of attention map

explanations on the users mental model of AI competency.

We designed an experiment where subjects rank the

performance of the VQA model among four different types

of questions. To quantify the subjects mental model, we

compute the correlation between user rankings and AIs actual

ranking among the question types.

We propose a new XVQA model that produces answers and

attention maps from spatial and object features of the image.

This explainable model uses a BERT language module to

better process the visual and textual embeddings of the input.

The proposed model is compared with a baseline model to

show the effect of input object features and also the BERT

attention module.

Overall results from the experiments suggest an improvement

in the user mental model when exposed to the attention map

explanations. The progress of the user mental model (ranking

correlations) throughout the experiments indicates a higher

learning rate in the presence of explanations. Furthermore,

the subject group interacting with the newly proposed model

shows a higher rate of ranking correlation compared to the

baseline model. This improvement suggests a positive impact

on the explanations by including the object feature and the

BERT language model.
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