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Abstract—Stochastic optimization can better model uncertain-
ties in power system problems. However, when state space and ac-
tion space become large, many existing approaches become com-
putationally expensive and even infeasible to solve the problem.
Approximate dynamic programming (ADP) attracts researchers’
attention as a powerful tool for solving power system optimization
problems with reduced computational cost. In this paper, in light
of the existing literature, we investigate how the ADP approach
with post-decision value function approximation converges to the
nearly optimal solution with improved computational speed and
experimentally validate the performance of the approach for
a microgrid energy optimization problem. The approximation
error versus the number of iteration is studied for convergence
analysis of the post-decision ADP. A flowchart is provided to
illustrate the proposed ADP algorithm for a microgrid energy
optimization problem. The performance of ADP and dynamic
programming (DP) is compared in terms of optimization error
and computational time. It has found that the post-decision
ADP approach can achieve competitive optimality with improved
computational speed compared to the traditional DP.

I. INTRODUCTION

In past decades, many optimization problems were solved as
deterministic standard modeling frameworks developed in the
fields of mathematical programming and optimal control [1].
However, most real-life problems contain uncertain parameters
that are unknown at the time a decision is made. In this case,
the deterministic optimization approaches may not ensure the
optimal point. To solve this issue, stochastic optimization is
prescribed involving uncertainties and probabilities [2].

In recent years, for stochastic optimization in power sys-
tems, scenario-based stochastic programming methods are re-
ported in several papers [3], [4]. Other conventional stochastic
programming techniques like backward dynamic program-
ming, policy iteration, value iteration, etc. are also used [5],
[6]. When the number of scenarios becomes large, the afore-
mentioned techniques become computationally intractable and
sometimes impose considerable computational cost. Though
different scenario reduction techniques have been proposed to
reduce the computational time cost of the existing scenario-
based techniques [7], these scenario reduction techniques
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may overlook low probability but high-impact scenarios. The
aforementioned situations are commonly referred as the “curse
of dimensionality” [8]. Approximate dynamic programming
(ADP) attracts a lot of researcher’s attention and it approxi-
mates the optimal value with limited computational resources
[9], [10]. The key idea of the ADP approach is to solve
stochastic optimization problems based on the Bellman equa-
tion. In recent years, ADP based techniques are used to
solve power system optimization problems considering the
stochastic nature of the distributed energy sources [11], [12],
[13].

Different from our previous works [13], [14], this paper
aims to answer two new questions of ADP based optimization
in microgrid energy systems. First, how ADP converges to the
minimum operational cost of the microgrid system. Second,
why ADP is computationally efficient in large-scale decision-
making process. To answer these questions, we generalize
the ADP approach with signal flowcharts and a probability-
based sampling method. We study the convergence of the post-
decision ADP value function for microgrid energy optimiza-
tion problems and guarantee the optimality. The convergence
analysis is presented with finite-time horizon fashion through
an iterative process by introducing approximation error (AE)
term in the value function to make it more realistic in power
system optimization. A theorem is derived to show that the
ADP approach can achieve the minimum operational cost of
the microgrid after a finite number of iterations. For numerical
studies, we use a stochastic energy optimization problem
in an islanded microgrid with uncertain renewable energy
sources. We analyze the performance of convergence in a
stochastic environment. We examine the stochastic optimiza-
tion performance (e.g., percentage of optimization error and
computational time) of the ADP approach. The performance
of the DP approach is also provided for reference.

The rest of this paper is organized as follows. The model de-
scription and problem formulation are presented in Section II.
In Section III, the theoretical background of the post-decision
ADP approach and its convergence proof are demonstrated.
Simulation results and analysis are carried out in Section IV.
Finally, the conclusions and future works are presented in
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Section V.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

According to [13], in the islanded microgrid, a wind turbine,
a battery bank, and a diesel generator are considered as
major power sources where the diesel generator serves as the
backup power supply unit if the battery is not available in
emergency cases. The system reference voltage and frequency
are maintained by the battery bank and the diesel generator
in accordance with the predetermined operation strategy. The
wind turbine is used to meet the demand as well as to charge
the battery. Charging and discharging modes of the battery
depend on the state of charge of the battery. Considering
the battery lifetime characteristics, the battery can discharge
energy to a certain limit and needs to be charged when the
battery state of charge goes below the minimum defined limit.

To formulate the optimization problem, a finite horizon of
time is considered as τ = {0, ∆t, 2∆t,..., T −∆t, T}, where
∆t = 1 hour is the time step and T = 24 hours. At time
instance t, the state variable of the power system can be written
as

St = (Bt,Wt, Dt). (1)

where Bt is the available energy in the battery in kWh, Wt is
the available wind turbine power in kW , and Dt is the power
demand in kW .

In this paper, five different actions are considered in a five-
dimensional action set (decision vector) where the actions
represent how much power is transferring from one unit to
another unit. The action set at time t can be defined as

at = (awdt , agdt , a
bd
t , a

wb
t , agbt )

τ
≥ 0, at ∈ χt, t ∈ τ. (2)

where apqt represents the amount of transferred power from
p to q at time t and χt is the feasible action space. The
superscripts b, w, d, and g represent battery bank, wind
turbine, power demand, and diesel generator, respectively.
For example, abdt represents an amount of power in kW
transferring from the battery bank to the power demand subject
to the operational constraints.

Transition Function for Exogenous Information: Transition
function for exogenous information is used to determine the
next-hour exogenous information values. In this paper, we
have two exogenous inputs: Wt and Dt. Let the exogenous
information Et= (Wt,Dt) and the system state St = (Bt,Et),
where Et is independent of Bt. The exogenous information
transition can be expressed as, Et+1 = Et + et+1. It means
between time t and t+ 1, et+1 = (wt+1,dt+1) and et+1 repre-
sents the change in Et. The change in exogenous information
et+1 is independent of St and at.

Cost Functions: The operation cost of the battery can be
calculated as

CBt = Cwp
B
t ∆t (3)

where Cw is the battery wear cost ($/kWh) and pBt is the
total amount of energy discharge from the battery at time t.
The energy discharge from the battery pBt can represent as,

pBt = abdt λsoc, where λsoc is the effective weighting factor
for the corresponding state of charge of the battery.

The operation cost of diesel generator can be written as

Cgent = Cdie−fuelt + Cdie−om + Cdie−loss (4)

where Cdie−fuelt is the fuel cost, Cdie−om is operation and
maintenance cost, and Cdie−loss is life loss cost of the diesel
generator.

The Objective Function: The weighted cost function of the
islanded microgrid is calculated by combining the cost func-
tion of the diesel generator and the battery. The operational
cost of the microgrid at time t can be calculated as

C(St, at) = M1 × Cgent +M2 × CBt . (5)

where Cgent and CBt represent the cost function of the diesel
generator and battery at time t, respectively, and M1 and
M2 are the weights. The weights of cost function can be
determined based on the operator’s objective. For example,
if M1 = M2 = 0.5, two objectives are equally important
to the operator. The overall system objective function can be
expressed as

V = min
π

E
[ T∑
t=0

C(St,Π
π
t (St))

]
. (6)

where E[.] is the expectation operator, Ππ
t (St) represents

the decision function, and π represents the type of policy.
The system objective function is considered over a finite
horizon of time. The goal is to find a proper action set
at = arg min

at∈χt

V , so that the overall system objective function

V can be minimized over time.

III. APPROXIMATE DYNAMIC PROGRAMMING FOR
SOLVING OPTIMIZATION PROBLEM

A. Theoretical Background of Approximate Dynamic Pro-
gramming

The Bellman’s equation of optimality can be written as
[15], [8],

V ∗t (St) = min
at∈χt

[C(St, at)+
∑
St+∆t

Pt(St+∆t|St, at)V ∗t+∆t(St+∆t)],

(7)
where Pt(St+∆t|St, at) is known as conditional transition
probability for the decision at. The conditional transition
probability is the probability of moving from current state St
to the next state St+∆t. Here, V ∗t (St) represents the optimal
value function for the state St at time t.

Solving stochastic optimization problems efficiently with
multi-dimensional state, action, and information spaces are
usually challenging using traditional DP approaches. To over-
come this challenge, the Bellman’s equation can be rewritten
using the post-decision state as,

V ∗t (St) = min
at∈χt

[C(St, at) + V at (Sat )]. (8)

where Sat is the post-decision state which includes the in-
formation of the current hour state and decision set before
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Fig. 1. The ADP flowchart for power system optimization. There are two stages in the flowchart. In the upper stage, the system calculates the sample
realization, and updates the value function as well as stores in the data storage. In the lower stage, the system uses the present-hour state information to find
out the next-hour state information using the probability and sends the state information to the next time-step.

arriving any new exogenous information. Using the post-

decision state variable, the future expected value function

can be replaced by a post-decision value function. The post-

decision state consists of variables to compute the transition

dynamics. In other words, a variable can be a part of the post-

decision state if and only if its next-hour value is dependent

on its current hour value.

The value function of the post-decision state V a
t (S

a
t ) can

be expressed as

V a
t−1(S

a
t−1) = E{V ∗

t (St)|Sa
t−1}, (9)

A sample realization of the value function at time t can be

written as

v̂t
n = min

at∈χt

[C(St, at) + V a,n−1
t (SM,a(St, at))], (10)

where n represents the number of iteration. In any n iteration,

the sample realization of the value function at time t represents

the operational cost of the microgrid based on the prior

knowledge of the post-decision value function approximation

(VFA) at (n − 1) iteration. Using v̂t
n, the VFA of the post-

decision state can be calculated as

V a,n
t−1(S

a
t−1) = (1− αn−1)V

a,n−1
t−1 (Sa

t−1) + αn−1v̂t
n, (11)

where α can be defined as a “step-size”, “learning rate” or

“stochastic filter”, and generally takes on values between 0 and

1. The value function approximation is used to be smoothed

by the step-size α over time.

The flowchart of the ADP approach is illustrated in Fig. 1.

As can be seen, the algorithm starts by initializing the state

information. Then, the state information goes through two

different procedures. The upper level updates the post-decision

value function, and the lower level determines the future hour

state information.

• At the upper level, the state information is used to find the

possible number of action sets that satisfy the operational

constraints and the battery control strategy. Next, the sys-

tem finds an action set that minimizes the cost function.

The system sends the information of the cost function to

the next block for determining the sample realization of

the value function. Then, the system updates the post-

decision value function using the sample realization and

stores the data.

• At the lower level, the system sends the current hour

state information to generate the next-hour exogenous

information using a first-order Markov chain method.

In this block, the system learns the noise information

for the wind power and load demands (stochastic wind

power and load demand models are described in Section

IV), and generates a possible number of sample paths ωi

for the next-time step. At each time step, the next-hour

battery information is updated using the battery transition

function and the next-hour battery information is the same

for all the possible next-hour states. Then, the relative

probability of each state is calculated by the probability

density function. Next, the state with the highest relative

probability is selected as the next-hour state.

B. Convergence Study of the Post-Decision ADP Approach

The post-decision ADP approach is an iterative process. At

each iteration, the sample realization of the value function is

updated with the post-decision VFA of the previous iteration.

The VFA process causes AEs in the value function. The

algorithm is to reach the optimal value (daily operational cost

of the microgrid) of each time step t by minimizing the AEs

through the iterative process. Adding the AE, the equation (10)

can be rewritten as

v̂t
n+1 = min

at∈χt

[C(St, at) + V a,n
t (SM,a(St, at))] + εn(St).

(12)

where εn(.) represents the AE and V a,n
t (.) represents the post-

decision VFA at the nth iteration.

To analyze the convergence of sequence for value function

{v̂tn }∞n=0, we follow [12], [16] and define the bounding

sequences as

vt
n+1 = min

at∈χt

[C(St, at) + μC(St, 0) + Vt
a,n

(SM,a(St, at))].

(13)

vt
n+1 = min

at∈χt

[C(St, at)− μC(St, 0) + Vt
a,n(SM,a(St, at))].

(14)



where vtn : R → R+ and vt
n : R → R+. It is assumed that

both bounding sequences are initiated from some vt0 and vt0.
If the AE εn(St) is constrained with an upper bound then the
following results can be obtained. Here, Vt

a,n
(SM,a(St, at))

and Vt
a,n(SM,a(St, at)) represent the upper bound and the

lower bound of the post-decision VFA at the nth iteration.

Lemma 1. Assume |εn(St)|≤ µC(St, 0), ∀nεN with µε[0, 1).
If the value functions are in equations (11), (12), (13) and (14)
initialized such that vt0 ≤ v̂t

0 ≤ vt
0, then, vtn ≤ v̂t

n ≤ vt
n,

∀nεN. Moreover, if vt0 = v̂t
0 = vt

0, then vt
n and vt

n are
the greatest lower bound and the least upper bound of v̂t

n,
respectively.

Proof. The mathematical induction process can be used to
prove the lemma. Initially it is assumed that vt0 ≤ v̂t0 ≤ vt0.
Let Vta,n(SM,a(St, at)) ≤
V a,nt (SM,a(St, at)) ≤ Vt

a,n
(SM,a(St, at)), hold for some

iteration n. If the equation (13) is compared with equation
(12) then we get v̂tn+1 ≤ vtn+1 because εn(St) ≤ µC(St, 0)
and V a,nt (SM,a(St, at)) ≤ Vt

a,n
(SM,a(St, at)). Therefore,

for all nεN, v̂tn ≤ vt
n. Similarly, it can also be proved

that vtn ≤ v̂t
n for all nεN comparing equation (14) and

equation (12). The last part of the lemma can be proved
assuming εn(St) = µC(St, 0), ∀n which leads to v̂tn = vt

n.
Similarly, assumption of εn(St) = −µC(St, 0), ∀n leads to
v̂t
n = vt

n.

Here, vtn(.) and vtn(.) can be seen as the value functions
at the nth iteration for the cost functions

J
∗
t =

1

K

K∑
k=1

[C(St(ω
k),Ππ∗

t (St(ω
k))) + µC(St(ω

k), 0)],

(15)

J∗t =
1

K

K∑
k=1

[C(St(ω
k),Ππ∗

t (St(ω
k)))− µC(St(ω

k), 0)],

(16)
respectively, considering the recursive relations of the value
functions in equations (13) and (14). Here, ω and K represent
the sample path and the total number of different sample paths,
respectively [11], [13].

Lemma 2. The value functions presented in equations (13)
and (14) converge to the optimal value functions (15) and
(16), respectively, if they are initialized by the value functions
vt

0 and vt
0 such that 0 ≤ vt

0 ≤ (1 − µ)C(St, 0), and 0 ≤
vt

0 ≤ (1 + µ)C(St, 0), with µε[0, 1) [17].

Considering the above conditions, the following theorems
prove the convergence of the value function {v̂tn }∞n=0 using
the approximate value iteration (AVI).

Theorem 1. Assume |εn(St)|≤ µC(St, 0), ∀nεN with
µε[0, 1). If the AVI presented in equation (12) is initialized
such that 0 ≤ v̂t0 ≤ (1− µ)C(St, 0), then, the greatest lower
bound of v̂t

n converges to v∗t and the least upper bound of v̂t
n

converges to v∗t as n→∞. Here, v∗t and v∗t are the optimal
value functions of the cost functions (15) and (16).

Proof. The boundedness of {v̂tn }∞n=0 can be proved based
on the Lemma 1 and the convergence of the bounds vt0 and
vt

0 which obeys 0 ≤ vt0 = v̂t
0 = vt

0 ≤ (1− µ)C(St, 0), can
be proved by the Lemma 2.

Theorem 2. Let |εn(St)|≤ µC(St, 0), ∀nεN with µε[0, 1).
If the AVI presented in equation (12) is initialized such that
0 ≤ v̂t

0 ≤ (1 − µ)C(St, 0), then, the greatest lower bound
and the least upper bound of v̂t

n for n→∞ converge to the
optimal value function at time t as µ→ 0.

Proof. If the optimal value function at time t is V ∗t , then Ṽ ∗t
can be defined as

Ṽ ∗t :=
1

K

K∑
k=1

C(Sπ
∗

t (ωk), 0), (17)

Here, the summation in equation (17) is evaluated with the
optimal trajectory of the optimal value function V ∗t . So,

V ∗t ≤ v∗t , (18)

According to the definition of v∗t , the relationship between the
value functions with Ṽ ∗t can be written as

v∗t ≤ V ∗t + µṼ ∗t , (19)

Using inequalities in equations (18) and (19),

|V ∗t − v∗t |≤ µṼ ∗t . (20)

Since the state vectors are all finite, we can assume Ṽ ∗t,max :=

sup Ṽ ∗t where Ṽ ∗t,max is a finite constant. Therefore, the
equation (20) can be rewritten as

|V ∗t − v∗t |≤ µṼ ∗t,max. (21)

According to equation (21), the value function v∗t converges
to the optimal value function V ∗t as µ → 0. Similarly, the
convergence proof can also be shown for the value function
v∗t [18].

According to the convergence analysis, the daily operational
cost of the microgrid calculated by the post-decision ADP
approach should converge to the optimal value.

IV. SIMULATION RESULTS AND ANALYSIS

For stochastic analysis, the first-order Markov chain process
is used to generate noises. Pseudonormal probability distri-
bution function is used to calculate the probability density
function for each sample of the exogenous information.

The stochastic power system demand function is provided
as Dt+1 = min{max{Dt + µD, Dmin}, Dmax}, where µD

represents noise of the system. The range of the µD is
defined as {0,±1,±2} with an interval of 1. For the stochastic
load demand, the pseudonormal probability density function
is used as N(0, 22) where the mean value and the variance
value are 0 and 2, respectively. Similarly, the stochastic wind
power function can be written as Wt+1 = min{max{Wt +
µW ,Wmin},Wmax}, where µW represents noise of the sys-
tem. The range of the µW is defined as {0,±1,±2,±3}
with the interval of 1. For the stochastic wind power, the

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 26,2021 at 21:02:58 UTC from IEEE Xplore.  Restrictions apply. 



0 200 400 600 800 1000
Number of Iteration, N

0

5

10

15
Va

lu
e 

Fu
nc

tio
n 

Ap
pr

ox
im

at
io

n,
 V

0a

Fixed Step-size
Harmonic Step-size

Fig. 2. The value of the VFA obtained from the ADP approach for different
step-sizes after 1000 iterations.

TABLE I
PERCENTAGE OF OPTIMIZATION ERROR OF THE ADP APPROACH

Step-size (α) Percentage of Optimization Error (%)
Fixed step-size 4.56

Harmonic step-size 3.07

pseudonormal probability density function is used as N(0, 42).
All the parameters of the islanded microgrid power supply
units and the load profiles of the island, are taken from [13].

The step-size α plays an important role in the VFA process.
In literature [8], different types of step-size (stochastic filter)
are described. In this paper, we investigate two step-sizes such
as fixed step-size and harmonic step-size. For the fixed step-
size, the value of α sets as 0.2. For the harmonic step-size, we
have used an equation as a

a+n where a is the tuning parameter
and is set to 5 in this study.

To test the performance of the ADP approach, we obtain the
value table after N = 1000 iterations. We generate 500 test
scenarios and solve the optimization problem for each scenario
using the lookup table obtained from the ADP approach. Later,
we calculate the statistical mean and obtain the value function.
Similarly, we solve the optimization problem for each of
the scenarios using the DP approach, calculate the statistical
mean, and use the value to quantify the assessment of the
ADP approach. The percentage of optimization error (OE) is
calculated as

OE =

∣∣∣∣ V̄ N − V̄ ∗V̄ ∗

∣∣∣∣× 100%. (22)

where V̄ N and V̄ ∗ represent the statistical mean value of
the ADP approach and the DP approach, respectively. All the
simulations are conducted in a computer with a configuration
of 2.60GHz Intel Core i7−6700HQ CPU and 8GB memory.

VFAs of the ADP approach versus the number of iteration
using different step-size methods are plotted in Fig. 2. As
can be seen, the harmonic step-size method provides a higher
convergence rate than the fixed step-size method. For the 500
test scenarios studied using the ADP approach, the mean value
of total microgrid operational cost with fixed and harmonic
VFAs are 98.90 and 97.49, respectively. The 500 test scenarios
are also studied using the DP approach, and the mean value
of the cost is 94.59. The optimization error of the ADP can

be calculated using (22) and results are provided in Table I.
It takes 1059.61 seconds on average for training and testing
using the ADP approach while the DP approach takes 1712.37
seconds to generate the statistical estimated value. The ADP
approach is promising for the stochastic energy optimization
of a microgrid.

V. CONCLUSION

This paper studies the convergence analysis of the post-
decision ADP approach for solving time-dependent, finite-
horizon stochastic microgrid energy optimization problem,
where there uncertainties in wind power generation and load
demand. The performance of the ADP approach is compared
with the traditional DP approach in terms of result accuracy
and computational time. It has found that the ADP approach
is an efficient tool for stochastic optimization in smart grid.
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