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Abstract— Coronavirus disease 2019 (COVID-19) has in-
fected more than 1.3 million individuals all over the world
and caused more than 106,000 deaths. One major hurdle in
controlling the spreading of this disease is the inefficiency
and shortage of medical tests. There have been increasing
efforts on developing deep learning methods to diagnose
COVID-19 based on CT scans. However, these works are
difficult to reproduce and adopt since the CT data used
in their studies are not publicly available. Besides, these
works require a large number of CTs to train accurate
diagnosis models, which are difficult to obtain. In this
paper, we aim to address these two problems. We build a
publicly-available dataset containing hundreds of CT scans
positive for COVID-19 and develop sample-efficient deep
learning methods that can achieve high diagnosis accuracy
of COVID-19 from CT scans even when the number of
training CT images are limited. Specifically, we propose
an Self-Trans approach, which synergistically integrates
contrastive self-supervised learning with transfer learning
to learn powerful and unbiased feature representations
for reducing the risk of overfitting. Extensive experiments
demonstrate the superior performance of our proposed
Self-Trans approach compared with several state-of-the-art
baselines. Our approach achieves an F1 of 0.85 and an AUC
of 0.94 in diagnosing COVID-19 from CT scans, even though
the number of training CTs is just a few hundred.

Index Terms— COVID-19, CT, diagnosis, classification,
transfer learning, self-supervised learning, deep learning,
dataset

I. INTRODUCTION

CORONAVIRUS disease 2019 (COVID-19) is an infec-

tious disease that has infected more than 1.3 million

individuals all over the world and caused more than 106,000

deaths1, as of April 11 in 2020. One major hurdle in con-

trolling the spreading of this disease is the inefficiency and

shortage of tests. The current tests are mostly based on reverse

transcription polymerase chain reaction (RT-PCR). It takes 4-6

hours to obtain results, which is a long time compared with the
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Fig. 1. Examples of CT scans that are positive for COVID-19

rapid spreading rate of COVID-19. Besides inefficiency, RT-

PCR test kits are in huge shortage. As a result, many infected

cases cannot be timely identified and continue to infect others

unconsciously.

To mitigate the inefficiency and shortage of existing tests for

COVID-19, many efforts have been devoted to searching for

alternative testing methods. Several studies [1] have shown that

computed tomography (CT) scans manifest clear radiological

findings of COVID-19 patients and are promising in serving as

a more efficient and accessible testing manner due to the wide

availability of CT devices that can generate results at a fast

speed. Further, to alleviate the burden of medical professionals

in reading CT scans, several works [2] have developed deep

learning methods that can automatically interpret CT images

and predict whether the CTs are positive for COVID-19. While

these works have shown promising results, they have two lim-

itations. First, the CT scan datasets used in these works are not

sharable to the public due to privacy concerns. Consequently,

their results cannot be reproduced and the trained models

cannot be used in other hospitals. Besides, the lack of open-

sourced annotated COVID-19 CT dataset greatly hinders the

research and development of more advanced AI methods for

more accurate CT-based testing of COVID-19. Second, these

works require a large collection of CTs during model training

to achieve performance that meets the clinical standard. Such

a requirement is stringent in practice and may not be met

by many hospitals, especially under the circumstances that

medical professionals are highly occupied by taking care of

COVID-19 patients and are unlikely to have time to collect

and annotate a large number of COVID-19 CT scans.

In this work, we aim to address these two problems by (1)

building a publicly-available dataset containing hundreds of

CT scans that are positive for COVID-19 and (2) developing
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sample-efficient deep learning methods that can achieve high

diagnosis accuracy of COVID-19 from CT scans even when

the number of training CT images are limited. We first

collect the COVID19-CT dataset, which contains 349 CT

images with clinical findings of 216 COVID-19 patient cases.

The images are collected from medRxiv and bioRxiv papers

about COVID-19. CTs containing COVID-19 abnormalities

are selected by reading the figure captions in the papers. We

manually remove artifacts in the original images, such as texts,

numbers, arrows, etc. Figure 1 shows some examples of the

COVID-19 CT scans. To our best knowledge, it is the largest

COVID-19 CT dataset to date. And all the images are open to

the public for research purpose. Given this dataset, we develop

deep learning (DL) methods to perform CT-based diagnosis of

COVID-19. Though largest among its kind, COVID19-CT is

still limited in image number. DL models are data-hungry,

which have high risk of overfitting when trained on small-

sized dataset. To address this problem, we develop sample-

efficient methods to train highly-performant DL model in spite

of data deficiency. Specifically, we investigate two paradigms

of learning approaches for mitigating data deficiency: transfer

learning and self-supervised learning.
Transfer learning aims to leverage data-rich source-tasks to

help with the learning of a data-deficient target task (CT-based

diagnosis of COVID-19 in our case). One commonly used

strategy is to learn a powerful visual feature extraction deep

network by pretraining this network on large datasets in the

source tasks and then adapt this pretrained network to the

target task by finetuning the network weights on the small-

sized dataset in the target task. While effective in general,

transfer learning may be suboptimal due to the fact that the

source data may have a large discrepancy with the target data

in terms of visual appearance of images and class labels, which

causes the feature extraction network biased to the source data

and generalizes less well on the target data. We design different

transferring strategies and perform a comprehensive study in

the dimensions of source-target domain difference and neural

architectures to investigate the effects of transfer learning for

COVID-19 diagnosis and provide insightful findings.
Based on these findings, we propose Self-Trans, a self-

supervised transfer learning approach where contrastive self-

supervised learning [3] is integrated into the transfer learning

process to adjust the network weights pretrained on source

data, so that the bias incurred by source data is reduced. In

self-supervised learning (SSL), we construct auxiliary tasks

on CT images where the supervised labels in these tasks are

solely from the images themselves without using any human

annotations. Then we adjust the network weights by solving

these auxiliary tasks. In these auxiliary tasks, the input images

are in the same domain as the data in the target task and no

human-annotated labels are used. Therefore, the bias to source

images and their class labels can be effectively reduced.

A. Contributions
Contributions of this paper are summarized as follows:

• We propose a sample-efficient deep learning system to

facilitate the diagnosis of COVID-19 based on CT scans.

Code will be open-sourced.

• To train and evaluate the system, we collect the

COVID19-CT dataset2, which contains 349 positive CT

scans with clinical findings of COVID-19, and 397 nega-

tive images without findings of COVID-19. To the best of

our knowledge, this is the largest publicly-available CT

dataset for COVID-19.

• We design different transferring strategies and perform a

comprehensive study to investigate the effects of transfer

learning for COVID-19 diagnosis and provide insightful

findings.

• To learn from limited labeled data, we propose Self-Trans

networks, which synergistically integrate contrastive self-

supervised learning with transfer learning to learn power-

ful and unbiased feature representations for reducing the

risk of overfitting.

• We perform extensive experiments to demonstrate the

effectiveness of our proposed methods. It achieves an F1

score of 0.85, an AUC of 0.94, and an accuracy of 0.86

on the COVID19-CT dataset.

The rest of the paper is organized as follows. Section 2

reviews related works. Section 3 and 4 present the dataset,

methods, and experiments. Section 5 concludes the paper.

II. RELATED WORK

A. Deep learning based diagnosis of COVID-19
Since the outbreak of COVID-19, there have been increas-

ing efforts on developing deep learning methods to perform

screening of COVID-19 based on medical images such as

CT scans and chest X-rays. Wu et al. established an early-

screening model based on multiple CNN models to classify

CT scans of patients with COVID-19 [4]. Wang et al. proposed

a 3D deep CNN (DeCoVNet) to detect COVID-19 [5] using

chest CT slices. Chowdhury et al. employed CNN to identify

COVID-19 patients based on chest x-ray images [6]. Several

works have also applied 3D deep learning models to screen

COVID-19 based on chest CT images [7], [8]. Yang et

al. developed a deep learning based CT diagnosis system

(DeepPneumonia) to assist clinicians to identify patients with

COVID-19 [9]. Xu et al. developed a deep learning algorithm

by modifying the inception transfer-learning model to provide

clinical diagnosis ahead of the pathogenic test [10]. Shi et al.

employed the “VB-Net” neural network to segment COVID-

19 infection regions in CT scans [11]. Yu et al. constructed a

system based on UNet++ for identification of COVID-19 from

CT images [12]. Shen et al. proposed an infection-size-aware

Random Forest (iSARF) method which can automatically cat-

egorize subjects into groups with different ranges of infected

lesion sizes [13].

B. Datasets about COVID-19
At present, few large-sized datasets with medical images on

COVID-19 are publicly available due to privacy concerns and

information blockade [14]. Existing datasets on COVID19 are

mainly X-ray images [6], [14], [15]. The Italian Society of

Medical and Interventional Radiology (SIRM) provides chest

2https://github.com/UCSD-AI4H/COVID-CT
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X-rays and CT images of 68 Italian COVID-19 cases [16].

Moore et al. released a dataset of axial and coronal CTs from

59 COVID-19 cases at Radiopaedia [17]. Other data sources

provide medical images of no more than 10 patients [18],

[19]. To deal with the lack of large-sized and open-source

datasets containing CT images of COVID-19 cases, we built

the COVID19-CT dataset by collecting medical images from

COVID-19 related medRxiv and bioRxiv papers. Our dataset

contains 349 COVID-19 positive CT scans from 216 COVID-

19 cases. To our best knowledge, it is the largest public

COVID-19 CT collection to date.

C. Transfer learning
Transfer learning is normally performed by taking a stan-

dard neural architecture along with its pretrained weights on

large-scale datasets such as ImageNet [20], and then fine-

tuning the weights on the target task. This idea has been suc-

cessfully applied to visual recognition [21] as well as language

comprehension [22]. In the medical domain, transfer learning

has also been widely used in medical image classification and

recognition tasks, such as tumor classification [23], retinal

diseases diagnosis [24], pneumonia detection [25], and skin

lesion and cancer classification [26], [27]. A recent study

in [28] explores the properties of transfer learning for medical

imaging tasks and finds that the standard large networks

pretrained on ImageNet are often over-parameterized and may

not be the optimal solution for medical image diagnosis. In this

paper, we continue to investigate different strategies of transfer

learning and integrate contrastive self-supervised learning into

the transfer learning process to learn powerful and unbiased

feature representations for reducing the risk of overfitting.

D. Self-supervised learning
Self-supervised learning (SSL) aims to learn meaningful

representations of input data without using human annotations.

It creates auxiliary tasks solely using the input data and

forces deep networks to learn highly-effective latent features

by solving these auxiliary tasks. Various strategies have been

proposed to construct auxiliary tasks, based on temporal

correspondence [29], [30], cross-modal consistency [31], etc.

Examples of auxiliary tasks include rotation prediction [32],

image inpainting [33], automatic colorization [34], context

prediction [35], etc. Some recent works study self-supervised

representation learning based on instance discrimination [36]

with contrastive learning. Oord et al. propose contrastive

predictive coding (CPC) to extract useful representations from

high-dimensional data [37]. Bachman et al. propose a self-

supervised representation learning approach based on maxi-

mizing mutual information between features extracted from

multiple views of a shared context [38]. Most recently, Chen

et al. present a simple framework for contrastive learning

(SimCLR) [39] with larger batch sizes and extensive data

augmentation [40], which achieves results that are comparable

with supervised learning. Momentum Contrast (MoCo) [41],

[42] expands the idea of contrastive learning with an additional

dictionary and a momentum encoder. While previous methods

concentrate on utilizing self-supervision to learn universal

Fig. 2. When building the COVID19-CT dataset, for any figure that
contains multiple CT scans as sub-figures, we manually split it into
individual CTs

representations regardless of labels, our Self-Trans instead

aims to boost the performance of supervised transfer learning

with self-supervised pretraining on unlabeled data. Inspired

by [42], [43], we aim to leverage self-supervised learning for

COVID-CT recognition for which there are limited COVID-19

samples but abundant unlabeled CTs.

III. METHODS

The lack of annotated CT scans about COVID-19 brings

significant challenges for deep-learning-based diagnosis of

COVID-19 using CT images. To address this problem, we

build COVID19-CT, a dataset containing hundreds of CT

images positive for COVID-19. Though the largest of its kind,

COVID19-CT is still small, making deep learning models

trained on this dataset prone to overfitting. To address this

problem, we systematically investigate different transfer learn-

ing strategies and propose a new approach called Self-Trans,

which synergistically integrates unsupervised in-domain self-

supervised learning with supervised out-of-domain transfer

learning to learn effective and unbiased visual feature rep-

resentations that are robust to overfitting. In the following

subsections, we first introduce the COVID19-CT dataset that

we built, then present transfer learning and the proposed Self-

Trans approach for sample-efficient diagnosis of COVID-19

from CT scans.

A. COVID19-CT dataset

CT scans are promising in providing accurate, fast, and

cheap screening and testing of COVID-19 [44]. To facilitate

the diagnosis of COVID-19, we first build a publicly available

COVID19-CT dataset, containing 349 CT scans that are posi-

tive for COVID-19 and 397 negative CT scans that are normal

or contain other types of diseases. To build this dataset, we first

collected 760 preprints about COVID-19 from medRxiv3 and

bioRxiv4, posted from Jan 19th to Mar 25th. Many of these

preprints report patient cases of COVID-19 and some of them

show CT scans in the reports. CT scans are associated with

captions describing the clinical findings in the CTs. We used

3https://www.medrxiv.org/
4https://www.biorxiv.org/
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PyMuPDF5 to extract the low-level structure information from

the PDF files of preprints and located all the embedded figures.

The quality (including resolution, size, etc.) of figures is well-

preserved. From the structure information, we identified the

captions associated with figures. Given these extracted figures

and captions, we first manually selected all CT scans. Then

for each CT scan, we read the associated caption to judge

whether it is positive for COVID-19. If not able to judge from

the caption, we located the text analyzing this figure in the

preprint to make a final decision. For any figure that contains

multiple CT scans as sub-figures, we manually split it into

individual CTs, as shown in Figure 2.

In the end, we obtain 349 CT scans labeled as being

positive for COVID-19. These scans are from 143 patient

cases. The average, maximum, and minimum number of CT

scans that a patient has is 1.6, 16.0, and 1.0 respectively.

These CT images have different sizes. The average, maximum

and minimum height are 491, 1853, and 153 respectively.

The average, maximum, and minimum width are 383, 1485,

and 124 respectively. Figure 1 shows some examples of the

COVID-19 CT scans.

In addition to these COVID19-positive CTs, we also add

397 CTs that are negative for COVID-19. Among them, 202

negative CTs are selected from the PubMed Central (PMC)6

search engine. The rest 195 come from MedPix7, which is a

publicly-open online medical image database that contains CT

scans with various diseases.

B. Transfer learning for CT-based COVID-19 diagnosis
Given a target task (e.g., diagnosing COVID-19 from CT

scans in our case) that has limited training data, transfer

learning aims to leverage large-scale data and human-provided

labels from other source tasks to learn expressive and general-

izable feature representations to help with the learning of the

target task. A commonly used approach [45] is to pretrain a

deep neural network — which is used for feature extraction

— on large datasets in the source tasks by fitting the human-

annotated labels therein, then fine-tune this pretrained network

on the target task. In our case, we can take a classic neural

architecture such as ResNet [46] and its weights pretrained

on large-scale image classification datasets such as ImageNet,

then fine-tune it on the COVID19-CT dataset, with the goal

of transferring the images and classes labels in ImageNet

into our task for mitigate the deficiency of COVID-19 CTs.

When applying this strategy, we should keep several caveats

in mind. First, the image data in source tasks have a large

domain discrepancy with COVID-19 CTs. For example, the

ImageNet images mostly belong to categories in the general

domain, such as cat, dog, chair, etc. whereas the images in

our task are CTs. The visual appearance, size, resolution of

ImageNet images are quite different from chest CTs. As a

result, the visual representations learned on ImageNet may not

be able to represent CT images well, which casts doubts on

the transferability from other sources of images to COVID-19

5https://github.com/pymupdf/PyMuPDF
6https://www.ncbi.nlm.nih.gov/pmc/
7https://medpix.nlm.nih.gov/home

CTs. Second, the transferability across tasks depends on the

neural architectures used for representation learning. Certain

architectures facilitate transfer learning better than others.

In this work, we aim to perform a systematic study on how

these factors affect the transferability from other image classi-

fication tasks to our task, and accordingly based on the study

result, we design the optimal transfer learning strategy. To

study the first factor — domain difference in data, we perform

transfer learning on two datasets: one is ImageNet in the gen-

eral domain; the other is the Lung Nodule Maligancy (LNM)

dataset8 in the CT domain. Compared with ImageNet, LNM

has a smaller domain discrepancy with our dataset, but has

a smaller number of images and the images are less diverse.

To study the second factor — neural architectures, we exper-

iment different backbone networks, including VGG16 [47],

ResNet18 [46], ResNet50 [46], DenseNet-121 [48], DenseNet-

169 [48], EfficientNet-b0 [49], and EfficientNet-b1 [49]. We

evaluate the efficacy of different transfer learning strategies

with different pretrained datasets and network architectures

via extensive experiments and provide insightful findings.

Considering that our dataset is small and our task is

binary classification, to study whether there is indeed over-

parametrization in the traditional ImageNet models when

applied to COVID-19 diagnosis, in addition to these large-

sized architectures, we also design a light-weight architecture

as shown in Figure 3. The basic building block for this

network is the combination of a 2d-convolution with an ReLU

activation. The block repeats four times. There is an additional

batch normalization layer in the first block and an average

pooling layer after the third block. We refer to this network

as CRNet, whose structure is as follows: (conv32-bn-relu),

maxpool, (conv64-relu), maxpool, (conv128-relu), maxpool,

global avgpool, and classification layer. The conv(n) represents

a 2d convolutional layer with n output channels with a kernel

size of 7×7 and a stride of 1. The bn denotes a 2d batch

normalization [50] layer. The relu stands for an ReLU layer.

The maxpool stands for max pooling with a kernel size of 3×3

and a stride of 2. The global avgpool is an average pooling

layer with a kernel size of 2×2 and a stride of 2.

Fig. 3. CRNet architecture. Please zoom to view better

C. Contrastive self-supervised learning for CT-based
COVID-19 diagnosis

As discussed in the above section, while the popular transfer

learning methods, which pretrain the model on large-scale

datasets and fine-tune it on the target dataset, are helpful in

8https://www.kaggle.com/kmader/lungnodemalignancy/home

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2020. ;https://doi.org/10.1101/2020.04.13.20063941doi:medRxiv preprint 



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 5

Encoder q
ImageNet 
Pretrained 

Momentum
encoder

dictionary queue

…

Contrastive loss

Encoder

Linear classifier

COVID-CT dataAdditional Unlabeled data

Encoder q Momentum
encoder

dictionary queue

…

Contrastive loss

Self-supervised 
Pretrained

Step 1

Self-supervised 
Pretrained

Step 2

COVID-CT data

Fig. 4. Framework and training pipeline of Self-Trans. Please zoom to view better

improving the performance on the target task, there are two

concerns about the transferability of the source data. First, the

source data has a large domain shift from the target data. For

example, the images in ImageNet are mostly in the natural

image domain while the images in COVID-19 diagnosis tasks

are from the medical domain. Second, in transfer learning,

pretraining is conducted by fitting the class labels in the source

domain and these classes are largely different from those in the

target task. For example, the classes in ImageNet are mostly

about non-medical concepts such as dog, cat, desk, etc. while

the labels in our target task are COVID and Non-COVID.

Trying to fit the natural-domain class labels may cause the

representations learned in the pretraining to be biased to these

natural classes and less-well generalized to the COVID CTs.

To further solve this problem, we propose an Self-Trans
approach, which integrates contrastive self-supervision [3]

into the transfer learning process. Self-supervised learning

(SSL) [36], [39], [41], [42] is a learning paradigm which

aims to capture the intrinsic patterns and properties of input

data (e.g., CT images) without using human-provided labels.

The basic idea of SSL is to construct some auxiliary tasks

solely based on the data itself without using human-annotated

labels and force the network to learn meaningful represen-

tations by performing the auxiliary tasks well. Typical self-

supervised learning approaches generally involve two aspects:

constructing auxiliary tasks and defining loss functions. The

auxiliary tasks are designed to encourage the model to learn

meaningful representations of input data without utilizing

human annotations. The loss functions are defined to measure

the difference between a model’s prediction and a fixed target,

the similarities of sample pairs in a representation space

(e.g., contrastive loss), or the difference between probability

distributions (e.g., adversarial loss). In this work, we design

the auxiliary tasks based on the contrastive loss [41], [42], [51]

to provide self-supervision for the transfer learning process. To

be specific, the auxiliary task is to judge whether two images

created via random data augmentation are augments of the

same original image. We build a large and consistent dictionary

on-the-fly based on the contrastive loss to fulfill this auxiliary

task. To fully explore the structure and information of the CT

images, we apply Self-Trans on both external large-scale lung

CT datasets and our collected COVID19-CT dataset.

1) Contrastive learning for self-supervision: Given an origi-

nal image in the dataset, contrastive self-supervised learning

(CSSL) [51] performs data augmentation of this image and

obtains two augmented images: xq and xk, where the first

one is referred to as query and the second one as key. Two

networks fq(·; θq) and fk(·; θk), referred to as the query

encoder and the key encoder and parameterized by weights

θq and θk, are used to obtain latent representations — q =
fq(xq; θq) and k = fk(xk; θk) — of the query and key images

respectively. A query and a key belonging to the same image

are labeled as a positive pair. A query and a key belonging to

different images are labeled as a negative pair. The auxiliary

task is: given a (query, key) pair, judging whether it is positive

or negative.

Implementation-wise, CSSL uses a queue to store a set of

keys {ki} from different images. Given a new pair (qj ,kj)
obtained from a new image, a contrastive loss can be defined

as:

L = − log
exp(qj · kj/τ)

exp(qj · kj/τ) +
∑

i exp(qj · ki)
(1)

where τ is an annealing parameter. The weights in the en-

coders are learned by minimizing losses of such a form.

2) Momentum encoder with queue-structured dictionary:
Existing methods adopt various mechanisms to preserve and

sample key vectors [37], [39], [51], [52]. A Siamese-like
solution is to use the same network fk = fq on xk and

xf simultaneously. Extreme large mini-batch (batch-size up

to 8192 [39]) is required to learn discriminative features from

contrasting. This method is straightforward but incredibly

expensive in terms of computational resources. Another option

is to store the representations of historical keys in a negative

key dictionary Dk = {ki}, called memory bank [36]. At each

iteration, a mini-batch of keys are sampled from the memory

bank instead of using fk. The current mini-batch of queries

are updated to the memory bank for replacement. This design

inherently gets rid of large batch-size with an extended buffer

pool. However, the key sampling step involves inconsistency

for training the encoder.
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TABLE I
DATASET SPLIT

Class Train Val Test

# patients
COVID 130 32 54

Non-COVID 105 24 42

# images
COVID 191 60 98

Non-COVID 234 58 105

Momentum Contrastive (MoCo) [41] learning tolerates and

integrates from both. A queue-structured key dictionary with

fixed length replaces the memory bank. According to the first-

in-first-out (FIFO) nature of the queue, the oldest key mini-

batch will serve as the negative keys and be replaced by the

new queries. This mechanism prevents irregular sampling of

negative sampling.

Another essential component of this model is that, we

neither update the key encoder with back-propagation nor

blindly copy the query encoder to the key encoder, but keep a

running average of the key encoder fk [41], [53]. It can also

be called a momentum encoder. The updating rule of θk and

θq can be formulated as

θq ← θq − α
∂L
∂θq

θk ← mθk + (1−m)θq

(2)

In the equation, m = 0.999 is the momentum coefficient and

α is the learning rate of query encoder. Only θq is updated

through back-propagation, whereas θk maintains a weighted

average of the past states. As suggested in Figure 4, we

adopt the self-supervised learning prior to supervised training

on the COVID-CT data, as a kind of weight initialization.

This mechanism has proved in experiments that it can further

improve the model’s performance in our CT classification task.

The detailed algorithm of Self-Trans is shown in Algorithm 1.

IV. EXPERIMENTS

To demonstrate the efficacy of our proposed approach and

investigate the effects of transfer learning and self-supervised

learning, we extensively evaluate the randomly initialized

networks, ImageNet transferred networks, and our proposed

Self-Trans networks. In the following subsections, we will

introduce the datasets, experimental settings, and results for

these three series of approaches. Please note that the ablation

study is included in the Results subsection for each series of

approaches.

A. Datasets

Our collected COVID19-CT dataset consists of 349

COVID-19 CTs and 397 Non-COVID-19 CTs. The CT images

were resized to 224 × 224. We split the dataset into a training

set, a validation set, and a test set by patient IDs with a ratio

of 0.6: 0.15: 0.25. Table I shows the statistics of the three sets.

In addition to our COVID-19 CT dataset, we also include

images from the Lung Nodule Analysis (LUNA) [54] database

as a source of additional unlabeled CT data. It is originally

designed for lung nodule detection and segmentation. From

the total 888 CT scans, we randomly select 500 subjects and

from each we extract two CT slices that contain annotated

Algorithm 1 Algorithm of Self-Trans

Input: batch sizes NS , NL, temperature τ , LUNA dataset

DL, COVID-CT dataset DC , model f pretrained on Ima-

geNet dataset, dictionary Q as a queue of K keys, augmen-

tation operator a, a′ from the same family of augmentations

Initialize encoder networks for query fq and keys fk: fq =
fk = f
for minibatch {xl}NS

l=1 where xl ∈ DL do
x̃lq = a(xl), x̃lk = a′(xl)
Queries q = fq(x̃lq), keys k = fk(x̃lk)

lpos =
{
qT
i ki

}N

i=1
, lneg =

{
qT
i Qi

}N

i=1
l = concate([lpos, lneg], dim=1)

l̂ = zeros(length(x))

loss = CrossEntropyLoss(l/τ, l̂)
Update fq , fk, and Q

end for
for minibatch {xc}NS

c=1 where xc ∈ DC do
x̃cq = a(xc), x̃ck = a′(xc)
Queries q = fq(x̃cq), keys k = fk(x̃ck)

lpos =
{
qT
i ki

}N

i=1
, lneg =

{
qT
i Qi

}N

i=1
l = concate([lpos, lneg], dim=1)

l̂ = zeros(length(x))

loss = CrossEntropyLoss(l/τ, l̂)
Update fq , fk, and Q

end for
for minibatch {xi,yi}NL

i=1 where (xi,yi) ∈ DC do
f = fq
ŷi = f(xi)
loss = CrossEntropyLoss(yi, ŷi)
Update f

end for
Compute F1, accuracy, AUC

return F1, accuracy, AUC

lesions or lung shadow. These images are not included in the

COVID19-CT dataset as negative examples but are served as

unlabeled images for self-supervised learning.

B. Experimental Settings

The models are implemented in PyTorch. Batch normal-

ization [55] is used through all models. Binary cross-entropy

serves as the loss function. The networks are trained with four

GTX 1080Ti GPUs using data parallelism. Hyperparameters

are tuned on the validation set. Data augmentation is imple-

mented to further improve generalization. For each image in

our COVID19-CT dataset, we apply different random affine

transformations including random cropping with a scale of 0.5

and horizontal flip. Color jittering is also applied with random

contrast and random brightness with a factor of 0.2.

We evaluate our approaches using five metrics: (1) Accu-

racy, which measures the percentage of diagnostic predictions

that match exactly with the ground-truth; (2) Precision, which

is the fraction of true positives among the predicted positives;

(3) Recall, which is the fraction of the total number of true

positives that are predicted as positive; (4) F1-score, which is

the harmonic mean of precision and recall; (5) AUC, which

is the area under the receiver operating characteristic curve
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TABLE II
COMPARISON OF PARAMETER NUMBERS

Parameter numbers
VGG-16 138,357,544

ResNet-18 11,689,512
ResNet-50 25,557,032

DenseNet-121 7,978,856
DenseNet-169 14,149,480
EfficientNet-b0 5,288,548
EfficientNet-b1 7,794,184

CRNet 546,882

showing how false positive rate increases as true positive rate

increases. For all five metrics, the higher, the better.

C. Evaluations on Randomly Initialized Networks
To demonstrate the efficacy of our proposed approach and

investigate the effects of transfer learning and self-supervised

learning, we first experiment on the randomly initialized

networks with different backbones as baselines. The backbone

networks include VGG-16 [47], ResNet-18 [46], ResNet-

50 [46], DenseNet-121 [48], DenseNet-169 [48], EfficientNet-

b0 [49], EfficientNet-b1 [49], and our proposed CRNet.

1) Implementation Details: For classifiers trained from

scratch, the Adam [56] optimizer is used with an initial

learning rate of 0.0001 and a mini-batch size of 16. The cosine

annealing scheduler is applied on the optimizer with a period

of 10 to adjust the learning rate across the training process.

We train our models with 50 epochs. We initialize the weights

with Kaiming Initialization [57].

2) Results: Table III shows the evaluation results (columns

marked with “Rand.”) for neural networks trained with ran-

dom initialization. Comparing ResNet-18 with ResNet-50 and

comparing DenseNet-121 with DenseNet-169, we can see

that deeper networks generally yield higher classification

performance. The performance also benefits a lot from more

sophisticated network structure like residual connection [46]

and dense connection [48].

Table II shows the number of weight parameters in different

networks. The CRNet has a much smaller number of param-

eters but the performance is on par with or better than more

sophisticated architectures such as ResNet-50.

D. Evaluations on Large-Scale Dataset Transferred
Networks

After evaluating the randomly-initialized networks, we thor-

oughly investigate the performance of networks pretrained on

large-scale datasets, including ImageNet and the Lung Nodule

Maligancy (LNM) dataset, with different backbones, including

VGG-16, ResNet-18, ResNet-50, DenseNet-121, DenseNet-

169, EfficientNet-b0, EfficientNet-b1, and CRNet.

The results of transfer learning from ImageNet are shown

in Table III (columns marked with “Trans.”), where we first

train the networks from scratch on ImageNet and then fine-

tune them on the COVID19-CT dataset. Comparing these

results with those achieved by randomly initialized networks

(columns marked with “Rand.” in Table III), we can see

pretraining on ImageNet significantly improves classification

performance. This demonstrates the effectiveness of transfer

TABLE III
PERFORMANCE COMPARISON BETWEEN RANDOMLY INITIALIZED

NETWORKS (RAND.) AND IMAGENET PRETRAINED NETWORKS

(TRANS.)

Accuracy F1 AUC
Rand. Trans. Rand. Trans. Rand. Trans.

VGG-16 0.66 0.76 0.58 0.76 0.74 0.82
ResNet-18 0.67 0.74 0.66 0.73 0.76 0.82
ResNet-50 0.69 0.80 0.72 0.81 0.76 0.88

DenseNet-121 0.76 0.79 0.77 0.79 0.82 0.88
DenseNet-169 0.80 0.83 0.79 0.81 0.86 0.87
EfficientNet-b0 0.72 0.77 0.71 0.78 0.76 0.89
EfficientNet-b1 0.70 0.79 0.62 0.79 0.77 0.84

CRNet 0.72 0.73 0.76 0.76 0.77 0.79

learning, which leverages large-scale images and their class

labels in source tasks to help with the learning of the target

task. In certain cases, the benefits of transfer learning are

highly significant. For example, for VGG16, when trained with

random initialization, it performs the poorest. Transfer learning

helps it to improve accuracy by 10% (absolute improvement),

F1 by 8% (absolute), and AUC by 8% (absolute), exceeding

the performance of networks (e.g., ResNet) that have more

sophisticated architectures designed for preventing overfitting,

even when these networks are pretrained as well.

We observe that for CRNet which is a small-sized network,

the effect of transfer learning is marginal. This is probably

because a small-sized network is more robust to overfitting,

therefore it has a smaller need of using transfer learning for

combating overfitting. On the contrary, for large-sized neural

architectures such as VGG-16, initialization with pretrained

weights makes a huge difference. The reason is that large-sized

networks are more prone to overfitting, especially considering

that our dataset is fairly small. Under such circumstances,

transfer learning has a better chance to play its value.

Table IV shows the performance of the DenseNet-169

backbone with weights (1) randomly initialized, (2) pretrained

on ImageNet, (3) pretrained on LMN, and (4) pretrained

first on ImageNet, then on LMN. From this table, we make

the following observations. First, transfer learning on ei-

ther ImageNet or LMN improves performance, which further

demonstrates the efficacy of transfer learning. Second, the

performance of the network pretrained on ImageNet has no

significant difference with that pretrained on LMN (the former

has slightly better accuracy but worse F1). The two datasets

have both advantages and disadvantages. ImageNet has more

images and more classes than LMN, which enables learning

more powerful and generalizable feature representations. The

downside of ImageNet is that its images have a large domain

discrepancy with the CTs in COVID19-CT whereas the images

in LMN are all CTs. The advantages and disadvantages of

these two datasets make them similar in providing transfer

learning values. Pretraining first on ImageNet then on LMN

achieves better performance than just pretraining on ImageNet.

This shows that using data with complementary properties

(e.g., size, domain similarity) can generate a synergistic effect

in transfer learning.
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TABLE IV
PERFORMANCE OF DENSENET-169 WITH DIFFERENT WEIGHTS

INITIALIZATION MECHANISMS

Accuracy F1 AUC
Random Initialization 0.80 0.79 0.86
Pretrain on ImageNet 0.83 0.81 0.87

Pretrain on LMN 0.80 0.82 0.87
Pretrain first on ImageNet, then on LMN 0.81 0.82 0.89

TABLE V
COMPARISON BETWEEN SELF-TRANS AND VANILLA TRANSFER

LEARNING (TRANS)

Accuracy F1 AUC
ResNet-50 (Trans) 0.80 0.81 0.88

ResNet-50 (Self-Trans) 0.84 0.83 0.91
DenseNet-169 (Trans) 0.83 0.81 0.87

DenseNet-169 (Self-Trans) 0.86 0.85 0.94

E. Evaluation of Self-Trans
In this section, we evaluate the performance of our proposed

Self-Trans networks, and compare them with networks pre-

trained on large-scale datasets. Given the weights pretrained on

other datasets, we leverage contrastive self-supervised learning

(CSSL) to further train these weights on CT images in our

COVID19-CT dataset. Note that in this step, the labels of

these CT images are not utilized. CSSL is only performed

on the CTs themselves. After CSSL training, we fine-tune the

weights on both the CTs and the class labels by optimizing

the classification loss.

1) Self-supervised baselines: To address the effectiveness

of self-supervision, we also establish a baseline model with

self-supervised auxiliary task. In this paper, we select the

image rotation prediction [32] as auxiliary task in multi-task

learning scheme. For each training image x, we randomly

rotate it with angle φ ∈ {0◦, 90◦, 180◦, 270◦}. A 4-way

rotation prediction classifier and CT classification classifier

share the same feature extractor. Losses for both tasks are

added together and model is jointly trained. We do not rotate

samples at test time.

2) Additional Experimental Settings: Following the same

setting in MoCo, we added a 2-layer multi-layer perceptron

(MLP) head with 2048 hidden units. The size of the dynamic

dictionary was set to 512. Stochastic gradient descent (SGD)

was used as the optimizer for self-supervised learning (SSL),

with a minibatch size of 128, a weight decay of 0.0001,

a momentum of 0.9, and an initial learning rate of 0.015.

The learning rate was adjusted by the cosine learning rate

scheduler. The training was conducted on 4 GPUs with data

parallelism. We carefully design data augmentation methods

to serve as the pretext tasks for the Self-Trans methods.

Specifically, we utilize data augmentation including random

horizontal flip, random cropping with a size of 0.2 in area,

random color jittering such as random brightness with a ratio

of 0.4, random contrast of 0.4, random saturation of 0.4,

random hue of 0.1, Gaussian blur, and random gray-scale

conversion.

3) Results: Table V shows the results of Self-Trans when

applied to ResNet-50 and DenseNet-169. As can be seen from

this table, Self-Trans achieves much better performance than

vanilla transfer learning (Trans). The possible reason is that

TABLE VI
PERFORMANCE OF SELF-TRANS IN THE ABLATION STUDIES

Accuracy F1 AUC
ResNet-50 (Method 1) 0.69 0.63 0.66
ResNet-50 (Method 2) 0.83 0.83 0.91
ResNet-50 (Method 3) 0.75 0.78 0.85
ResNet-50 (Method 4) 0.81 0.81 0.88
ResNet-50 (Self-Trans) 0.84 0.83 0.91

DenseNet-169 (Method 1) 0.70 0.63 0.77
DenseNet-169 (Method 2) 0.86 0.85 0.91
DenseNet-169 (Method 3) 0.74 0.76 0.86
DenseNet-169 (Method 4) 0.83 0.82 0.88
DenseNet-169 (Self-Trans) 0.86 0.85 0.94

the weights learned by transfer learning may be biased to the

images and class labels in the source tasks and generalize less

well on the target task. SSL can help to reduce this bias by

adjusting the weights using the data of the target task and

without using any labels.

4) Ablation Studies: To fully understand the effects of self-

supervised learning, we conduct the following ablation studies.

• Method 1: Randomly initialize weights. Perform SSL

on the COVID19-CT dataset without using COVID/Non-

COVID labels. Then fine-tune on COVID19-CT using

labels.

• Method 2: Pretrain on ImageNet. Perform SSL on

COVID19-CT without using labels and with pretrained

weights. Then fine-tune on COVID19-CT using labels.

• Method 3: Pretrain on ImageNet. Perform SSL on the

LUNA dataset without using labels of LUNA. Then fine-

tune on COVID19-CT using labels.

• Method 4: Pretrain on ImageNet. Perform the auxiliary

task of rotation predication as SSL baseline. Jointly learn

rotation prediction and COVID19-CT classification.

• Self-Trans: Pretrain on ImageNet. Perform SSL on

LUNA without using labels of LUNA. Then perform SSL

on COVID-CT without using labels of COVID-CT, and

finally fine-tune on COVID19-CT using labels.

Table VI shows the results in different ablation study set-

tings, conducted on ResNet-50 and DenseNet-169 backbones.

From this table, we observe the following. First, Method 2

which performs SSL on top of transfer learning works much

better than Method 1 which performs SSL without using

transfer learning. This demonstrates that it is more effective

to apply SSL on pretrained weights instead of from scratch.

Second, Method 2 which performs SSL on COVID19-CT

(without using labels) largely outperforms Method 3 which

performs SSL on LUNA. This implies that it is more effective

to apply SSL directly on the data in the target task than

on external data. Third, comparing Method 3 and Self-Trans,

it is further confirmed that performing SSL directly on the

data of the target task achieves better performance (by Self-

Trans). Forth, Method 4 with an SSL auxiliary task beats the

vanilla transfer learning counterpart, but do not surpass the

SSL model with contrastive learning in Method 2 and Self-

Trans. Such experimental results not only illustrate the effec-

tiveness of SSL, but also provide concrete evidence that CSSL

has stronger feature representation learning capabilities than

traditional SSL methods. Fifth, Self-Trans performs slightly

better than Method 2, which demonstrates that performing
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TABLE VII
PERFORMANCE WITH THE WEIGHTS OF THE FEATURE EXTRACTOR

FROZEN AND UNFROZEN

Accuracy F1 AUC
ResNet-50 (Frozen) 0.70 0.63 0.77

ResNet-50 (Unfrozen) 0.83 0.83 0.91
DenseNet-169 (Frozen) 0.79 0.77 0.83

DenseNet-169 (Unfrozen) 0.86 0.85 0.91

SSL on external data is also helpful, though not as useful

as performing SSL directly on target-task’s data.

Another thing that we are interested in investigating is: given

the weights of the feature extractor learned by SSL, when fine-

tuning the overall classification network on the COVID19-CT

images and labels, should we just fine-tune the final classifier

layer or fine-tune the weights of the feature extractor as well?

Table VII shows the results on two backbones: ResNet-50

and DenseNet-169, where “frozen” denotes that the weights

of the feature extractor are not fine-tuned during the fine-

tuning process and “unfrozen” denotes that these weights are

fine-tuned together with those in the final classification layer.

As can be seen, fine-tuning feature extraction weights yields

much better performance. This is because using class labels

to fine-tune these weights can make the extracted features

more discriminative and hence more effective in distinguishing

COVID-19 CTs from Non-COVID-19 CTs.

Figure 5 shows the Grad-CAM [58] visualizations for

DenseNet-169 trained from baseline methods and our pro-

posed Self-Trans. By comparing Column (3) with Column (5),

we notice that the DenseNet-169 model trained with random

initialization erroneously focuses on some image edges and

corners that are not related to COVID-19. In contrast, transfer

learning methods generally lead to more accurate disease-

related visual localization. By comparing Column (5) with

Column (7), we can see that our proposed Self-Trans method

can have even better localization of the disease region than

the ImageNet pretrained method.

V. CONCLUSIONS

In this paper, we study how to develop sample-efficient deep

learning methods to accurately diagnose COVID-19 from CT

scans. To facilitate the open research in this area, we build

COVID19-CT, a dataset containing 349 CT scans positive for

COVID-19. To our best knowledge, it is the largest COVID19-

CT dataset that is publicly available to date. Though the

largest, it still incurs a high risk of overfitting for data-hungry

deep learning models. To reduce this risk, we develop data

efficient methods that are able to mitigate data deficiency.

We propose Self-Trans, a self-supervised transfer learning

approach that learns expressive and unbiased visual feature

representations that are robust to overfitting. Through extensive

experiments, we demonstrate the effectiveness of our methods.

REFERENCES

[1] A. Bernheim, X. Mei, M. Huang, Y. Yang, Z. A. Fayad, N. Zhang,
K. Diao, B. Lin, X. Zhu, K. Li, et al., “Chest ct findings in coronavirus
disease-19 (covid-19): relationship to duration of infection,” Radiology,
p. 200463, 2020.

Random Init. ImageNet Pretrained Self-Trans
(1) (2) (3) (4) (5) (6) (7)

Fig. 5. Grad-CAM visualizations for DenseNet-169. From left to right:
Column (1) are original images with COVID-19; Column (2-3) are Grad-
CAM visualizations for the model trained with random initialization;
Column (4-5) are Grad-CAM visualizations for ImageNet pretrained
model; Column (6-7) are Grad-CAM visualizations for Self-Trans model.

[2] O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang,
W. Ji, A. Bernheim, and E. Siegel, “Rapid ai development cycle for the
coronavirus (covid-19) pandemic: Initial results for automated detection
& patient monitoring using deep learning ct image analysis,” arXiv
preprint arXiv:2003.05037, 2020.

[3] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple frame-
work for contrastive learning of visual representations,” arXiv preprint
arXiv:2002.05709, 2020.

[4] X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Y. Chen, J. Su,
G. Lang, et al., “Deep learning system to screen coronavirus disease
2019 pneumonia,” arXiv preprint arXiv:2002.09334, 2020.

[5] C. Zheng, X. Deng, Q. Fu, Q. Zhou, J. Feng, H. Ma, W. Liu, and
X. Wang, “Deep learning-based detection for covid-19 from chest ct
using weak label,” medRxiv, 2020.

[6] M. E. Chowdhury, T. Rahman, A. Khandakar, R. Mazhar, M. A. Kadir,
Z. B. Mahbub, K. R. Islam, M. S. Khan, A. Iqbal, N. Al-Emadi, et al.,
“Can ai help in screening viral and covid-19 pneumonia?,” arXiv preprint
arXiv:2003.13145, 2020.

[7] O. Gozes, M. Frid-Adar, H. Greenspan, P. D. Browning, H. Zhang,
W. Ji, A. Bernheim, and E. Siegel, “Rapid ai development cycle for the
coronavirus (covid-19) pandemic: Initial results for automated detection
& patient monitoring using deep learning ct image analysis,” arXiv
preprint arXiv:2003.05037, 2020.

[8] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu,
Z. Fang, Q. Song, et al., “Artificial intelligence distinguishes covid-19
from community acquired pneumonia on chest ct,” Radiology, p. 200905,
2020.

[9] Y. Song, S. Zheng, L. Li, X. Zhang, X. Zhang, Z. Huang, J. Chen,
H. Zhao, Y. Jie, R. Wang, et al., “Deep learning enables accurate
diagnosis of novel coronavirus (covid-19) with ct images,” medRxiv,
2020.

[10] S. Wang, B. Kang, J. Ma, X. Zeng, M. Xiao, J. Guo, M. Cai, J. Yang,
Y. Li, X. Meng, et al., “A deep learning algorithm using ct images to
screen for corona virus disease (covid-19),” medRxiv, 2020.

[11] F. Shan+, Y. Gao+, J. Wang, W. Shi, N. Shi, M. Han, Z. Xue, D. Shen,
and Y. Shi, “Lung infection quantification of covid-19 in ct images with
deep learning,” arXiv preprint arXiv:2003.04655, 2020.

[12] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, S. Hu, Y. Wang,
X. Hu, B. Zheng, et al., “Deep learning-based model for detecting 2019

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 17, 2020. ;https://doi.org/10.1101/2020.04.13.20063941doi:medRxiv preprint 



10 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

novel coronavirus pneumonia on high-resolution computed tomography:
a prospective study,” medRxiv, 2020.

[13] F. Shi, L. Xia, F. Shan, D. Wu, Y. Wei, H. Yuan, H. Jiang, Y. Gao, H. Sui,
and D. Shen, “Large-scale screening of covid-19 from community
acquired pneumonia using infection size-aware classification,” arXiv
preprint arXiv:2003.09860, 2020.

[14] J. P. Cohen, P. Morrison, and L. Dao, “Covid-19 image data collection,”
arXiv preprint arXiv:2003.11597, 2020.

[15] “Covid-19 chest x-ray database.” https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database/
Accessed April 9, 2020.

[16] “Covid-19 database.” https://www.sirm.org/ Accessed April 9,
2020.

[17] “Covid-19.” https://radiopaedia.org/ Accessed April 9,
2020.

[18] “Eurorad.” https://www.eurorad.org/ Accessed April 9, 2020.

[19] “Coronacases.” https://coronacases.org/ Accessed April 9,
2020.

[20] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in CVPR, 2009.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time
object detection with region proposal networks,” in Advances in neural
information processing systems, pp. 91–99, 2015.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[23] B. Q. Huynh, H. Li, and M. L. Giger, “Digital mammographic tumor
classification using transfer learning from deep convolutional neural
networks,” Journal of Medical Imaging, vol. 3, no. 3, p. 034501, 2016.

[24] M. Raghu, C. Zhang, J. Kleinberg, and S. Bengio, “Transfusion:
Understanding transfer learning for medical imaging,” in Advances in
Neural Information Processing Systems, pp. 3342–3352, 2019.

[25] V. Chouhan, S. K. Singh, A. Khamparia, D. Gupta, P. Tiwari, C. Moreira,
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