
Porting and optimizing UniFrac for GPUs
Reducing microbiome analysis runtimes by orders of magnitude

Igor Sfiligoi
University of California San Diego, La

Jolla, CA, USA
isfiligoi@sdsc.edu

Daniel McDonald
University of California San Diego, La

Jolla, CA, USA
danielmcdonald@ucsd.edu

Rob Knight
University of California San Diego, La

Jolla, CA, USA
robknight@ucsd.edu

ABSTRACT

UniFrac is a commonly used metric in microbiome research for

comparing microbiome profiles to one another (“beta diversity”).

The recently implemented Striped UniFrac added the capability to

split the problem into many independent subproblems and exhibits

near linear scaling. In this paper we describe steps undertaken in

porting and optimizing Striped Unifrac to GPUs. We reduced the

run time of computing UniFrac on the published Earth Microbiome

Project dataset from 13 hours on an Intel Xeon E5-2680 v4 CPU to

12 minutes on an NVIDIA Tesla V100 GPU, and to about one hour

on a laptop with NVIDIA GTX 1050 (with minor loss in precision).

Computing UniFrac on a larger dataset containing 113k samples

reduced the run time from over one month on the CPU to less than

2 hours on the V100 and 9 hours on an NVIDIA RTX 2080TI GPU

(withminor loss in precision). This was achieved by usingOpenACC

for generating the GPU offload code and by improving the memory

access patterns. A BSD-licensed implementation is available, which

produces a C shared library linkable by any programming language.

CCS CONCEPTS

• Applied computing—Life and medical sciences—

Computational biology;500; • Computing methodologies—

Parallel computing methodologies—Parallel algorithms—

Massively parallel algorithms;300; • Software and its

engineering—Software notations and tools—Software

libraries and repositories;100;

KEYWORDS

Microbiome, GPU, OpenACC, Optimization, UniFrac

ACM Reference Format:

Igor Sfiligoi, DanielMcDonald, and Rob Knight. 2020. Porting and optimizing

UniFrac for GPUs: Reducing microbiome analysis runtimes by orders of

magnitude. In Practice and Experience in Advanced Research Computing

(PEARC ’20), July 26–30, 2020, Portland, OR, USA. ACM, New York, NY, USA,

5 pages. https://doi.org/10.1145/3311790.3399614

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PEARC ’20, July 26–30, 2020, Portland, OR, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6689-2/20/07. . . $15.00
https://doi.org/10.1145/3311790.3399614

1 INTRODUCTION

The study of the microbiome has rapidly expanded over the past

decade, in part because of the insight afforded by UniFrac [1].

UniFrac is a phylogenetic measure of beta-diversity that assesses

differences between pairs of microbiome profiles. UniFrac is useful

for microbial community analysis because it can account for the

evolutionary relationships between microbes present within a sam-

ple. Other distance metrics, such as Euclidean distance, Bray-Curtis,

and Jaccard, make the unrealistic implicit assumption that all organ-

isms are equally related, leading to statistical artifacts, particularly

with sparse data matrices (these are typical in real-world cases

because most kinds of microbes are not found in most locations).

Microbiome studies have recently transitioned from experimental

designs with a few hundred samples to designs spanning tens of

thousands of samples. Large-scale studies, such as the Earth Micro-

biome Project (EMP) [2], afford the statistics crucial for untangling

the many factors that influence microbial community composition.

Having an efficient and scalable implementation for computing

UniFrac thus becomes crucial for the advancement of science. A

scalable implementation, named Striped UniFrac, was recently pro-

posed and implemented [3]. This algorithm is highly parallelizable

and shows almost linear scaling with the number of compute nodes.

The existing implementation, however, does not scale linearly with

the number of CPU cores on a single node, which is not entirely

surprising given its memory-heavy nature.

Massively parallel algorithms, especially memory-heavy ones,

are natural candidates for GPU compute. We thus ported the algo-

rithm to GPU resources. One main driver was the desire to avoid

CPU-only and GPU-only code paths, to facilitate sustainable long-

term support. Using OpenACC [4] was thus a natural choice, be-

cause it allows for co-existence of CPU and GPU compute, with

conditional creation of GPU offload sections.

Section 2provides an overview of the minimal changes needed

to get the original implementation to execute effectively on GPU

resources. Section 3 provides an overview of the additional changes

that were put in place to optimize the code to better exploit the GPU

architecture. Finally, Section 4 provides an analysis of the obtained

results when switching from fp64 to fp32 compute in GPU code,

which speeds by 3x the GPU compute on mobile and gaming GPUs.

The original code was compiled with gcc version 7.3, and all

OpenACC enabled code was compiled with PGI C compiler version

19.10. All tests were run in Linux environment.

2 PORTING STRIPED UNIFRAC TO OPENACC

The most time-consuming part of the original Striped UniFrac im-

plementation is composed of a set of tight loops that operate on

adjacent, independent memory cells. Converting such a loop to a

500

PEARC ’20, July 26–30, 2020, Portland, OR, USA Igor Sfiligoi et al.

Figure 1: A subset of the most time-consuming code, before (left) and after (right).

GPU offload section with OpenACC is as easy as adding a pragma

to the code.

Unfortunately, the original code used a set of memory buffers

in such a loop, for perceived efficiency reasons. Passing an array

of pointers into an OpenACC sections is, however, not supported

in any existing compiler, so some code refactoring was needed.

After assessing the usage patterns, we realized that over half of the

codebase assumed such a data structure, making proper refactoring

a tedious and risky endeavor. As a result, we decided to create a

unified temporary buffer for the time-consuming code to operate

on, then make a final copy at the end of the computation. While

not ideal, the computational cost of this operation is very small,

although it does increase the memory footprint of the application.

We may clean up the implementation sometime in the future.

With a unified memory buffer in place, it became possible to use

simple pointer manipulation math to access the necessary memory

cells. This further helped by allowing for fusing of loops and thus

increase the available parallelism. Comparison of a subset of the

code before and after is provided in Figure 1

This simple change was all that was needed to compile a working

version of UniFrac that could run on a GPU. The GPU runtime

of this new executable compared very favorably with the CPU

version; computing UniFrac on the EMP sample lasted 1.5 hours on

an NVIDIA Tesla V100 GPU, versus 13 hours using an Intel Xeon

E5-2680 v4 CPU, using all its 14 cores concurrently.

3 OPTIMIZING FOR GPU COMPUTE

Having achieved a working GPU port, we analyzed its performance.

The first issue was the partial manual unrolling of the inner loop in

the above code; that was done to help the CPU compiler generate

better vector instructions. Unfortunately, it resulted in a striped

memory access pattern in the GPU code, because the compiler auto-

matically generated vector code based on the loop itself. Removing

the manual unrolling, the time needed for the same compute was

reduced from 92 minutes to 64 minutes on the NVIDIA Tesla V100

GPU.

Further code analysis pointed to the likely bottleneck to be the

repeated updating of the main memory buffer. The original logic

would retrieve, in the CPU section, one input buffer per GPU kernel

invocation, which would then extract and transform the needed

information and finally updated the main memory buffer. The same

operation would be performed on O(10k) input buffers in sequence.

This is suboptimal for two reasons: first, writing to memory is

significantly more expensive than reading from it, and second, each

kernel invocation has a non-negligible overhead.

The implemented solution was to batch many input buffers in a

single kernel invocation and modify the loops to process the data

from all the input buffers before updating the main memory buffer.

This slightly increased the memory footprint of the application, but

resulted in a further reduction in runtime to about 33 minutes on

the NVIDIA Tesla V100 GPU. The updated code snippet is available

in Figure 2.

Once the above changes were in place, it became obvious that

the same input buffers were accessed multiple times during the

execution of a single GPU kernel. The access pattern was however

such that the next reuse came only at a much later time, trashing

the cache. We thus proceeded in splitting the main loop in such a

way that it maximized both vectorization opportunities and input

buffer cache locality, as can be seen in Figure 3. Note that it is very

important to properly align the memory buffers and pick the right

value for the grouping parameters, as it can drastically affect the

observed run time.

With the latest change, computing UniFrac on the EMP sample

took only 12 minutes on the NVIDIA Tesla V100 GPU. We also

compiled the new code with OpenACC disabled, computed UniFrac

on the EMP sample on the Intel Xeon E5-2680 v4 CPU, using all 14

cores concurrently, and it finished in 193 minutes.

To summarize, Table 1 provides the times needed to compute

UniFrac on the EMP sample, both using the original code and after

501

Porting and optimizing UniFrac for GPUs PEARC ’20, July 26–30, 2020, Portland, OR, USA

Figure 2: A subset of the most time-consuming code after input buffer batching.

Figure 3: A subset of the most time-consuming code in its final incarnation.

Table 1: Runtimes of Striped UniFrac on EMP dataset. In chip minutes.

Intel Xeon E5-2680 v4 CPU NIVIDA Tesla V100 GPU

Original Final OpenACC base Final

800 minutes 193 minutes 92 minutes 12 minutes

being ported to the GPU. As can be seen, an NVIDIA Tesla V100

GPU provides an order of magnitude improvement over the tested

Intel Xeon E5-2680 v4 CPU. Note that the quoted CPU time is for

the whole chip, i.e. using all its resources, not single-threaded.

To verify that the obtained improvements in run time were not

specific to the chosen input dataset, we also computed UniFrac

on the same input dataset used in [3], which is much bigger and

contains 113,721 samples. This input dataset is too big to be ran

on a single CPU in reasonable time, so we distributed the compute

over several CPUs and GPUs. Using 128 chips in parallel gave us a

reasonable per-chip runtime for the CPU systems. Note that running

larger subproblems on the GPUs results in a significant speedup,

so we ran the GPU compute also with 4 parallel chunks. As can be

seen from Table 2, which provides the times needed to compute

UniFrac on those 113,721 samples, the GPU version provides several

orders of magnitude speedup, both in terms of per-chip and total

compute time. It would now be possible to compute UniFrac on

113,721 samples in a couple of hours using a single NVIDIA Tesla

V100 GPU.

502

PEARC ’20, July 26–30, 2020, Portland, OR, USA Igor Sfiligoi et al.

Table 2: Runtimes of Striped UniFrac on 113,721 samples. In chip hours.

Original CPU version Final CPU version Final GPU version

128x E5-2680 v4 128x E5-2680 v4 128x V100 4x V100

Per chip 6.9 hours 1.6 hours 0.23 hours 0.34 hour

Aggregated 890 hours 207 hours 30 hours 1.9 hours

Table 3: Runtimes of the final GPU-enabled Striped Unifrac on EMP, using fp64 vs fp32 math. All GPUs by NVIDIA. In chip

minutes.

CPUXeon E5-2680 v4 GPUV100 GPU2080TI GPU1080TI GPU1080 GPUMobile 1050

fp64 193 12 59 77 99 213

fp32 190 9.5 19 31 36 64

Table 4: Runtimes of the final GPU-enabled Striped Unifrac on 113,721 samples, using fp64 vs fp32math. Usingmultiple chips.

All GPUs by NVIDIA. In aggregated chip hours.

128x CPUXeon E5-2680 v4 4x GPUV100 16x GPU2080TI 16x GPU1080TI

fp64 207 hours 1.9 hours 49 hours 67 hours

fp32 194 hours 1.3 hours 8.5 hours 22 hours

4 VALIDATING 32-BIT FLOATING POINT
COMPUTE

UniFrac was originally designed and always implemented using

fp64 math operations. The higher-precision floating point math

was used to maximize reliability of the results.

On CPU cores, the penalty to pay for fp64 versus fp32 is expected

to be small. Only a fraction of the total compute uses floating point

compute, and that part would be at best 2x faster on CPUs. The

situation is similar on server-class GPUs, like the NVIDIA Tesla

V100 GPU, but on mobile and gaming GPUs fp64 compute is 32x

slower than fp32 compute. We measured the time needed to com-

pute UniFrac, on both the EMP dataset and the dataset containing

113,721 samples, using the latest GPU-enabled UniFrac code, and

we observe between 2x and 6x speedup in fp32-bit mode, see Table 3

and Table 4. Note that the compute times on the CPU were virtually

identical for the fp32 and fp64 code paths.

Getting unusable results fast would, however, not be helpful. We

thus compared the results of the compute using fp32-enabled and

fp64-only code, using the same EMP input, and observed a near

identical result (Mantel R2 0.99999; p<0.001, comparing pairwise

distances in the two matrices). The fp32-enabled code can thus

be used for most microbiome discovery work, especially if run

on personal equipment, with the fp64-only code used only in the

unusual situation where the relative abundances of the input data

or the tree branch lengths exhibit a very high dynamic range in

elements of the distance matrix that contribute substantially to

downstream results, e.g. after dimensionality reduction.

5 CONCLUSIONS

Microbiome studies are transitioning from experimental designs

with a few hundred samples to much larger designs spanning tens

of thousands of samples. Having access to effective but also fast

compute tools is thus becoming essential. UniFrac has long been an

important tool in microbiome research, and our work now allows

many analyses which were previously relegated to large compute

clusters to be performed with much lower resource requirements.

Even the largest datasets currently envisaged could be processed

in reasonable time with just a handful of server-class GPUs, while

smaller but still sizable datasets like the EMP can be processed even

on GPU-enabled workstations.

We used OpenACC to port the existing Striped UniFrac imple-

mentation to GPUs, because this allows a single codebase for both

CPU and GPU code, thus significantly reducing long term support

burden. Some refactoring of the code was needed to obtain maxi-

mum performance from the GPUs, but this refactoring was mostly

limited to the most time-consuming part of the code. The increased

memory footprint is slightly increased, but we believe this trade-off

is well worth the order of magnitude speed improvement in run

times.

Finally, we explored the use of lower-precision floating point

math to effectively exploit consumer-grade GPUs, which are typical

in desktop and laptop setups. We conclude that fp32 math yields

nearly identical results to fp64, and should be adequate for the vast

majority of studies, making compute on GPU-enabled personal

devices, even laptops, a sufficient resource for this otherwise rate-

limiting step for many researchers.

ACKNOWLEDGMENTS

This work was partially funded by US National Science Foundation

(NSF) under grants OAC-1826967, OAC-1541349 and CNS-1730158,

and by US National Institutes of Health (NIH) under grant DP1-

AT010885.

503

Porting and optimizing UniFrac for GPUs PEARC ’20, July 26–30, 2020, Portland, OR, USA

REFERENCES
[1] Catherine Lozupone and Rob Knight, 2005. UniFrac: a New Phylogenetic Method

for ComparingMicrobial Communities. Appl. and Env. Microbio. 71 (12) 8228-8235;
DOI: https://doi.org/10.1128/AEM.71.12.8228-8235.2005

[2] Luke R. Thompson et al, 2017. A communal catalogue reveals Earth’s multiscale
microbial diversity. Nature 551, 457–463. DOI: https://doi.org/10.1038/nature24621

[3] Daniel McDonald et al, 2018. Striped UniFrac: enabling microbiome analysis at un-
precedented scale. Nat Methods 15, 847–848. DOI: https://doi.org/10.1038/s41592-
018-0187-8

[4] OpenACC Home page, 2020. https://www.openacc.org (Accessed April 2020)

504

