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Abstract—Traffic congestion has large economic and social
costs. The introduction of autonomous vehicles can potentially
reduce this congestion by increasing road capacity via vehicle
platooning and by creating an avenue for influencing people’s
choice of routes. We consider a network of parallel roads with two
modes of transportation: (i) human drivers, who will choose the
quickest route available to them, and (ii) a ride hailing service,
which provides an array of autonomous vehicle route options,
each with different prices, to users. We formalize a model of
vehicle flow in mixed autonomy and a model of how autonomous
service users make choices between routes with different prices
and latencies. Developing an algorithm to learn the preferences
of the users, we formulate a planning optimization that chooses
prices to maximize a social objective. We demonstrate the benefit
of the proposed scheme by comparing the results to theoretical
benchmarks which we show can be efficiently calculated.

I. INTRODUCTION

Road congestion is a major and growing source of inefficiency,
costing drivers in the United States billions of dollars in wasted
time and fuel [1]. Autonomous vehicles could improve the
efficiency of road usage by forming platoons, thereby increas-
ing road capacity and smoothing traffic flow. The presence
of mixed autonomy, where human drivers and autonomous
vehicles share roads, complicates these improvements – if
drivers make their routing decisions selfishly and seek to min-
imize their experienced latency, this can result in suboptimal
network performance [2]. Moreover, increasing road capacity
by converting human-driven vehicles to autonomous ones can
paradoxically worsen average transit user latency [3].

It is therefore important to consider the effect of self-
interested users on the system as well as how to influence these
users to take routes which mitigate this effect. In this paper
we consider monetary incentivizes for such prosocial behavior.
We consider a setting where a benevolent ride hailing service
or social planner sets prices for each route that an autonomous
vehicle user may take. The users of the autonomous service
will choose their routes, or choose not to travel, based on
their time-money tradeoff. The remaining human drivers will
choose routes that minimize their latency. The role of the
social planner is then to choose prices to optimize some social
objective. Our model is an indirect Stackelberg game – a
game in which a social planner controls some fraction of the
population’s actions, where the remainder of the population
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responds selfishly. However, in our model the planner only
controls its portion of the vehicle flow indirectly, via pricing.

To effectively set prices, the social planner needs a model
for a) the flow of vehicles on a road, which depends on how
many autonomous and human-driven vehicles are on the road,
and b) how people make decisions between routes with various
prices and latencies. We model the latter based on multinomial
logits [4] and model human drivers as selfish agents who reach
a Nash Equilibrium (also called a Wardrop Equilibrium in the
context of transportation networks), a configuration in which
no one can decrease their travel time by switching paths [5].

Moreover, we use active preference-based learning [6],
via a series of queries, to understand the preferences of
autonomous service users. This enables the planner to predict
how autonomous service users will react to a set of options
with only a relatively low number of training queries. We
experimentally verify this method accurately predicts human
choice, and our planning algorithm can use this to improve
network performance. Furthermore, we provide a theoretical
framework which establishes benchmarks for the performance
of the algorithm and we show that these benchmarks can be
calculated in polynomial time. Finally, we show the efficacy
of our pricing scheme in the context of these benchmarks.

Our contributions in this work are as follows:
• We develop a formal mixed autonomy traffic flow model.
• We develop an active preference-based algorithm to learn

how different people value time and money in choosing
their transportation option. This enables learning a model
for people’s routing choices in a data-efficient manner.

• We use these models to formulate and solve an optimiza-
tion for ride hailing service to minimize congestion and
maximize the road network utilization while constraining
a minimum profit for the service supplier.

• We provide theoretical benchmarks for understanding the
performance of the above and prove that we can calculate
these benchmarks in polynomial time.

• We validate the learning algorithm and the planning op-
timization formulation via simulations and user studies.
Our results show carefully designed pricing schemes can
significantly improve traffic throughput.

Related work. Previous works have shown the potential ben-
efits that autonomous vehicles can have for traffic networks by
increasing road capacity through platooning [7], [8], damping
shockwaves of slowing vehicles [9], [10], managing merges
[11], decongesting freeways in the event of accidents [12],
[13], and balancing a supply of vehicles [14]. Relatedly, many
works analyze and bound the inefficiency that can arise from
network users choosing their routes selfishly [15], including
when autonomous vehicles are introduced [3].

As we use financial incentives to influence this behavior,



our formulation is related to work in tolling, some of which
consider users with different sensitivities to tolls [16], [17].
[18] considers a congestion game framework and derives tolls
which drive users to choose socially optimal strategies for a
broad class of user strategy update dynamics. In contrast to
many of these works, we consider an empirically validated
probabilistic model for human choice [19] which incorporates
differences in price sensitivity, and we model vehicle flow on
shared roads based on the foundational Fundamental Diagram
of Traffic (FDT) [20]. Some works consider heterogeneous
and stochastic user utilities (e.g. [21], [22]). However, the
approaches taken in these works cannot incorporate a FDT-
based model for road congestion, in which latency is no longer
an increasing function of vehicle flow on a road. Also relatedly,
[23] considers a Stackelberg game (meaning a planner can
route a portion of the vehicle flow) on parallel roads with
flow dictated by the FDT when there is a single vehicle type.
Hence, a major novelty of our work lies in that we consider
a mixed-autonomy network where autonomous service users
have different preferences.

To understand human choice, there has recently been much
effort on learning human reward functions which are assumed
to be sufficient to model preferences. Inverse reinforcement
learning [24]–[26] and preference-based learning [6], [27]–
[29] are the most popular choices. In this paper, we employ
preference-based learning, a natural fit to our problem. We
actively synthesize queries – a non-trivial generalization and
extension of [6] – for data-efficiency and better usability.

II. PROBLEM SETTING AND OBJECTIVE

A. Vehicle Flow Model
We assume every road i has a maximum flow. This occurs
when traffic is in free-flow – when all vehicles travel at the
nominal road speed v̄i.

Definition 1. The free-flow latency of a road i, denoted ai, is
the time it takes vehicles to traverse the road in free-flow. With
road length denoted di, the free-flow latency is ai := di/v̄i.

Traffic Density vs Traffic Flow: Adding more cars to a road
that is already at maximum flow makes the traffic switch from
free-flow to a congested regime, which decreases the vehicle
flow. In the extreme case, at a certain density n̄i, cars are
bumper-to-bumper and vehicle flow stops. The solid lines in
Fig. 1(a) – Fundamental Diagram of Traffic [20] – illustrates
this phenomenon, where flow increases linearly with respect to
density until it hits the critical density. The slope corresponds
to the free-flow velocity v̄i on road i. After the critical point,
flow decreases linearly until it is zero at the maximum density.
In this figure, F̄ is the maximum flow and ñ denotes the critical
density, where the argument is the fraction of vehicles that are
autonomous. We will formally define this notation below.
Traffic Flow vs Road Latency: The relationship be-
tween vehicle flow and road latency reflects the same free-
flow/congested divide. As mentioned above, roads in free-
flow have constant latency. In the congested regime, however,
latency increases as vehicle flow decreases, since a high
density of vehicles is required to achieve a low traffic flow.
This is represented in Fig. 1(b) with the solid lines.
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Fig. 1: (a) The Fundamental Diagram of Traffic for roads with all human-
driven (solid) and all autonomous (dashed) vehicles. In the latter, congestion
begins at a higher vehicle density as autonomous vehicles require a shorter
headway when following other vehicles. (b) The relationship between vehicle
flow and latency also changes in the presence of autonomous vehicles. Free-
flow speed remains the same but maximum flow on a road increases.

Mixed-Autonomy Roads. We assume that on mixed-
autonomy roads, the autonomous vehicles can coordinate with
one another and potentially form platoons to help with the ef-
ficiency of the road network. We now extend the traffic model
above to mixed-autonomy settings as shown with dashed lines
in Fig. 1. We define the autonomy level of a road i as the
fraction of autonomous vehicle flow on that road: αi :=

f a
i

f a
i+f h

i

where f a
i and f h

i represent the autonomous and human-driven
vehicle flow, respectively. Assuming that neither the nominal
velocity v̄i nor the maximum density n̄i changes, the critical
density at which traffic becomes congested will now shift and
increase with autonomy level αi, as platooned autonomous
vehicles require a shorter headway than human drivers.

To formalize the relationship between autonomy level and
critical density on road i, we assume the space occupied by
autonomous vehicles and humans at nominal velocity is ha

i

and hh
i , respectively, with ha

i ≤ hh
i . This inequality reflects

the assumption that autonomous vehicles can maintain a short
headway, regardless of the type of vehicle they are following.
Then, the critical density is

ñi(αi) :=
bi

αih
a
i + (1− αi)hh

i

, (1)

where bi is the number of lanes on that road. Here the
denominator represents the average length from one car’s rear
bumper to the preceding car’s rear bumper when all cars follow
the vehicle in front of them with nominal headway. Note that
critical density is expressed here as a function of the autonomy
level αi of the road. Since flow increases linearly with density
until hitting the critical point, the maximum flow can also be
expressed as a function of autonomy level: F̄ i(αi) = v̄iñi(αi).

The flow on a road, fi = f h
i +f a

i is a function of the density
(nh

i and na
i , respectively) of each vehicle type as follows.

fi(n
h
i , n

a
i) :=⎧⎪⎨⎪⎩

v̄i · (nh
i + na

i), if nh
i + na

i ≤ ñi(αi)
v̄i·ñi(αi)·(n̄i−(nh

i+na
i))

n̄i−ñi(αi)
, if ñi(αi) ≤ nh

i + na
i ≤ n̄i

0, otherwise .

(2)

We can then write the latency as a function of vehicle flow
as well as a binary argument si, which indicates whether the
road is congested [23], [30]:

ℓi(f
h
i , f

a
i , si) =

{︄
di

v̄i
if si = 0

di

(︂
n̄i

f h
i+f a

i
+ ñi(αi)−n̄i

v̄i·ñi(αi)

)︂
if si = 1 .

(3)
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Fig. 2: Some possible equilibria of a three-road network with fixed flow
demand. Blue and red lines denote the free-flow and congested regimes,
respectively. Equilibria may have (a) one road in free-flow or (b) all used roads
congested. An equilibrium has an associated equilibrium latency experienced
by all selfish users. By considering a given equilibrium latency, we can reason
about which roads must be congested at that equilibrium as well how much
flow is on each road.

Fig. 1(b) illustrates the effect of mixed autonomy on latency.
B. Network Model
Assumption 1. We consider a network of N parallel roads.
We assume that no two roads have the same free-flow latency.
We order the indices such that a1 < a2 < . . . < aN .

The role of the assumption above is explained in the
Appendix. We use [k] to denote the set of the first k roads;
accordingly, [N ] denotes the set of all roads.

We describe the network state by (f h,f a, s), where f h,
f a ∈ RN

≥0 and s ∈ {0, 1}N . A feasible routing is one for
which f h

i + f a
i ≤ F̄ i(αi) for all roads, and the flow of each

vehicle type on the roads sum to λh and λa in the case of
inelastic demand, respectively, which denote the total vehicle
flow demands. In the case where the demand for autonomous
vehicles is elastic, i.e., Section IV, this constraint is relaxed
such that the total autonomous flow does not exceed the
maximum demand. We are interested in finding a routing, i.e.
allocation of vehicles into the roads, that minimizes the total
latency experienced by all vehicles while maximizing the total
flow of the roads in the case of elastic demand. Further, we
constrain this optimization based on total demand, selfishness
or flexibility of the vehicles. While selfish drivers always take
the quickest road possible, flexible vehicles accept relatively
longer latencies. We will formalize these terms in Section III.
C. Human Driver Choice Model
We assume human drivers are selfish, i.e. their only consid-
eration is minimizing their own commute time. This leads to
a Nash Equilibrium [5], which, on parallel roads, means that
if one road has positive flow on it, all other roads must have
higher or equal latency. Formally,

f h
i > 0 =⇒ ℓi(f

h
i , f

a
i , si) ≤ ℓi′(f

h
i′ , f

a
i′ , si′) ∀i, i′ ∈ [N ] .

This implies that all selfish users experience the same latency.
It is therefore useful to consider the flow-latency diagrams of
roads when studying which equilibria exist – by fixing the
latency on the y-axis, one can reason about which roads must
be congested to achieve that equilibrium. As shown in Fig. 2,
equilibria may have one road in free-flow and rest congested,
or all may be congested [23], [30].
D. System Objective
In this paper, we are interested in developing a pricing scheme
for autonomous vehicles that improves the state of the traffic
by alleviating the adverse effects of selfishness. First, we
develop two baselines: the first is the case in which all users,

including autonomous vehicles, are selfish and the network
reaches a Nash Equilibrium. In this case we wish to efficiently
calculate the Nash Equilibrium that minimizes overall travel
latency. Our goal is to achieve lower travel latencies than
this equilibrium with the same amount of flow. In the second
baseline, we assume we have limited direct control over the
routing of autonomous users – more specifically, we can route
autonomous vehicles as we wish as long as the latency they
experience is within some range of the quickest route available.
A specific case of this baseline with full flexibility of the
autonomous vehicles serves as a lower bound to our method.

After developing the two baselines in Section III, we present
our pricing method that provides the same benefits as flexible
behavior through financial incentives in Section IV. For our
pricing scheme, we describe the various facets of the problem.
We assume the demand of human drivers is fixed, and the
demand of people using the autonomous service is elastic –
if prices and latencies are high, some people may choose not
to use the autonomous mobility service. Our goal is then to
simultaneously maximize the number of autonomous service
users that can use the road, and minimize the average latency
experienced by all the people using the roads.

III. PERFORMANCE BENCHMARKS

Throughout this section, we assume an inelastic demand, i.e.,
we will route all autonomous and human-driven flow demand,
λa and λh, into the network. As the demand is inelastic,
we are only interested in finding a routing that minimizes
the total latency experienced by all vehicles, C(f h,f a, s) =∑︁

i∈[N ](f
h
i + f a

i )ℓi(f
h
i , f

a
i , si), while satisfying the demand,

i.e.
∑︁

i∈[N ] f
h
i = λh and

∑︁
i∈[N ] f

a
i = λa.

We now make precise the aforementioned notions of self-
ishness and flexibility. We develop properties of the resulting
equilibria, and using those, provide polynomial-time algo-
rithms for computing the benchmark flows.
Selfishness. Human drivers are often thought of as selfish,
meaning they will not take a route with long latency if a
quicker route is available to them. If all drivers are selfish
this leads to a Nash Equilibrium, in which no driver can
achieve a lower travel time by unilaterally switching routes
[5]. This means that all selfish users with the same origin and
destination experience the same travel time.

Definition 2. The longest equilibrium road is the road with
maximum free-flow latency which has latency equal to the
latency experienced by selfish users. Let mEQ denote the index
of this road. We use NE(λh, λa,mEQ) to denote the set of Nash
Equilibria with longest equilibrium road having index mEQ.

Definition 3. The longest used road is the road with max-
imum free-flow latency that has positive vehicle flow of any
type on it. We use mALL to denote the index of this road; if
all vehicles in a network are selfish then mEQ = mALL.

The following lemma will help with the subsequent theo-
retical results; we defer its proof to the appendix.

Lemma 1. If the set of Nash Equilibria contains a routing with
positive flow only on roads [m], then there exists a routing in
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Fig. 3: Flexibility profiles. A fraction φ(κ) of autonomous users will not
accept latency greater than κ times that of the quickest available route. (a)
Users will tolerate latency of up to κ0 times that of the quickest route. (b)
Users have multiple flexibility levels.

the set of Nash Equilibria with positive flow only on roads
[m′] where m′ ≤ m, and road m′ is in free-flow.

We define the set of Best-case Nash Equilibria (BNE) as
the set of feasible routings in equilibrium that minimize the
total latency for flow demand (λh, λa), denoted BNE(λh, λa).
The following theorem (proof deferred to the appendix) pro-
vides properties of the set of BNE for mixed-autonomy roads
(for roads with a single vehicle type, see [23]).

Theorem 1. There exists a road index m∗
EQ such that all

routings in the set of BNE have the below properties. Further,
this index m∗

EQ is the minimum index such that a feasible
routing can satisfy the properties:
1) road m∗

EQ is in free-flow,
2) roads with index less than m∗

EQ are congested with latency
am∗

EQ
, and

3) all roads with index greater than m∗
EQ have zero flow.

As the same latency level can be achieved by varying the
autonomy levels of the roads, BNE is not necessarily unique.
Flexibility. We also wish to find a lower bound for the social
cost when some users are willing (or incentivized) to take
longer routes. To that end, we use the term flexibility profile
to refer to the distribution of the degree to which autonomous
users are willing to endure longer routes. For computational
reasons, we consider flexibility profiles with a finite number
of flexibility levels.

Formally, we define φ : R≥0 → [0, 1] to represent the
flexibility profile as a nondecreasing function of a latency
value that is mapped to [0, 1]. A volume of φ(κ)λa autonomous
flow will reject a route incurring latency κ times the minimum
route latency available, which we denote ℓmEQ . If autonomous
users have a uniform flexibility level as in Fig. 3(a), we call
them κ0-flexible users, where κ0 is the maximum multiple
of the minimum latency that autonomous users will accept.
Users may have differing flexibility levels, as in Fig. 3(b). We
use K to denote the set of flexibility levels, with cardinality
|K|. Accordingly, a feasible routing (f h,f a, s) is in the set
of Flexible Nash Equilibria (FNE) if
1) all routes with human traffic have latency ℓmEQ

≤
ℓi(f

h
i , f

a
i , si) ∀i ∈ [N ] and

2) for any ℓ ≥ 0, a volume of at least φ(ℓ/ℓmEQ)λ
a au-

tonomous traffic experiences a latency less than or equal
to ℓ. Note that it is sufficient to check this condition for
ℓ = ℓi(f

h
i , f

a
i , si) for all i.

We denote the set of routings at Flexible Nash Equilibria
with demand (λh, λa), equilibrium latency ℓmEQ

, and flexibil-
ity profile φ as FNE(λh, λa, ℓmEQ

, φ). The set of Best-case
Flexible Nash Equilibria (BFNE) is the subset of FNE with

routings that minimize total latency. Note that as in Theorem 1,
we use m∗

EQ to denote the road with longest free-flow latency
that contains selfish vehicle flow in the best routing within
the considered set of equilibria. We defer the proof of the
following to the appendix.

Theorem 2. For any given routing in the set of BFNE, there
exist a longest equilibrium road m∗

EQ and a longest used road
m∗

ALL with m∗
EQ ≤ m∗

ALL, such that:
1) roads with index less than m∗

EQ are congested,
2) roads with index greater than m∗

EQ are in free-flow,
3) roads with index greater than m∗

EQ and less than m∗
ALL

have maximum flow.

Remark 1. Note that, unlike in BNE, road m∗
EQ will not

necessarily be in free-flow and m∗
EQ is not necessarily the

minimum index such that all selfish traffic can be feasibly
routed at Nash Equilibrium [30]. Further, different elements of
the set BFNE can have different indices for longest equilibrium
and longest used road.

Finding the Best-case Nash Equilibria. In general, the Nash
Equilibrium constraint is a difficult combinatorial constraint.
Theorem 1 however states that we can characterize the con-
gestion profile of the roads by finding the minimum free-flow
road such that Nash Equilibrium can be feasibly achieved.
This is formalized as follows: find the minimum mEQ such
that NE(λh, λa,mEQ) is nonempty:

m∗
EQ = argmin

mEQ∈[N ]

amEQ
s.t. NE(λh, λa,mEQ) ̸= ∅ , then

BNE(λh, λa) ⊆ NE(λh, λa,m∗
EQ). (4)

Theorem 3. (4) can be solved in O(N4) time.

We defer the proof to the appendix.
Finding the Best-case Flexible Nash Equilibria. To find an
element of the BFNE, we need to solve:

argmin
mEQ∈[N ], ℓ̂0∈[amEQ

,amEQ+1),

(f h,f a,s)∈FNE(λh,λa,ℓ̂0,φ)

C(f h,f a, s) . (5)

As demonstrated in [30], the longest equilibrium road is no
longer the road with lowest free-flow latency such that the
routing is feasible, as was the case in BNE. Further, road mEQ

may not be in free-flow in the set of BFNE. However, we do
know that for a fixed mEQ, the latency on road mEQ which
minimizes cost, subject to feasibility constraints, is one of a
finite number of options.

Theorem 4. Finding a solution to (5) is equivalent to finding
a routing in the set of BFNE, if any exist. Further, (5) can
be solved in O(|K|N5) time, where |K| is the number of
flexibility levels of autonomous vehicle users.

Proof. First, Definition 2 implies that the latency on the
longest equilibrium road mEQ, which we denote ℓ̂0, must be
less than that of road m∗

EQ + 1. This, with the definition of
BFNE imply that (5) solves for an element of the BFNE. Now,
note that for a given ℓ̂0, the optimal routing will maximize the
autonomous flow on roads [mEQ]. We show that this can be
computed in O(N3) time, and the optimal allocation of the



remaining autonomous flow can be computed in O(N) time.
Next, we note that subject to feasibility, the social cost of a
routing decreases monotonically with ℓ̂0. In light of this, we
show that there are a maximum of k|N | critical points to check
for feasibility when searching for the optimal ℓ̂0.

We now show that given ℓ̂0, the latency on road mEQ,
computing the optimal flow on roads [mEQ] can be done in
O(N3) time. For a given ℓ̂0, the optimal routing will fit as
much autonomous flow as possible on roads [mEQ]. Let f h,EQ

and f a,EQ denote the elements of the regular and autonomous
routings f h and f a that correspond to flows on the roads
[mEQ], as with sEQ. Then, solve

argmax
f h,EQ,f a,EQ∈R

|[mEQ]|
≥0

,smEQ
∈{0,1}

∑︂
i∈[mEQ]

f a
i (6)

s.t.
∑︂

i∈[mEQ]

f h
i =λh,

∑︂
i∈[mEQ]

f a
i ≤λa,

∀i ∈ [mEQ] f
h
i ≥ 0, f a

i ≥ 0,

∀i ∈ [mEQ − 1] ℓi(f
h
i , f

a
i , 1) = ℓ̂0,

ℓmEQ(f
h
mEQ

,f a
mEQ

,smEQ)= ℓ̂0.

Using similar reasoning as in Theorem 3, this can be
formulated as a linear program and therefore can be solved
with a computational complexity O(N3) [31].

Having computed the optimal routing on roads [mEQ], we
now consider an optimization which computes the resulting
optimal index of the longest used road in order to fit the
autonomous flow, and as a result, the optimal routing of the
remaining autonomous flow. This follows from Theorem 2:

argmin
j∈[N ]\[mEQ−1]

j

s.t.
∑︂

i∈[mEQ]

f a
i +

∑︂
i∈[j]\[mEQ]

F̄ i(1) ≥ λa ,
(7)

which requires computations of order O(N).
We temporarily restrict our attention to the case in which

autonomous users have a uniform autonomy level. We wish to
optimize over the following decision variables:

mEQ ∈ [N ] longest equilibrium road?
mALL ∈ [m]\[mEQ − 1] longest used road?

ℓ̂0 ∈ [amEQ , amEQ+1) equilibrium latency?

f h,f a ∈ Rn
≥0, s ∈ {0, 1}n actual routing?

The objective function to be minimized is aggregate latency,
which, using the Theorem 2, can be formulated as follows:

ℓ̂0
∑︂

i∈[mEQ]

(f h
i + f a

i ) +
∑︂

i∈[mALL−1]\[mEQ]

aiF̄ i(1) + amALL

(︂
λa −

∑︂
i∈[mALL−1]

f a
i

)︂
s.t. (f h,EQ,f a,EQ, sEQ) ∈ (6) (8)

mALL = (7) (9)
1

λa

(︂∑︂
i∈[mEQ]

f a
i +

∑︂
i∈[j]\[mEQ]

F̄ i(1)
)︂
≥ φ(

ai

ℓ̂0
) ∀j ∈ [N ]\[mEQ − 1]

(10)

For a given ℓ̂0, the optimal routing maximizes the au-
tonomous flow on roads [mEQ], yielding (8). The remaining

autonomous flow is routed as in (9). Finally, (10) ensures that
no one is more flexible than they wish.

To solve this, recall that in the case of uniform flexibility,

φ(κ) =

{︄
0 0 ≤ κ ≤ κ0

1 κ > κ0 .

Further, the volume of autonomous flow that can fit on roads
[m] increases with decreasing ℓm. Because of this, we can
restrict our search of ℓ̂0 to critical points of the function φ:

ℓ̂0 ∈ {amEQ}∪{
ai
κ0

: i∈ [mALL]\[mEQ], amEQ <
ai
κ0

<amEQ+1},

which is a set with maximum cardinality N . Therefore, we
can find the BFNE via the following algorithm:
1) Enumerate through all possible values of mEQ (N possi-

bilities).
2) For each possible mEQ, enumerate through all possible

values of ℓ̂0 (N possibilities).
3) For each combination of mEQ and ℓ̂0, find the optimal

routing on roads [mEQ] via (6) (order N3), and find mALL

and the optimal routing of autonomous vehicles on the
remaining roads via (7) (order N ). As these are sequential,
this step requires computations of order O(N3).

All together, this requires computations of order O(N5).
Now consider that autonomous vehicles have nonuniform

flexibility levels. Then,

φ(κ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 0 ≤ κ ≤ κ0

φ0 κ0 < κ ≤ κ1

φ1 κ1 < κ ≤ κ2

. . .

1 κ > κ|K|−1 .

We therefore must search over ℓ̂0 in the following set:

ℓ̂0∈ {amEQ
}∪

{ ai
κj

: i∈ [mALL]\[mEQ], j∈K, amEQ
<

ai
κj

<amEQ+1},

which has maximum cardinality |K|N , bringing the total
computation complexity to O(|K|N5).

IV. INCENTIVIZING FLEXIBILITY

We next present a pricing mechanism to attain the same bene-
fits of flexible behavior through financial incentives in the case
of elastic demands. We first explain the human choice model
that formalizes how autonomous service users choose between
a variety of price and latency pairs depending on their value
of time, encoded by their reward functions. We then formulate
a mathematical optimization problem that aims to find an
optimal trade-off between high road usage and low average
travel time. We then explain the data-efficient algorithm that
we propose for learning human reward functions.
A. Autonomous Service User Choice Model
How users choose between a variety of price and latency
pairs depends on their valuation of time and money. Without
knowing this choice model we cannot plan vehicle flows and
will not be able to ensure the resulting configuration matches



our vehicle flow models for the roads. Also, since different
populations may have different valuations, we need to learn
this tradeoff for our population so we can estimate how many
people will choose which option.

To untangle these constraints, we describe how autonomous
service users make routing decisions (the model for human
drivers is provided in Sec. II-C). Though human drivers are
motivated directly only by latency, autonomous service users
experience cost in both latency and the price of the ride. We
model the users as having some underlying reward function,
which is parameterized by their time/money tradeoff, as well
as the desirability of the option of traveling by some other
means such as walking or public transit. We assume that a
strictly dominated option in terms of latency and price is
completely undesirable. We formally define this set

D = {i ∈ [N ] | (pi > pi′ ∧ ℓi ≥ ℓi′) ∨ (pi ≥ pi′ ∧ ℓi > ℓi′)

for some i′ ∈ [N ]} ,

where pi is the monetary cost of route i. We also define the
set of undominated roads, D̄ = [N ]\D. We model the reward
function of user j for choosing road i as follows, where we
assume choosing road 0 denotes declining the service:

rj(ℓ,p, i) =⎧⎪⎨⎪⎩
−ωj1ℓi − ωj2pi if i ∈ D̄,

−∞ if i ∈ D,

−ζjℓ
w if i=0 (user j declines the service) ,

with the following nonnegative parameters: ℓ denotes the
vector of road latencies, p denotes prices, ωj =

[︁
ωj1 ωj2

]︁⊤
characterizes the users’ time/money tradeoff and ζj specifies
their willingness to use an alternative option with latency ℓw,
which could be walking, biking, or public transportation.

We do not assume users are simple reward maximizers.
Rather, we adopt the multinomial logit model [4] for the
probability with which users choose each option:

P (user j chooses route i) ∝ exp (rj(ℓ,p, i)) (11)

for all i ∈ [N ] ∪ {0}.
In order to determine the optimal pricing, we want to know

how many users will choose each route as a function of the
route prices and latencies. To this end, we define qi(ℓ,p) as
the expected fraction of autonomous service users that will
choose route i. If the parameter distribution for autonomous
service users is g(ω, ζ), then

qi(ℓ,p) =

∫︂ ∞

0

∫︂ ∞

0

∫︂ ∞

0

g(ω, ζ)P (i | ω, ζ)dω1dω2dζ .

where P (i | ω, ζ) is the probability that a user with reward
function parameters (ω, ζ) will choose road i. This expression
relate prices and latency to human choices, enabling us to
determine the prices that will maximize the social objective.
This will be important in constraining the optimization to only
consider latency/price options that correspond to the desired
vehicle flows.

B. Solution Method
Problem Formulation. We now formulate the problem where
we have an indirect control of the autonomous cars’ routing
through pricing, and the demand of autonomous service is
elastic. Because of this elasticity, we cannot just minimize the
average latency, which would result in extremely high prices
to keep autonomous service users off the network. Hence, we
consider an objective that is a combination of maximizing road
usage and minimizing average travel time.1 We parameterize
this tradeoff with parameter θ ≥ 0 in the cost function

J(f h,f a,s)=

∑︁
i∈[N ] (f

h
i +f a

i )ℓi(f
h
i , f

a
i , si)∑︁

i∈[N ] (f
h
i + f a

i )
−θ

∑︂
i∈[N ]

(f h
i+f

a
i ) .

Our control variables in this optimization are the latency on
each road and the price offered to the users for traveling on
each route. However, we cannot arbitrarily choose prices and
latencies – we need to respect
1) the characteristics of the roads, in terms of how the flow

demand for a road corresponds to the latency on that road
(Section II-A), and

2) how people make decisions, making sure that the number
of people who choose each option corresponds to the la-
tency of the roads described in the options (Section IV-A).

Moreover, we want to be fair; so we must offer the same
pricing and routing options to all autonomous service users.

Given q(ℓ,p), the cost function J(f h,f a, s), inelastic flow
demand of human drivers λh, and elastic demand of au-
tonomous users λa, we are ready to formulate the planning
optimization. The most straightforward way is to optimize
jointly over f h,f a, ℓ and p. However, ℓ is fully defined by
f h,f a and s. Hence, instead of ℓ, we use s, which will help
us solve this nonconvex optimization. The problem is then
formulated as:

min
f h,f a,p∈RN

≥0
,k∈[N ],sk:N∈{0,1}N−k+1

J(f h,f a, s) (12)

s.t.
∑︂
i∈[N ]

f h
i = λh (13)

f a
i = λaqi(ℓ(f

h,f a, s),p),∀i ∈ ([N ] \ [k]) ∪D (14)∑︂
i∈[k]\D

f a
i = λa

∑︂
i∈[k]\D

qi(ℓ(f
h,f a, s),p) (15)

ak ≤ ℓk(f
h
k, f

a
k, sk) ≤ ak+1 (16)

f h
i = 0,∀i ∈ [N ] \ [k] (17)

ℓi(f
h
i , f

a
i , 1) = ℓk(f

h
k, f

a
k, sk),∀i ∈ [k − 1] (18)

f h
i + f a

i ≤ F̄
(︁
f a
i /(f

a
i + f h

i )
)︁
,∀i ∈ [N ] (19)∑︂

i∈[N ]

(f a
i pi − f a

i dic) ≥ P̄ (20)

with s1:k−1 = 1 due to selfishness of human-driven vehicles.
Here, k is the longest road with human-driven vehicle flow, P̄
is the minimum profit per unit time for the autonomous service
provider and c is the constant fuel cost per unit length. We
can describe the constraints as follows.

1Some other works, e.g. [32], use the social welfare objective. While the
two objectives have many similarities, we cannot directly adopt it here as we
have heterogeneous users who have different price-latency valuations.



13) The human-driven vehicle flow demand is fulfilled.
14) Autonomous flow will be distributed into the roads in

([N ] \ [k]) ∪ D based on the choice model described in
the preceding section.

15) Total autonomous flow in [k] \ D will satisfy the user
choices, but can be distributed arbitrarily as the roads have
the same latency and price.

16) The “longest equilibrium road” has latency on the given
interval of free flow latency.

17) Human-driven cars are selfish, i.e. no human-driven car
will experience higher latency than the road k.

18) The congested roads have the same latency as the “longest
equilibrium road”.

19) The maximum capacities of the roads are respected.
20) The minimum profit per unit time is satisfied.

We can further improve the search space by relying on the
heuristic that the roads that are not used by the human-driven
vehicles will be in free-flow, i.e. sk+1:N = 0. While we do
not have a proof for the conditions that lead to this, we also
note constructing counterexamples seems to require extremely
careful design, which suggests the heuristic holds in general.
Furthermore, the following theorem shows we could also set
sk = 0 under an additional assumption.

Theorem 5. Assume ω2 > 0 for all users. Then there exists a
free-flow road k in the optimal solution to the problem such
that ℓi = ℓk for ∀i ∈ [k], and f h

i = 0 for ∀i ∈ [N ] \ [k] as
long as the optimization is feasible.

We defer the proof to the appendix.
Generalizations. We assumed all autonomous cars are con-
trolled by a centralized social planner. To extend our frame-
work to scenarios where this is not the case and the social
planner has the control over a fraction of autonomous cars, we
can simply do the following modifications: The optimization
will also be over f b ∈ RN

≥0, which will now represent the
autonomous flow that does not belong to the planner. Add
the corresponding constraint of (13) for f b

i . Similar to (17),
f b
i = 0 for i ∈ [N ] \ [k] due to selfishness. Also, replace f a’s

in (16), (18) and (19) with f a+f b with appropriate subscripts.
These simple modifications enable a more general use.
Solving the Optimization. After learning the distribution
g(ω, ζ) (described below), we first take M samples (ω̄, ζ̄) ∼
g(ω, ζ). Using these samples, we approximate the expected
fraction of autonomous users that will choose route i as:

qi(ℓ,p)
·
=

1

M

∑︂
ω̄,ζ̄

P (i | ω̄, ζ̄)

where ·
= denotes asymptotic equality as M → ∞.

We then locally solve the nonconvex planning optimization
using interior point algorithms [33] with 100 random initial
points for each run to get closer to global optimum.
Data-Efficient Learning of Human Reward Functions.
While the routes in a specific network can be fully modeled
with the physical properties and the speed limits, user’s
decision models (parameterized by (ω, ζ)) must be learned in
a data-driven way. The parameters might be different among
the users. While a business executive might prefer paying extra

to reach their company quickly, a graduate student may decide
to go to the lab a little later in order to save a few dollars.
Therefore, we have to learn personalized parameters ω and ζ.

We learn the parameters from users’ previous choices, which
is known as preference-based learning. If user j chooses
from a variety of options, the user’s choice gives us a noisy
estimate of which road i ∈ [N ]∪ {0} maximizes their reward
function rj(ℓ,p, i). We could start from either uniform priors
or priors informed by domain knowledge, then sample from
the distribution g(ω, ζ).

However, a major drawback of doing so is how quickly we
learn the user preferences. Preference-based learning suffers
from the small amount of information that each query carries.
For example, if we show 4 options to a user (including the
option to decline the service), then the maximum information
we can get from that query is only 2 bits. To tackle this
issue, previous works pose the query synthesis problem as an
optimization and maximize a measure of the expected change
in the learned distribution after the queries [6].

While those works focus on pairwise queries, in this case we
expect to pose several route options to the users and therefore
need more general query types. By using these general queries
which offer a variety of routes with varied latency and price,
we can consider various ways of using this learning framework
to learn the human preferences.

• We could do a user study on a few people to learn a good
prior distribution.

• We could use an exploration/exploitation strategy if we
are allowed to break the fairness constraint a few times
for some small portion of the users. This could be made
through user-specific promotions; for each user we may
either choose to use the learned model or to offer special
rates that would help us profile the user better.

• We could do an initial profiling study for each new user.

To implement any of these options, we formulate the
following active learning optimization. First, we discuss the
general preference-based learning framework. Given the data
from previous choices of user j, which we denote as Dj , we
formalize the probability of (ωj , ζj) being true parameters for
that user as follows:

P (ωj , ζj | Dj) ∝ P (ωj , ζj)
∏︂
m

P (Djm | ωj , ζj)

where Djm denotes the road user j chose in their mth choice
(with Djm = 0 meaning that the user declined the service and
preferred the alternative option). The relation is due to the as-
sumption that the users’ choices are conditionally independent
from each other given the reward function parameters.

The second term comes from the human choice model. For
the prior, we can use a uniform distribution over nonnegative
parameters. The prior may be crucial especially when we do
not have enough data for a new user. In such settings, we
incorporate domain knowledge to start with a better prior.

We then use this unnormalized P (ωj , ζj | Dj) to obtain
the samples of (ωj , ζj) using Metropolis-Hastings algorithm.
Doing this for each user, which can be easily parallelized, we
directly obtain the samples (ω̄, ζ̄) ∼ g(ω, ζ).



Next we formulate the active learning framework, which is
needed so that it will not take an excessive number of queries
to learn human preferences. For this, we want to maximize
the expectation of the difference between the prior and the
unnormalized posterior:

query∗
m = argmax

querym
EDjm

[︂
P (ωj , ζj |Dj1:m−1)−

P (ωj , ζj |Dj1:m−1)P (Djm|ωj , ζj ,Dj1:m−1)
]︂

= argmin
querym

EDjm

[︂
P (Djm|ωj , ζj ,Dj1:m−1)

]︂
As we will use the sampled (ωj , ζj) to compute the probabil-
ities of road choices, we can write the optimization as:

query∗
m

·
= argmin

querym
EDjm

⎡⎣ ∑︂
ω̄j ,ζ̄j

P (Djm|ω̄j , ζ̄j ,Dj1:m−1)

⎤⎦
where we have M samples denoted as (ω̄j , ζ̄j), and the term
1/M is canceled. Using the law of total probability,

P (Djm|Dj1:m−1)
·
=

1

M

∑︂
ω̄j ,ζ̄j

P (Djm|ω̄j , ζ̄j ,Dj1:m−1)

which leads to the following optimization for finding query∗
m:

argmin
querym

∑︂
Djm

P (Djm|Dj1:m−1)
∑︂
ω̄j ,ζ̄j

P (Djm|ω̄j , ζ̄j ,Dj1:m−1)

·
=argmin

querym

∑︂
Djm

⎛⎝ ∑︂
ω̄j ,ζ̄j

P (Djm|ω̄j , ζ̄j)

⎞⎠2

We can easily compute this objective value for any given
querym. This optimization is nonconvex due to the human
choice model. As in previous works, we assume local optima
is good enough [6]. We then use a Quasi-Newton method (L-
BFGS [34]) to find the local optima, and we repeat this for
1000 times starting from random initial points.

V. USER EXPERIMENTS

To validate our framework, we conducted different simulations
and a user study approved by Stanford University’s Research
Compliance Office.
Hypotheses. We test three hypotheses that together suggest
our framework successfully reduces traffic congestion through
pricing, after it learns the humans’ choice models:

H1: Our active learning algorithm can learn the autonomous
service user preferences in a data-efficient way.

H2: Our planning optimization reduces the overall latency
by creating flexible behavior through pricing.

H3: When used by humans, the overall framework works
well and is advantageous over inflexible algorithms.
Implementation Details. In the planning optimization, we
used the heuristic sk+1:N =0. We assumed the only alternative
for autonomous service users is walking. We set c=6×10−5

USD/meter, b= 1. We assumed the regular and autonomous
cars keep a 2-second and 1-second headway distance with the
leading car, respectively. The length of the cars is 5 meters,
and the minimum gap between two cars is 2 meters.

Experiments and Analyses. To validate H1, we simulated
5 autonomous service users with different preferences. We
tested our active learning framework by asking two sets of
200 queries, each of which consisted of 4 road options, similar
to Fig. 6, and a walking option. The queries were generated
actively in the first set and randomly in the second. After each
query, we recorded the sample (ω̄, ζ̄) which has the highest
likelihood as our estimates.

Fig. 4 shows how the estimates evolved within active learn-
ing setting for one of the users. All values are overestimated
initially. Intuitively, this is because getting noiseless responses
has higher likelihood in the beginning. As we query more,
accepting some of the responses as noisy maximizes the
likelihood. Therefore, the values start decreasing.
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Fig. 4: The errors of the reward function estimates are shown with varying
number of queries. ω1̂, ω2̂ and ζ̂ represent the estimates.

Another important observation is that the estimates of the
parameters increase and decrease together even in the early
iterations. This suggests we are able to learn the ratio between
the parameters, e.g. ω1/ω2 very quickly. To check this claim,
we used the following error metric:

ex,y = ∥x/y − x̂/ŷ∥1

where x, y ∈ {ω1, ω2, ζ} and x̂, ŷ represent the corresponding
estimates. Fig. 5 shows how this error decreases with increas-
ing number of queries. It also shows how active querying
enables data-efficient learning compared to the random query-
ing baseline. We are able to learn the relationship between
parameters even under 20 queries with active learning. All
these results strongly support H1.

Fig. 5: The error metric is averaged over 5 different reward functions.

The fact that we are able to learn the ratios implies we can
estimate which road the user is most likely to choose. We will
only be unsure about how noisy the user is if the parameter
estimates did not converge yet. Therefore, we can still use the
estimates for our planning optimization even when we have
small number of queries.

To validate H2, we use the road network from [30] and
the equilibria benchmarks we developed: NE, BNE and BFNE
with full flexibility. Here, we give the average latencies for the
4-road network from that study which we visualize in Fig. 6,



Fig. 6: The 4-road network from [30]. The roads are not to the scale and
ordered with respect to the free-flow latencies.

and where λh = 0.4, λa = 1.2 cars per second: (NE: 400.00
sec, BNE: 125.66 sec, BFNE (full flexibility): 102.85 sec).

We then assumed we perfectly learned the preferences of
the 5 simulated users. We ran the planning optimization with
P̄ = 0 and 3 different θ to show the trade-off. The results are
summarized in Table I.

TABLE I: Results of Routing Simulation
θ Avg. Latency (seconds) Flow (cars/second)
1 90.41 0.4412
20 97.03 1.2746
106 111.28 1.5964

It can be seen we can adjust the trade-off between average
latency and the served flow by tuning θ. Also, given the human
preferences, even when we served (almost) all of autonomous
demand, our framework outperforms BNE. This shows its
effectiveness on creating flexibility and supports H2.

For H3, we recruited 21 subjects (9 female, 12 male) with an
age range from 19 to 60. In the first phase of the experiment,
each participant was asked 40 actively synthesized queries (4
roads + 1 walking option). We then used their responses to
get the maximum likelihood sample (ω̄, ζ̄). Afterwards, we
designed 5 different road networks each with 4 different roads
and an additional route where people may choose to walk. The
5 different networks cover a range of different road lengths
from 1.8 kilometers to 78 kilometers. For each network, we
also set different θ, λh, λa, and P̄ . By assuming all autonomous
flow is in the service of these 21 subjects, or of the groups that
match with their preferences, we locally solved the planning
optimization to get the pricing scheme for each traffic network.
We refer to these results as anticipated values.

In the second phase of the user study, we presented the
route-price pairs and the walking option to the same 21
subjects. For each of the 5 networks, they picked the option
they would prefer. Using these responses, we allocated the
autonomous flow into the roads. However, it is technically
possible that more users select a road than its maximum flow.
To handle such cases, we assumed extra flow is transferred
to the roads with smaller latencies without making the users
pay more. If that is not feasible, extra flow is transferred to
the slower roads, without any discount. While these break
the fairness constraint, it rarely happens and affects only a
very small portion of the flow. After autonomous flows are
allocated, human driven cars selfishly chose their routes in a
way to minimize the overall average latency. We refer to the
results of this allocation as actual values.

Table II compares the anticipated and the actual values. We
report latencies in seconds, flows in cars per second, and profit
is a rate value with the unit USD per second. In order to show

how our framework incentivizes flexible behavior, we also
added other benchmarks: two where the same flow as actual
flow is routed (BNE1 and BFNE1) and two where all flow
demand is routed, i.e. no walking option (BNE2 and BFNE2).
While BNE and BFNE assume completely inelastic demand,
using them as benchmarks under both the actual flow and the
all flow demand gives us insights about the success of our
framework, because the allocation of vehicles under the actual
flow is comparable to the elastic demand case.

It can be seen that there is generally an alignment between
the anticipated and actual values. While the mismatch may
be further reduced by doing more queries or having more
users, the difference with BNE1 is significant. In all cases, our
framework achieved to incentivize flexibility, which yielded
lower average latencies compared to BNE1. Especially in Case
3 and Case 5, our framework approximately halved the average
latency compared to the best Nash equilibria. In fact, our
framework achieved a latency that is close to the lower bound
set by BFNE1. We visualize these in Fig. 7. Furthermore, our
framework successfully reduced flow demand when satisfying
the full demand under selfishness is impossible (Case 1).

Case 1 Case 2 Case 3 Case 4 Case 5
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Fig. 7: The comparison of the actual results and BNE1, both of which allocate
the same amount of flow.

One caveat is the small amount of actual flow in Case 1,
which also caused an important profit loss. This is because the
roads are relatively shorter, and most users preferred walking
over paying for an autonomous car. Our framework could not
predict this, because the learned reward functions failed to
accurately estimate the probabilities.

VI. CONCLUSION

In this work we address the efficiency of traffic networks with
mixed autonomy. We develop a method of pricing rides with
autonomous vehicles such that when a population chooses
from these route and price options, and the human drivers
choose the quickest routes available to them, the objective
of decreasing travel latency and increasing road usage is
achieved. To do so, we model how people choose between
different route options with varying prices and latencies.
Moreover, we develop a method for actively learning the
parameters that describe the preferences of a population of
users. We develop theoretical results which we use to gauge
the performance of our algorithm, and conduct a user study
showing that our method of parameterizing and actively learn-
ing the preferences of a human population is effective.

A wide horizon for further research remains. One could
relax the assumption that the reward functions are linear to
improve the prediction accuracy [35] and optimize for infor-
mation gain in the active learning scheme, which can yield
better data efficiency [36]. Another direction is to consider



TABLE II: Results of Real-User Experiments

Anticipated Actual Pricing Scheme BNE1 BFNE1 Full BNE2 BFNE2
Flow Av. Latency Profit Flow Av. Latency Profit Av. Latency Av. Latency Flow Av. Latency Av. Latency

Case 1 1.6622 338.10 11.11 1.0429 283.30 3.85 501.97 240.80 1.9000 Infeasible 421.45
Case 2 1.5592 510.97 4.50 1.5048 537.30 3.95 562.20 468.79 1.6000 562.20 474.35
Case 3 1.2677 921.06 4.59 1.3000 957.71 3.99 1756.89 941.81 1.3000 1756.89 941.81
Case 4 1.5538 2576.36 40.01 1.6000 2579.52 49.33 2720.00 2579.33 1.6000 2720.00 2579.33
Case 5 1.2383 2083.42 48.48 1.2048 2089.53 46.32 4194.26 2079.15 1.3000 4194.26 2183.56

For a fixed flow, BFNE serves as a lower bound on the latency. Achieving lower latency than BNE means we successfully incentivize flexible behavior.
an elastic demand for human drivers, as well as a variety of
nondriving options including walking, biking, or taking the
bus. In that case, ζ will have a multimodal distribution; we
then need to learn the mixture.

More broadly, one can look at more general network
topologies – if route pricing is computed only with local
information on each edge, pricing can make congestion worse
when users have different price sensitivities [37]. One can also
expand the model to include the role of information in decision
making, as well as biases such as risk aversion. Through
these future directions we can ensure the efficient operation
of transportation networks that include autonomous vehicles.
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VII. APPENDIX

Proof of Lemma 1. We begin by noting that for any given
network and feasible flow demand, a continuum of equilibria
exist which satisfy the flow demand, where different equilibria
have positive flow on different sets of roads. This fact stems
from the two regimes (free-flow and congested) that exist, as
well as the two different vehicle types. We note that for a con-
gested road, a lower density yields a higher vehicle flow and
lower latency. Accordingly, via the relationship with density,
the latency function decreases smoothly with an increase in the
flow of regular or autonomous cars. Note this does not mean
that transferring flow to a road in a dynamic setting decreases
its latency, rather that the function dictating the relationship
between latency and flow in the congested regime is smoothly
decreasing (in accordance with each quantity’s relationship
with the corresponding vehicle density).

With this in mind, we consider the continuum of equilibria
that exist. Consider a Nash Equilibrium with positive flow
on roads [m]. Assume road m is congested, as otherwise the
lemma would be satisfied with m′ = m. Roads [m− 1] must
be congested so as to have the same latency as road m, as it is
an equilibrium. We constructively find a different equilibrium
as follows. Consider another configuration serving the same
flow demand, where the flow on road m serves less flow
and roads [m − 1] serve more flow as follows. Note that in
each configuration serving the flow demand, vehicle flow is
conserved but vehicle density is not. Accordingly, road m has
higher latency (from higher density) and roads [m − 1] have
lower latency (from lower density). Since the flow-latency
relationship in (3) has latency as a monotonically decreasing
function with flow of each vehicle type, we can consider a new
configuration where each road in [m − 1] has equal latency
(which is less than the first equilibrium configuration) while
serving more flow. Accordingly, we can construct one of the
two following configurations.
1) the latencies on roads [m−1] are reduced to am, the free-

flow latency on road m, or
2) road m serves no flow and the latencies on roads [m− 1]

are greater than am.
In the first case, the lemma is satisfied with m′ = m. In
the second case, we can consider the same logic again, again
considering a new configuration with less flow on road m− 1
and more flow on roads [m − 2]. This continues until either
we achieve case 1 above or until we are reduced to a single
road. If that occurs, traffic can be routed in free-flow on that
road, since any feasible flow in the congested regime is less
than the maximum free-flow on a road.
Proof of Theorem 1. The definition of Nash Equilibrium and
the fact that latency on a road is always equal to or greater than
its free-flow latency together imply that at Nash Equilibrium, if
road m has positive flow then all roads with free flow latency
less than am have positive flow as well. These also imply that
if a road m in free-flow has positive flow, roads with greater
free-flow latency will have zero flow. Further, we use Lemma
1 to show that all routings in the set of BNE will have one
road in free-flow. Assume for the purposes of contradiction
that we have a routing in the set of BNE in which only roads

[m] have positive flow and all are congested, with equilibrium
latency ℓ̂0. The total cost is then ℓ̂0(λ

h +λa), where ℓ̂0 > am.
By Lemma 1, another routing exists in the set of NE which
uses roads [m′], where m′ ≤ m and road m′ is in free flow.
The cost of this equilibrium is am′(λh+λa) ≤ am(λh+λa) <
ℓ̂0(λ

h + λa) contradicting our premise.
So far we have proved the numbered claims. We prove

the remaining claim by contradiction. Assume there are two
routings in f , f ′ ∈ BNE(λh, λa) which have different free-
flow roads, m and m′ respectively. Assumption 1 implies
am ̸= am′ ; let am < am′ . Since all selfish users experience the
same latency, the total latency of routing f is (λh + λa)am <
(λh+λa)am′ , which is the total latency of routing f ′. However
by the definition of BNE, the total latency of the two routings
are equal, yielding a contradiction.
Proof of Theorem 2. The first property directly follows from
Theorem 1, as the regular vehicles have to be at a Nash
equilibrium due to selfishness. To prove the second property,
we note that for roads that have higher latencies than road
m∗

EQ, a Nash equilibrium is not necessary due to flexibility.
As ℓi(f h

i , f
a
i , si) is a non-increasing continuous function of f a

i

and decreasing for si = 1, roads that have higher latencies
than road m∗

EQ will always be in free-flow.
Now we assume some of the roads with indices greater than

m∗
EQ and less than m∗

ALL are in free-flow, but not at maximum
flow. Then we could simply transfer some flow from the road
m∗

ALL to those roads and have lower overall costs. This is a
contradiction, completing the proof for the third property.
Proof of Theorem 3. Since road mEQ, the longest equilibrium
road, is in free-flow by Theorem 1 and m∗

EQ is the minimum
feasible mEQ, our solution is restricted to the set of BNE. Ac-
cordingly, we can restrict our optimization to routing in which
the longest equilibrium road is in free-flow. This allows us to
write an optimization equivalent to checking the feasibility of
a routing with the desired congestion profile:

max
f h,f a∈RN

≥0

1

s.t.
∑︂

i∈[m∗
EQ]

f h
i = λh,

∑︂
i∈[m∗

EQ]

f a
i = λa

ℓi(f
h
i , f

a
i , 1) = am∗

EQ
∀i ∈ [m∗

EQ − 1]

f h
m∗

EQ
+ f a

m∗
EQ

≤ F̄m∗
EQ

(f h
m∗

EQ
, f a

m∗
EQ

)

The constraints can be shown to be affine in the decision
variables. As it is a linear program, it can be solved in O(N3)
time [31]. Finding m∗

EQ requires a search in O(N) time.
Proof of Theorem 5. We first prove, similar to Luce’s choice
axiom [38], changing the latency or the price of some roads
does not alter the autonomous flow ratio between the other
options, including the alternative option. For this, we look at
Eω,ζ

[︂
P (i1|ω,ζ,ℓ,p)
P (i2|ω,ζ,ℓ,p)

]︂
, where i2 is an undominated option, P (i |

ω, ζ, ℓ,p) is the probability of choosing option i ∈ [N ]∪ {0}
under the given reward parameters, latency and price. We note

P (i | ω, ζ, ℓ,p) =
exp(r(ℓ,p, i;ω, ζ))∑︁N

i′=0 exp(r(ℓ,p, i
′;ω, ζ))

, so

Eω,ζ

[︃
P (i1 | ω, ζ, ℓ,p)

P (i2 | ω, ζ, ℓ,p)

]︃
= Eω,ζ

[︃
exp(r(ℓ,p, i1;ω, ζ))

exp(r(ℓ,p, i2;ω, ζ))

]︃
.



As the reward of an option depends only on that option’s price
and latency, this proves the first statement above.

Equipped with this result, we now prove Theorem 5. As-
sume the optimal solution is such that all human-driven flow is
in congested roads. Let k be the index of the highest free-flow
latency road with nonzero human-driven flow. We first show
there exists an equally optimal solution with no dominated
roads in [k]. For this, we simply set the prices of roads [k]
such that they are all equal and the total autonomous demand
in [k] in the original and the new solution is the same. Since
the new solution has no dominated roads in [k], their new price
has to be at least as high as the undominated roads in [k] of
the original solution, which implies the profit constraint is still
satisfied. As the total demand served and the overall latency
values are the same between these two solutions by the first
statement above, the two solutions are equally good. In the
remaining of the proof, we refer to the new solution as the
“optimal solution” for clarity, and show there exists a better
solution, leading to a contradiction.

Denote the optimal solution with (ℓ∗,p∗,f h∗,f a∗), and its
dominated options with D∗, noting [k]∩D∗=∅. Let the ratio of
autonomous service users in road i to the autonomous service
users who decline the service be βi, i.e., βi =

f a∗
i

λa−
∑︁

i′∈[N] f
a∗
i′

.
Let k′ = argmaxi ai subject to i ≤ k and(︂∑︁
i′∈[k] f

h∗
i′ ,

∑︁
i′∈[k] f

a∗
i′

)︂
can be allocated into [k′] when

all roads in [k′] have latency equal to ak′ . Existence of such
a k′ is guaranteed by Lemma 1.

Using k′, we propose an alternative solution (ℓ′,p′,f h′,f a′):

ℓ′i =

⎧⎪⎨⎪⎩
ℓ∗i if i ∈ [N ] \ [k]
ai if i ∈ [k] \ [k′]
ak′ if i ∈ [k′]

,

p′i =

{︄
p∗i if i ∈ [N ] \ ([k] ∪D∗)

p∗i + ϵ if i ∈ [k] ∪D∗ .

where ϵ ≥ 0 is such that the ratio of autonomous service users
in [k′] to the autonomous service users who decline the service
in the alternative solution is equal to

∑︁
i∈[k] βi. Since ℓ′i < ℓ∗i

for ∀i ∈ [k′], ω2 > 0 for all users, and [k] ∩ D∗ = ∅, the
existence of such an ϵ is guaranteed.

By the first statement, we know the ratios (βi’s) in the
alternative solution will be equal to the optimal solution for
roads in [N ] \ ([k] ∪ D∗) as their latencies and prices are
the same. Similarly, roads in D∗ are also dominated in the
alternative solution, because no road has higher latency and
prices went up maximally (by ϵ) for those roads. This means
the ratios are equal between two solutions for all roads in
[N ] \ [k]. Noting roads in [k] \ [k′] are dominated in the
alternative solution, as they have the same price as the roads in
[k′] but higher latency, we write the total autonomous demand:

λa =

⎛⎝λa −
∑︂
i∈[N ]

f a′
i

⎞⎠ (1 + β1 + β2 + · · ·+ βN )

by the construction of ϵ. As the total autonomous demand is
the same between two solutions, we get λa −

∑︁
i∈[N ] f

a′
i =

λa −
∑︁

i∈[N ] f
a∗
i meaning the flow of users who decline the

service is the same. This implies f a′
i = f a∗

i for ∀i ∈ [N ]/[k],
and

∑︁
i∈[k] f

a′
i =

∑︁
i∈[k] f

a∗
i . As the selection of k′ ensures

there is enough room for selfish vehicles in [k′] in the
alternative solution, we have

∑︁
i∈[k′] f

h′
i =

∑︁
i∈[k] f

h∗
i .

Finally, the alternative solution satisfies the profit constraint
because the price and the autonomous flow in [N ]\ [k] are the
same as the optimal solution, and the remaining autonomous
flow pays higher price in the alternative solution.

Overall, the alternative solution is feasible, serves the
same amount of flow, but has lower latency overall,
(ℓ∗,p∗,f h∗,f a∗) cannot be the optimal solution.
Role of Assumption 1. Without this assumption, m∗

EQ in
Theorem 1 would instead represent a set of roads, all of which
would be in free-flow. Theorem 2 would change similarly to
Theorem 1. Theorem 3 is not altered, the constraint associated
with m∗

EQ would instead apply to all roads within the set.
Finally, Theorem 4 would remain the same as well. What
would potentially change this theorem is if the set of roads in
m∗

EQ could have different congestion levels in the computed
BFNE. To see why this is not the case, note that the flexibility
profile is with respect to the quickest route available to users
(i.e. the least congested road in the set m∗

EQ). Accordingly,
having another road in the set be more congested would not
help satisfy any constraint related to the flexibility profile and
would also not serve more flow than if it had the same latency
as the minimum latency road in m∗

EQ. Hence, all roads in m∗
EQ

will have the same latency, so the computational complexity
remains the same. Theorem 5 would still hold: there exists a
free-flow road used by human drivers in the optimal solution.
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