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Abstract—Due to the rapidly expanding complexity of the
cyber–physical power systems, the probability of a system mal-
functioning and failing is increasing. Most of the existing works
combining smart grid (SG) security and game theory fail to
replicate the adversarial events in the simulated environment
close to the real-life events. In this article, a repeated game
is formulated to mimic the real-life interactions between the
adversaries of the modern electric power system. The optimal
action strategies for different environment settings are analyzed.
The advantage of the repeated game is that the players can
generate actions independent of the previous actions’ history.
The solution of the game is designed based on the reinforcement
learning algorithm, which ensures the desired outcome in favor
of the players. The outcome in favor of a player means achieving
higher mixed strategy payoff compared to the other player.
Different from the existing game-theoretic approaches, both the
attacker and the defender participate actively in the game and
learn the sequence of actions applying to the power transmission
lines. In this game, we consider several factors (e.g., attack and
defense costs, allocated budgets, and the players’ strengths) that
could affect the outcome of the game. These considerations make
the game close to real-life events. To evaluate the game outcome,
both players’ utilities are compared, and they reflect how much
power is lost due to the attacks and how much power is saved
due to the defenses. The players’ favorable outcome is achieved
for different attack and defense strengths (probabilities). The
IEEE 39 bus system is used here as the test benchmark. Learned
attack and defense strategies are applied in a simulated power
system environment (PowerWorld) to illustrate the postattack
effects on the system.

Index Terms—Adversarial game, Markov decision process
(MDP), reinforcement learning (RL), repeated game, smart grid
(SG) security.

NOMENCLATURE

S Status of the transmission lines.
k Order of the contingency or attack.
t Attack timescale.
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SA Attacker’s target set. A predefined set of
power system transmission lines.

SD Defender’s target set. A predefined set of
power system transmission lines.

G Contraction mapping.
X Maximum time step.
H Value iteration operator.
N(SA) Size of the attacker’s target set.
N(SD) Size of the defender’s target set.
TLC Total loading capacity of the system (MW).
Cw Cost of not attacking.
Ca Cost of attacking

(consumed resource from the system).
Cm Cost of defending

(holds the same property as Ca).
BA Attacker’s allocated budget

(defined by a number of actions).
BD Defender’s allocated budget

(holds the same property as BD).
σ Attacker’s probability of attack or strength.
δ Defender’s strength

(the probability of defending).
UA Attacker’s mixed strategy payoff (contains the

mixed strategy payoffs for multiple repetitions).
UD Defender’s mixed strategy payoff

(holds the same property as the UA).
Ua Attacker’s immediate mixed strategy payoffs

in the repetitions.
Ud Defender’s immediate mixed strategy payoffs

in the repetitions.
Ci Immediate damage caused by the attack, the unit

is in MW.
Pa Total loss by the attack (MW).
ε Exploration rate.
γ Discount factor of long- or short-term reward.
F Total number of runs in the game.
Q Quality of the state s, associated with action a

and d .
T Transition function between the states.
Va(s′) Value at the next state s′ for the attacker.
Vd(s′) Value at the next state s′ for the defender.
Pr Probability of a state-action pair (s, a, d).
C Total number of times the state s is visited for the

specific action a, and d .
π Action selection probability.
� Repeated game function.
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R Reward assigned for action a and d .
Rep Repetition of a repeated game.
a Action taken by the attacker.
d Action taken by the defender.
Z Represents active status of a line l at time t .

I. INTRODUCTION

MACHINE learning methods are becoming popular
because of the increasing complexity of the critical

infrastructures and their exposure to the security threats.
Several machine learning (ML) algorithms are being used for
detecting events and anomalies, finding critical elements of
a power system, and implementing the interactions between
the adversaries in a power system. These ML algorithms
include classification and clustering methods, reinforcement
learning (RL) algorithms, artificial neural network, and so on
[1]–[3]. Securing the modern electric power grid is one of
the most challenging issues nowadays. The modern electric
power grid or the smart grid (SG) is an interconnected network
of a large number of heterogeneous devices. These complex
interconnections of SG possibly expose the whole network
to severe security threats. High integration of information
and communication technologies (cyber layer) with the SG
(physical layer) results in a complex and efficient cyber–
physical power system (CPPS) [4]–[8].
The interaction between the authority and its adversary

can be treated as a game. Game theory helps the power
system operators to understand the attackers’ motives and
moves, and thus they can strengthen the security of the CPPS.
Many research works are going on for improving the stabil-
ity, security, and resiliency of SG under different uncertain
conditions [9]–[16]. Different forms of games are formulated
in the CPPS. One-shot attack [17], multistage attack [18],
simultaneous attack [19], sequential attack [20], malicious
false data injection attack [21], and coordinated attack are
different types of attack schemes applied to the power grid.
Proper solutions to the SG security game are important for the
authorities to increase the protection and avoid the damages.
In recent literature, various neural networks structures, approx-
imate/adaptive dynamic programming, RL, and deep RL show
the potentials to solve such games and provide promising
learning and optimization performance [22]–[29].
Pourahmadi et al. [30] used a static game-theoretic solu-

tion concept to represent coalition formation game theory in
assessing the components’ criticality for a system’s overall
reliability. Wei et al. [31], Liao et al. [32], and Wang et al. [33]
implemented a stochastic two-player zero-sum game for power
grid protection against malicious attacker. Q-learning was
applied to find the optimal policies for the attacker. Ni and
Paul [18] studied a multistage game between the adver-
saries that used a unique utility function to find the optimal
attack sequences from the attacker’s perspective. In this work,
the defender’s action was passive and predefined throughout
the learning process of the attacker. Wang et al. [34] modeled
a strategic honeypot game for distributed denial-of-service
(DoS) attacks in the SG. They analyzed the interactions

between the attacker and the defender in the SG communica-
tion network. Farraj et al. [35] used an iterated/repeated game
(one-shot process) to analyze cyber-switching attacks and
mitigation in SG systems based on zero-determinant strategies.
Zhu et al. [36] and Yan et al. [37] used RL for sequential
attacks against power grid networks where only the attacker’s
action was considered. Ashok and Govindarasu [38] proposed
a single-stage game that was a zero-sum game in nature for
risk modeling and mitigation for the SG security. In this work,
the authors also mentioned the multistage repeated game and
Bayesian game as potential extensions of the work. From the
aforementioned works, the Markov decision processes (MDPs)
and game theories are increasingly used in the SG security to
conduct the interdisciplinary research of the ML and power
system. In CPPS security, very few articles have reported two
active players in the repeated games. This has been a challenge
in the SG to coordinate the actions of two active adversarial
players and map their actions to the actual power system states.
In addition, the existing games do not consider the costs of
actions, budgets, and strengths as the factors for the payoff
evaluation. The impact of the learned attack policies on the
power system has also been neglected but is very important
to the physical system.
Motivated by the above-mentioned studies, we propose a

repeated game between the active adversaries and use the RL-
based solution to overcome the existing limitation. The main
contributions of this article are summarized in the following.

1) We design an RL algorithm for the two-person repeated
game that helps to achieve the outcome in favor of the
players. The main advantage of using a repeated game
is that it does not require any additional information
except for what is shared between the players. Unlike
most of the existing studies, the repeated game conducts
multiple repetitions instead of a one-shot game and uses
individual utility functions to evaluate the payoffs. The
policies that result in favorable outcome to the players
are significantly important for proposing a protection
scheme and identifying the critical elements. Favorable
outcome means achieving higher payoff compared to
the other player. Both players participate actively in
the game and take action independently. They adopt a
sequential action scheme and learn the policies based on
the repeated game process. We also provide alternative
action choices for the adversaries for different attack and
defense strengths.

2) Realistic and crucial factors, such as costs, allocated
budgets, and strengths of the adversaries, have been
neglected in the existing literature. In our work, costs
are parameterized as a certain percentage of the total
capacity of the power system. Budgets are parameterized
as a number of limited actions. Strengths of the players
are parameterized as a value ranging from 0 to 1.
Then, these parameters are incorporated as constraints to
calculate the mixed strategy payoffs of the adversaries.

3) After analyzing the interactions and learning the poli-
cies, we illustrate the impact of the learned attacker’s
policies on the CPPS. Very few existing works reported
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TABLE I

DIFFERENT RL ALGORITHMS USED IN THE EXISTING MULTIAGENT RL
RELATED WORKS

the postattack effects (e.g., voltage, current, and power)
based on the learned policies from the adversarial game.
We simulate the learned attack policies in the Pow-
erWorld simulator. For the evaluation of the impact,
voltage violation is considered as the evaluation metric.
The results provide insight into the damage caused by
the attacks on the power system.

The rest of this article is organized as follows. Section II
explains the theoretical background of the repeated game
framework and detailed discussions about the threat and attack
model. Section III provides detailed discussions about the
algorithms and the overall picture of this work, Nash equi-
librium (NE) solution of this game, design parameters, and
the depiction of the mixed strategy payoffs. In Section IV,
the results from the simulation case studies are explained.
Section V, shows the effects of attacks in the power system.
Finally, Section VI concludes this article with discussions and
future works.

II. GAME FORMULATION AND THREAT AND ATTACK
MODELING

A. Background of Repeated Game

A repeated game refers to a situation where the same stage
game (strategic form game or one-shot game) is repeated
for some duration. These type of games are also called
“supergames.” In other words, a repeated game is a set of
multiple one-shot games. It is modeled to evaluate the logic
of long-term interactions between the players. The basic idea
of this game is that a player will take into account the effect
of his/her current behavior on the opponent players’ future
behavior. Any history, except what is shared between the
two players, can be disregarded. In CPPS, the adversaries
(the attacker and the defender) do not need to know the full
history of the opponent (limited access to the information),
so the game can still reach the optimality (NE) with limited
information about the opponent. Also, given the repetition of
the one-shot game, the environmental information is updated
from the previous repetition, so no information is missing
about the attacker–defender interactions from the previous
repetitions. In [39]–[43], repeated game was used in different
areas of study. The repeated game can be expressed as

�X
i = {

CX
m ,CX

i ,CX
a , Pa ,Ua,Ud

} ∈ {SA, SD}. (1)

Table I shows different RL algorithms used for solving dif-
ferent multiagent RL problems. From (1), we get the repeated
game function �X

i . The game model is adopted from [43].

The payoff matrix of the repeated game can be formulated as⎡
⎢⎢⎢⎢⎣

X∑
x=1

∑
i

(
Pa − Cx

a ,Ui − Cx
i

) X∑
x=1

∑
i

( −Ua,Ui − Cx
m

)
X∑

x=1

∑
i

(
Cx

w,Ui
) X∑

x=1

∑
i

(
Cx
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m

)

⎤
⎥⎥⎥⎥⎦ .

To solve the game from this payoff matrix, the attacker’s and
the defender’s mixed strategy payoffs can be derived as

UA =
X∑

x=1

∑
i

(
Pa−Cx

a

)
(1−δi)σi+(−Ua)δiσi+Cx

w(1−σi)

=
X∑

x=1

∑
i

(
Pa−Cx

a

)
(1− δi )σi−Uaδiσi (2)

and

UD =
X∑

x=1

∑
i

(
Ud − Cx

i

)
(1− δi )σi +Ui (1− δi )(1− σi )

+ (Ui − Cx
m)δi

(
1− σi

)
=

X∑
x=1

∑
i

Cx
i δiσi +Ud − Cx

mδi − Cx
i σi (3)

where δi and (1 − δi ) are the probabilities of defending and
not defending, and σi and (1 − σi ) are the probabilities of
attacking and not attacking. Cw is the cost of not attacking,
which is considered as zero for our research. The total loss
caused by the attacks is defined as

Pa =
X∑

x=1

∑
i

C X
i . (4)

B. Threat and Attack Model

The threat and attack model is adopted from [18]. Line
switching attack is used as the attack scheme. Transmission
lines are the commonly used targets for initiating attacks in the
critical infrastructures, such as an SG [49], [50]. Hackers/cyber
attackers may successfully gain access to the control center
of the U.S. power grid, from where they can manipulate any
control command (including circuit breaker and relay) or inject
false data to create massive damage. Transmission line index
is given as input for this model. The output of this model is
generation loss and cascaded line outages. The model executes
the line switching actions and considers cascaded failures
due to the overloading of the transmission lines. Based on
the switched transmission lines and the cascaded failures,
the generation loss and number of total line failures are
calculated. The generation loss is used in the measurement of
the utilities of the players. The simulation is initialized with
precontingency power flow, which ensures that the system is
n−1 secured. Then, the n− k contingency is applied (k is the
order of contingency) by switching k transmission line to out-
of-order status. This application of contingencies may result in
separating the grid into several islands. Then, the generators’
ramp rates are modified to balance the demand and supply.
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Fig. 1. Attacker–defender interaction in one repetition of a repeated game.

Next, the generation is compared to the load demand. If the
generation is higher than the demand, the generators in the
islands are tripped until the generation and the demand are bal-
anced. After this, if there is less generation than the demand,
the load is shed to balance the generation and demand. Then,
the standard dc power flow is applied and checked for the
overloads. If there are no overloads, the simulation is termi-
nated. For each transmission line, a time-delayed overcurrent
relay determines if an overcurrent tripped a transmission line.
In this research, we study the simulation-based impact of
attacks and disconnect transmission lines from the system.
Under these circumstances, the outcome of this research will
provide the following strategic benefits to the power system
operators: 1) establishing the necessity of enforcing additional
security measures such as remedial action scheme (islanding,
microgrid, and so on) for the vulnerable transmission lines and
2) protecting the components that can cause higher damage
than the other components.

III. PROPOSED ALGORITHM FOR THE ADVERSARIAL

REPEATED GAME

The interaction between the adversaries in the power system
in one repetition is shown in Fig. 1. The adversaries take their
actions from their associated target sets (SA and SD). Their
strengths (probabilities of attacking and defending), cost of
actions, and allocated budgets’ information are provided to
calculate their mixed strategy payoffs.
Fig. 1 visualizes the agent–environment interactions in the

RL framework. The attacker and the defender represent the
agents, and the power system represents the environment.
The mixed strategy payoffs are the evaluation feedback
from the environment. Based on this feedback, the reward is
assigned to the agents. The overall diagram of the gaming
process using learning theory is presented in Fig. 2 showing
the process of solving a bilevel problem. In the upper level,
the learning is helping to find a favorable outcome. In the
lower level, gaming is conducted between the adversaries. The
main idea is to use RL to learn the behavior of the adversaries
in order to achieve favorable outcome of the repeated game.

A. Proposed RL-Based Solution

We formulate the repeated game as a zero-sum game and
use Minimax-Q algorithm (an RL algorithm) to solve it. RL
is used to learn the optimal action strategies for favorable

outcomes. The quality of the state for this game is given by

Q(s, a, d) = R + γ
∑
s ′

T (s, a, d, s′)Va(s′) (5)

where γ ranges from 0 to 1. The value of γ close to 0 focuses
on short-term reward, and the value of γ close to 1 gives more
emphases on the long-term reward. T (s, a, d, s′) is considered
equal for all state transitions. The value of the state for the
attacker can be calculated by

Va(s
′) = max

π∈�
min
d

∑
a

Q(s′, a, d)π(a). (6)

Similarly, the value of the state for the defender can be given
by

Vd (s
′) = min

π∈�
max
a

∑
d

Q(s′, a, d)π(d). (7)

Since this is a zero-sum game with weak duality, V ∗
a (s′) =

V ∗
d (s′). In this game, the aim is to maximize the difference

between the players’ utilities, depending on the game’s desired
outcome. The problem in (6) can be solved using the similar
value iteration algorithm as that in [51], [52]

max
π

Va(s
′)

s.t.
∑
a∈SA

Q(s, a, d)π ≥ Va(s
′)

∑
a∈SA

π(a) = 1

π(a) ≥ 0 ∀a ∈ SA. (8)

The optimal policy is found by

π ′(s) = argmax
a

Qπ (s, a, d). (9)

The probabilities of the state-action pairs are updated follow-
ing the formula below:

Pr(s, a, d) = C(s, a, d)∑
a∈A,d∈D C(s, a, d)

. (10)

The attacker’s mixed strategy for a given state s will be

πA(s) = [Pr{a(s) = a1}, . . . ,Pr{a(s) = aN }] (11)

where
N∑
i=1

Pr{a(s) = ai } = 1 (12)

where Pr{a(s) = ai } is the probability of choosing attack
action ai in state s ∈ SA, and πA(s) represents the probability
distribution over the attacker’s action space associated with
the state s. Similarly, we can define the probability for the
defender as well.
Algorithm 1 gives the steps for a repeated game in one

run. The repetition continues until the resource expenditure
by the players exceeding the allocated budget or until there
are no targets available in the target set. In every repetition,
the adversaries interact and their associated utilities are cal-
culated. Their actions are recorded, and their probabilities are
updated in every repetition.
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Fig. 2. Overall block diagram of the RL-based solution of a repeated game in the CPPS security. The game showed in the lower block is repeated for
transiting from one steady state to the next steady state. At the end of repetition N , the game transits to the next run n = n + 1. The detailed interactions
between the adversaries in one repetition are explained in Fig. 1. The attacker’s target set, the defender’s target sets, and the power system environment are
updated from one repetition to another repetition. At the end of the repetitions, the history of the actions, payoffs, rewards, and so on from previous runs are
updated for the learning process.

Algorithm 1 Adversarial Repeated Game in CPPS Secu-
rity
Input : Test case, attacking probability, defending

probability, budgets of the players, costs of
attack and defense, attack and defense sets

1 Initialize the Q-table, action counter, policies for each
state-action pairs with uniform probability distribution;

2 for The given system, and maximum number of run do
3 Initialize the players’ resource spent;
4 for Maximum number of repetition and till the

players’ resource spent ≤ Budget do
5 Take actions from the agents’ associated sets based

on Minimax-Q algorithm from Algorithm 2;
6 Calculate the costs of actions using (18) ;
7 Update the resources spent from budget;
8 Calculate the utilities using (2) and (3);
9 Update the action sets from (14);
10 if There are available resources for the attacker

and the defender then
11 Go to next repetition;
12 else
13 Exit the repetition loop and go to next run;
14 end
15 end
16 end
Output: The optimal actions with their associated

probabilities.

Algorithm 2 represents the Q-learning algorithm that is
used to solve the repeated game. This Q-learning algorithm
is learning the behavior of the players from their actions
on the top layer of the gaming framework. In the bottom
layer, the repeated game is a multistage game. Algorithm 2
is initialized with the players’ target sets as the input. The
expected outputs of this algorithm are the optimal action
sequences for the players along with their probabilities. Then,
according to the exploration probability, actions are executed
by the players either randomly or following the policy.
With the execution of the actions, a transmission line is

switched to out of service and another transmission line is

Algorithm 2 Minimax-Q for Repeated Game
Input : Attack and defense action sets

1 for Maximum number of run do
2 Initialize the attacker’s and the defender’s state;
3 for Maximum number of repetitions do
4 if Prob > ε then
5 Take a random action from the available actions

in the sets for both players;
6 else
7 Take an attack action using (6);
8 Take a defense action using (7);
9 end
10 Execute the action using (15);
11 Update action counter, C = C + 1 and associated

probabilities using (10);
12 Calculate the utilities;
13 Assign the reward based on (16);
14 Update the Q-value using (5);
15 end
16 end
Output: Output the optimal action policies for the

attacker and the defender with their associated
probabilities.

defended from being attacked. After execution of the actions,
the utilities for the players are calculated, and their associated
Q values are updated. The probabilities for the associated
state-action pair are also updated. This process is continued
for the maximum number of runs.

B. Design Parameters

Design parameters of this repeated game solution based on
RL between the adversaries in the electric power grid are
explained briefly in this section.
1) Attack and Defense Sets as the Input of the Threat and

Attack Model: The attack and defense sets are the collection
of targets for the attacker and the defender. Since we use
line switching attack (explained in Section II-B), transmission
lines are considered as the target elements for attacking and
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defending. Every repetition of the game is considered as the
states of the game and represented by S and

S = {Rep1,Rep2, . . . ,RepN } (13)

where RepN is the repetition and N is the number of total
repetitions. The attacker and the defender action spaces are
represented by SA and SD

SA = {a1, a2, . . . , aN }
SD = {d1, d2, . . . , dN } (14)

where aN and dN are the attack and the defense actions in
the N th repetition, respectively. These actions are used as the
input to the threat and attack model to quantify loss or damage
described in Section II-B.
2) Reward: After each attack and defense action, rewards

are assigned by evaluating the feedback of the actions from
the environment. RA(s, a, d) represents the attacker’s expected
reward associated with the state s ∈ S and attack and
defense actions a ∈ SA and d ∈ SD , respectively. Similarly,
RD(s, a, d) represents the defender’s expected reward. The
reward is designed based on the requirement. The reward is
assigned based on the mixed strategy payoffs of the play-
ers. The calculation of the mixed strategy payoffs requires
generation loss, which is one of the outcomes of the threat
and attack model. The states of this game are presented as
a combination of the elements of the target sets. Whenever,
an attack or defense action is triggered, the index of that
transmission line in the target set switches to zero. The line
status in a target set can be represented by st (l)

st (l) =
{
Z , if line l is in-service at time t

0, if line l is out-of-service at time t
(15)

where Z represents the transmission line number. In this zero-
sum game, the reward is assigned opposite to each other. Thus,
if the attacker’s and the defender’s mixed strategy payoffs
are UA and UD , then the reward is assigned following the
conditions given below. When the desired outcome of the game
is in favor of the attacker

RA(s, a, d) =
{

+1, if UA > UD

0, otherwise
(16)

and

RD(s, a, d) =
{

−1, if UA > UD

0, otherwise.
(17)

When the game is conducted expecting the outcome in favor
of the defender, the reward assignment is just in the opposite
way of (16) and (17).
3) Allocated Budget and the Costs: The allocated budgets

for the attacker and the defender in this game are defined by
BA and BD. The budget is the amount of resource that limits
the action space for the players. To the best of our knowledge,
there is no generic way to define the cost of actions and
total budget. The total budget also depends on the attackers’
available resources and how much access the attacker gained
to the system control. In addition, if the system security is
weaker, the attacker will have a higher budget and lower

cost of actions. In some cases, the cost can be monetized;
in some cases, the cost can be considered in terms of the
generation power absorbed from the system. In this game,
we considered a limited number of actions according to the
allocated budget for the players. For demonstration purposes,
we consider that the attacker and the defender cannot take
more than three actions. Cost is the amount of resource that the
players consume while executing the actions. For simplicity,
we consider the cost of the attack and defense action as a
certain percentage of the total loading capacity of the system.
In this game, the costs of attack and defense actions are defined
by Ca and Cm , respectively

Ca = 0.1× TLC

Cm = 0.1× TLC (18)

where TLC represents the total loading capacity of the system.
The attacking and defending probabilities σ and δ represent
the strengths of the attacker and the defender and are used to
calculate the mixed strategy payoffs of the players.

C. Depicting the Attacker’s and the Defender’s Mixed
Strategy Payoffs and NE

NE is one of the central concepts in game theory and
economics. With the NE point, each agent’s policy is the best
policy against other agent’s policy. In NE, we compare the
attacker’s mixed strategy payoffs with the defender’s mixed
strategy payoffs. These payoffs represent how much power
is saved due to the defense actions and how much power is
lost due to the attack actions. Due to the rewarding condition
RD(a, d, s) = −RA(a, d, s), the proposed repeated game is
a zero-sum game [53]. To solve a two-player stochastic game
in the normal form, one popular solution is the closed-loop
NE. Nash’s theorem guarantees that the NE exists for static
games. However, for stochastic games, the possible number
of strategies is infinite [31], [51], [54]. Reference [55] shows
that the optimal defense strategy can be achieved by adopting a
game-theoretic actor–critic neural network for optimal defense
and worst attack policy. There might be multiple optimal
strategies for the repeated games in the case of the finite-time
horizon. While the attacker converges to its optimal action
policies maximizing its payoffs, the defender converges to its
optimal policies minimizing its payoffs.
For an RL-based solution of a repeated game, the existence

of the NE can be confirmed through the decision making
process over time. Players in the repeated game play repeat-
edly, following the gaming rules, until the end. In this type
of game, both players reach the NE point (converges to
optimal policy). As mentioned in [18], for a multistage game,
Q-learning is one of the ideal ways to find the player’s optimal
policy. In this repeated game, the optimal strategies (outcomes
of the game) are in favor of the players. Based on the success
of the game objective, the rewarding policy maximizes the dis-
counted sum of the future reward. Thus, based on the desired
outcome, the attacker’s action or the defender’s action helps
the game to converge to NE policies. Hence, the convergence
analysis of this repeated game will ensure the findings of the
NE point. The convergence of Q-learning (Minimax) algorithm
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follows by relating the convergence proof described in [53],
[56]–[58].
Derived from the general Bellman equation for Q-learning,

we get the following Q equation by substituting α = 1,
the learning parameter:

Q(s, a, d) = [R(s, a, d) + γ V ∗(s′)]. (19)

We use x as the time step where, x = 1, 2, 3, . . . , X and X
is the maximum time step (repetition). The rewritten Bellman
equation converges to the optimal Q∗(s, a, d) values if the
system has a finite state and action space and the following.

1)
∑X

x=0 α(s, a, d) < ∞ and
∑X

x=0 α2(s, a, d) < ∞
uniformly with probability 1.

2) Var{R(s, a, d)} is bounded.
3) If γ = 1, all policies lead to a cost-free terminal state

with probability 1.

By subtracting Q∗(s, a, d) from both sides of (19) and define
G(s, a, d) = Q(s, a, d) − Q∗(s, a, d) together with

G(s, a, d) = R(s, a, d) + γ V ∗(s′) − Q∗(s, a, d) (20)

where V ∗(s′) is the value of the next state s′ and the agent’s
Q value is optimized based on the game’s desired outcome.
G(s, a, d) is a contraction mapping with respect to some
max–min norm that perfectly fits for the Minimax Q-learning
algorithm. This is done by

max
a∈A mind∈D |G(s, a, d)|

= γ max
a∈A mind∈D |

∑
s ′∈S

[V (s′) − V ∗(s′)]|

≤ γ max
a∈A mind∈D

∑
s ′∈S

max |Q(s′, a′, d ′) − Q∗(s′, a′, d ′)|

= γ max
a∈A mind∈D

∑
s ′∈S

V	

= H (V	) (21)

where H is the value iteration operator (the cost associated
with each state is zero). If γ < 1, the contraction property
of H and, thus, G can be seen directly from the above-
mentioned formulas. When the future costs are not discounted
(γ = 1) but the chain is absorbing and all policies lead
to the terminal state with probability 1, there still exists a
weighted max–min norm. H is a contraction mapping [59]
with respect to this norm. G(s, a, d) depends on Q(s, a, d)
at most linearly. Thus, the variance of G(s, a, d) is within
the bounds of theorem [53], [56]–[58], and the variance of
R(s, a, d) is bounded. The contraction mapping of G(s, a, d)
is maximizing |Q(s′, a′, d ′) − Q∗(s′, a′, d ′)| due to the attack
action a. Thus, the converged optimal Q∗(s, a, d) is the
solution for game, while the objective is to find the optimal
action strategies in favor of the attacker. Similarly, we can
prove the convergence to the optimal strategies, while the game
is conducted in favor of the defender. The contraction mapping
for the game where the outcome is desired to be in favor of
the defender can be represented as

min
a∈A maxd∈D |G(s, a, d)| = H (V	). (22)

Fig. 3. Simulation loops are explained in this figure. The simulation contains
repetitions, runs, and round loops.

Here, the contraction mapping of G(s, a, d) will maximize
|Q(s′, a′, d ′) − Q∗(s′, a′, d ′)| due to the defense action d .
Hence, the convergence of the players to their optimal action
policies (or NE point) for the repeated game is analyzed.

IV. SIMULATION RESULTS’ ANALYSIS

The simulation is conducted using MATLAB R2018a on a
standard PC with an Intel i7-6700 CPU running at 3.40 GHz
and 24-GB RAM. There are three loops in the simulation:
rounds, runs, and repetitions. Fig. 3 shows the implementation
loops for the learning and gaming for this adversary game.
The repetition loop ends when the allocated budget is fully
consumed by the players. The run loop is the main loop
where the players (the attackers and the defenders) and the
environment (power system) interact to converge to the optimal
policies. As the number of runs increases, the players tend
to learn the optimal policies. At the end of the run loop,
the players reach the NE point. The run loop is repeated
in several rounds in the round loop to get different optimal
policies. The number of repetitions also represents the number
of actions that the attacker and the defender take. The number
of runs represents the number of trials required in the learning
process. A Q-table is required in the learning process that
uses the Q-learning algorithm. Q-table is defined with the
attacker’s and the defender’s state-action pairs, action counters,
probabilities, and Q values. The discount factor γ is applicable
for both of the players’ learning procedures. Thus, both players
decide the value of γ . The attacker and the defender are
allowed to take only one action in a repetition.
The outcome of this repeated game, solved by RL, is ana-

lyzed mainly from two different perspectives. First, we analyze
the outcome from the game-theoretic viewpoint where the
attacker’s and the defender’s utilities are compared. Next,
we analyze the postattack effects in the simulated power
system. In this section, we analyze the outcome of the game
from the game-theoretic viewpoint. We conduct different case
studies under different conditions to find out the favorable
outcome for the attacker and the defender.
Fig. 4 shows the case studies and the conditions associated

with the repeated game solution using RL. The aim of these
case studies is to analyze the behavior of the agents and
learn the strategies for different settings of the game (such as
in attacker’s favor and defender’s favor). These case studies
provide optimal strategies of the players (including alternative
action choices) in different game settings. Branches in the
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Fig. 4. Case studies for the solution of the repeated game using RL on the
IEEE 39 bus system. Basically, we solve for the attackers’ and the defenders’
favorable outcome for their different strengths.

TABLE II

VALUE OF THE PARAMETERS USED IN THIS RESEARCH

left-hand side under the case studies are the conditions, where
the outcome of the game is in favor of the attacker (UA > UD).
Branches in the right-hand side are the conditions, where the
outcome of the game is in favor of the defender (UA < UD). δi
and σi represent the probabilities (strength) of defending and
attacking, respectively. For different attacking and defending
strengths, the game simulation is conducted.
UA and UD represents the attacker’s and the defender’s

utilities, respectively. During the gaming, the adversarial game
will terminate when one of the players wins. In order to reach
this decision, either the attacker has to win (UA > UD) or the
defender has to win (UA < UD). If UA = UD , the players
will go to the next gaming stage by taking more action. If all
the resources are used, then the game will be a draw and
the players will have less valuable information to learn from
that game. Table II shows some general settings regarding the
game, which are commonly used in different case studies.
There are ten independent rounds conducted for the game
simulation, and each round consists 5000 runs. The initial
exploration probability is set to 0.8. It gradually drops to a
very small and positive final value ε f until the end. A very
small and positive value of ε f ensures the convergence to the
optimal policy and still avoids the local optimal point.
Table III is showing the attacker’s and the defender’s action

sets. These action sets are containing ten different transmission

TABLE III

ATTACKER’S AND DEFENDER’S TARGET SETS CONTAINING THE TRANS-
MISSION LINES FROM THE IEEE 39 BRANCH SYSTEM. EACH OF THE

TARGET SETS HAS TEN TRANSMISSION LINES

TABLE IV

ATTACK AND DEFENSE ACTIONS WITH THEIR ASSOCIATED PROBABILI-
TIES AND Q VALUE

Fig. 5. Probability update for the optimal actions throughout the 5000 runs.

lines that are selected randomly. Targets are selected from
these target sets according to the budget.
Next, we analyze the outcomes of this game in different

conditions for the attacker’s and the defender’s favorable
outcomes.
1) Case I (UA > UD): In this section, we conduct the game

to find the outcome in favor of the attacker. Three different
conditions are applied to evaluate the attacker’s and defender’s
strengths.

δi < σi : In this condition, the game is solved in favor of the
attacker, and the attacker has higher probability of attacking
(higher strength) than the defender. Table IV is showing the
optimal actions for the attacker and the defender with their
associated probabilities, and Q values. The initial actions (at
time step 1) for the attacker and the defender are the attacking
transmission line 43 and the defending transmission line 36.
These actions have the highest probability (0.92) of being
selected among the other available actions. The updating of
the probabilities of the optimal actions throughout the 5000
runs is shown in Fig. 5. The oscillations inside the green dotted
box show the probability update during the random actions’
selection.
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TABLE V

PROBABILITIES OF ALL THE POSSIBLE ACTIONS FOR SELECTING THE
SECOND ACTIONS

TABLE VI

OPTIMAL ACTION SEQUENCES FOR THE PLAYERS WITH THEIR PROBA-
BILITIES AND Q VALUES. THESE OUTCOMES ARE IN FAVOR OF THE
DEFENDER, AND THE ATTACKER HAS HIGHER STRENGTH (PROB-
ABILITY OF 0.8) THAN THE DEFENDER (PROBABILITY OF 0.2)

Table V shows the probabilities of all the possible actions
for the second action selection. These probabilities help
the players to select their actions. Actions 26 and 21 have
the highest probability of 0.94. In any case, if the actions
with the highest probability are inaccessible or not available,
the actions with the second-highest probability will be selected
by the players. In this case, actions 20 and 46 will be selected
as the action by the attacker and the defender, respectively.
Similarly, the optimal attack action sequences can be found

for δi > σi and δi = σi along with their associated
probabilities.
2) Case II (UA < UD): Similar to Case I, we conduct

the game with different attacker’s and defender’s strengths.
However, in this case, we define the conditions in a way
that all the outcomes or policies go in favor of the defender.
After conducting the game for the aforementioned scenarios,
we found different attack and defense action policies with their
associated probabilities.

δi > σi : In this section, we find the optimal action
sequences in favor of the defender. Here, the defender has
higher strength than the attacker. Table VI shows the optimal
actions in favor of the defender where the defender has the
higher strength (probability of 0.8) than the attacker (prob-
ability of 0.2). The first column is providing the time steps
of the attack and the defense actions. The second and third
columns are providing the actions for the attacker and the
defender (associated with that time step). The fourth column
is providing the probabilities of these actions to be selected
among all the possible actions. The fifth column is showing
the Q values associated with those actions.

Fig. 6. Simulation is conducted for 5 s. Starting from t = 0, the first attack
on line 43 is triggered at 1 s. Next, lines 26, 20, 5, and 13 are triggered at
1.5, 2, 2.5, and 3 s.

Fig. 7. (a) Per unit voltages (magnitudes) at the violated generators
(generators 2 and 3) during the attack. (b) Per unit voltages (magnitudes)
at the vulnerable generators during the attack.

Similarly, we can find the optimal action sequences in favor
of the defender with δi < σi and δi = σi along with their
associated probabilities. These optimal action sequences will
be the defender’s best action choices when the defending
strength is less than the attacking strengths and both the
attacking and defending strengths are equal, respectively.

V. ANALYSIS OF IMPACT ON THE POWER SYSTEM

The impact analysis on the power system validates the
damage caused by the learned attack actions. Upon validation,
the power system operators can take additional measures (such
as forced islanding, utilizing microgrid, and distributed energy
resources) to protect the vulnerable components and continue
providing quality electrical energy. In addition, the impact
analysis also reveals some critical components (such as bus,
generators, and transmission lines) that are vulnerable to
failure due to the attacks. Power system operators should
pay more attention to these vulnerable components to reduce
the damages. In this section, we further analyze the impacts
of attacks through a power system simulator. The impacts
are analyzed for the first case and the first condition, where
UA > UD and δi < σi . The attack in the power system can
be illustrated in a timescale in Fig. 6.
For simulation purpose, we assume that the attacks are

conducted with a time gap of 0.5 s. The simulation starts with
the normal operating condition, where no transmission line is
attacked at t = 0 s. After initiating all the transmission line
switching attacks, the simulation ends at t = 5 s. To assess the
disturbances in the system caused by the attacks, we consider
the voltage violation of the system elements. There are some
defined limits for the voltage violation used in the existing
research works [60]–[63]. In our case, we consider the limit of
voltage violation is from 0.9 to 1.1 V·p.u. The per unit voltages
at the violated generators 2 and 3 are shown in Fig. 7(a).
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Fig. 8. (a) Some violated bus voltages (p.u.) during the attack. (b) Generation
and load losses for the whole system during the attack.

Fig. 9. (a) Power flow (MW) at the target transmission lines. (b) Current
flow at the target transmission lines.

From Fig. 7(a), we can see that these generator voltages
drop below the lower limit (0.9). Thus, these generators violate
the voltage (p.u.) limits. Fig. 7(b) shows the generator voltages
(p.u.) of the generator at bus 37 and bus 38. These bus voltages
are close to the upper limit of the generator voltages (1.1 p.u.).
These generators are vulnerable to violation because any minor
changes in the load or other minor disturbances can shoot these
generator voltages above the higher limit.
Fig. 8(a) shows the voltages (p.u.) of buses 4, 5, 7, 15, and

32. We can see that these voltages drop below the minimum
limit after the attack at 2.5 s. Fig. 8(b) shows the generation
and load losses during the attack.
Fig. 9(a) shows the power flow (MW) through the target

transmission lines. The line flows drop to zero when they are
attacked. Fig. 9(b) shows the current flow (A) through the
target transmission lines. The current flow drops to zero when
they are attacked.

VI. CONCLUSION

This article proposes a novel and effective solution for the
two-person zero-sum repeated game between the adversaries
in the CPPS security based on the RL algorithm. The learned
attacker’s and defender’s optimal strategies give significant
information about the critical transmission lines of a CPPS.
Case I finds the optimal action sequences for both the players
in favor of the attacker for different players’ strengths. Case II
provides the optimal action sequences for both the players in
favor of the defender for different strengths. These case studies
also provide alternative action choices with their probabilities
for other possible actions. In addition, we illustrate the impact

of the attack on the simulated physical system and identify the
generators and buses that suffer from voltage violation from
the attack. From these case studies, we suggest the optimal
action choices to resolve the game in the attacker’s favor or in
the defender’s favor regardless of their strengths. These action
sets will help the authorities to defend the transmission
lines more effectively and efficiently. Moreover, the defense
actions are executed against the individual attack actions,
which reduces the resource consumption of the defensive
action schemes. In this article, we also identify the vulnerable
elements of a CPPS in an adversarial environment by applying
repeated game theory and Q-learning. The game formula-
tion requires multiple agents, an interacting environment, and
action evaluation and termination criteria. The RL algorithm
requires information regarding the agent’s resources, actions,
and states of the environment. Given necessary information
of the agents and the environment for gaming and learning,
it is possible to extend the proposed approach for the general
cyber–physical systems.
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