
The integral cohomology of the Hilbert scheme of two

points
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For a complex manifold X and a natural number a, the Hilbert scheme X [a] (also
called the Douady space) is the space of 0-dimensional subschemes of degree a in X.
It is a compactification of the configuration space B(X, a) of a-element subsets of
X. The Hilbert scheme is smooth if and only if X has dimension at most 2 or a ≤ 3
[3, equation (0.2.1)]. The integral cohomology of the Hilbert scheme is more subtle
than the rational cohomology. Markman computed the integral cohomology of the
Hilbert schemes X [a] for X of dimension 2 with effective anticanonical divisor [10].
In this paper, we compute the mod 2 cohomology of X [2] for any complex manifold
X, and the integral cohomology of X [2] when X has torsion-free cohomology.

In one way, things are unexpectedly good: the Hilbert scheme X [2] has torsion-
free cohomology if X does (Theorem 2.2). On the other hand, the details are
intricate, and it was not clear that complete answers would be possible. The be-
havior of the inclusion of the exceptional divisor EX into X [2] is related to the
Steenrod operations on the mod 2 cohomology of X (Theorem 2.1). To explain one
difficulty: some cohomology classes on X [2] can be defined as the classes of Y [2] in
X [2] for complex submanifolds Y of X, which we study in Lemma 6.1. But because
the Hilbert scheme is only defined for complex manifolds, it is harder to construct
“interesting” classes on X [2] associated to arbitrary cohomology classes on X, for
example to odd-degree cohomology classes.

Why look at two points? Configurations of two points come up naturally in
geometry, but one especially relevant use of the Hilbert scheme X [2] is in Voisin’s
paper on the universal CH0 group of cubic hypersurfaces [22]. The background is
that major recent advances have been made in determining which algebraic varieties
are stably rational, that is, become birational to projective space after multiplying
by projective space of some dimension [21, 5, 19]. These papers are based on the
observation that if a smooth projective variety is stably rational, then its Chow
group of 0-cycles is universally trivial, meaning that CH0 does not increase when
the base field is increased.

The Chow group CH0 ⊗ Q is universally trivial for all rationally connected
varieties, and so proving that varieties of interest are not stably rational requires
looking at torsion in the Chow group, with the best results coming from 2-torsion.
As a result, Voisin’s work on cubics X uses information on the integral or mod 2
cohomology of the Hilbert scheme X [2], including results from this paper [22, proof
of Proposition 2.6]. A typical application is that smooth cubic 3-folds in CP4 have
CH0 universally trivial for at least a countable union of codimension-3 subvarieties
in the moduli space of cubics [22, Theorem 1.5]. (Smooth cubic 3-folds are all
non-rational by Clemens and Griffiths [4], but it is wide open whether all, or some,
smooth cubic 3-folds are stably rational.)

1



Since the Hilbert cube X [3] of a complex manifold X is again a complex mani-
fold, it is natural to ask whether the results of this paper extend to that case. In
particular, does X [3] have torsion-free cohomology if X does? The explicit geometric
description of X [3] by Shen and Vial should help [16, section 4].

I thank Claire Voisin and the referee for their valuable suggestions. This work
was supported by The Ambrose Monell Foundation and Friends, via the Institute
for Advanced Study, and by NSF grant DMS-1303105.

1 Torsion-free cohomology in even degrees

Here we give a short proof that the Hilbert scheme X [2] of a compact complex
manifold has torsion-free cohomology if the cohomology of X is torsion-free and
concentrated in even degrees. We show this without the restriction to even degrees
and without assuming compactness in Theorem 2.2, but that proof is considerably
harder.

Theorem 1.1. Let X be a compact complex manifold whose integral cohomology is
torsion-free and concentrated in even degrees. Then the cohomology of the Hilbert
scheme X [2] is also torsion-free and concentrated in even degrees.

Proof. Nakaoka and Milgram computed the integral homology of the symmetric
product SaX, the quotient of Xa by the symmetric group Sa, for any finite CW-
complex X and any natural number a [13]. We now state their result on S2X when
the homology of X is torsion-free; Theorem 4.1 will give their computation of the
mod 2 homology of S2X for any X. For an element u in HjX, we write |u| for the
dimension j, and likewise for a cohomology class.

Theorem 1.2. Let X be a finite CW-complex such that H∗(X,Z) is torsion-free.
Let u0, . . . , us be a basis for H∗(X,Z) as a free graded abelian group. Then H∗(S

2X,Z)
is the direct sum of one copy of Z in dimension |ui| + |uj | for each 0 ≤ i ≤ j ≤ s
except when i = j and |ui| is odd, together with one copy of Z/2 in degrees

|ui|+ 2, |ui|+ 4, . . . , 2|ui| − 2

for each i with |ui| even and greater than 0, and one copy of Z/2 in degrees

|ui|+ 2, |ui|+ 4, . . . , 2|ui| − 1

for each i with |ui| odd.

Let X be a compact complex manifold whose integral cohomology is torsion-free
and concentrated in even degrees. The universal coefficient theorem implies the
same statement for the integral homology of X [9, Theorem 3.2]. Then Theorem
1.2 gives that H∗(S

2X,Z) is also concentrated in even degrees, although it may
have torsion.

A point of the Hilbert scheme X [2] represents either an unordered pair of distinct
points in X or a point x in X together with a complex line in the tangent space
TxX. As a result, the Hilbert scheme X [2] is related to the symmetric square S2X
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by a blow-up square:

EX
→→

↓↓

X [2]

↓↓

X →→ S2X.

Here X → S2X is the diagonal inclusion. For a (real or complex) vector bundle V ,
we use Grothendieck’s convention that P (V ) means the (real or complex) projective
bundle of hyperplanes in V , and O(1) means the quotient line bundle on P (V ).
Then the exceptional divisor EX is the complex projective bundle P (T ∗X) of lines
in the tangent bundle TX. (To say that this is a blow-up square means that it
is a cartesian diagram with X → S2X a closed embedding, X [2] → S2X a proper
morphism, and X [2] − EX → S2X −X an isomorphism.)

The blow-up square gives a long exact sequence of integral homology groups:

HiEX → HiX ⊕HiX
[2] → HiS

2X → Hi−1EX .

(This follows by showing that a blow-up square is a homotopy pushout diagram, and
applying the Mayer-Vietoris sequence [11, Lemma, p. 78].) We know that H∗(X,Z)
and H∗(S

2X,Z) are concentrated in even degrees. Since EX is the projectivization
of a complex vector bundle overX, its homology is also concentrated in even degrees.
So the long exact sequence gives that H∗(X

[2],Z) is concentrated in even degrees.
We also want to show that the integral homology of X [2] is torsion-free. Let

n be the complex dimension of X. Because X [2] is a closed oriented real mani-
fold of dimension 4n, Poincaré duality gives a duality between the finite abelian
groups Hi(X

[2],Z)tors and H4n−1−i(X
[2],Z)tors [9, Theorems 3.2 and 3.30]. Since

Hodd(X
[2],Z)tors = 0, it follows that Hev(X

[2],Z)tors = 0. By the universal coeffi-
cient theorem, the integral cohomology of X [2] is also torsion-free and concentrated
in even degrees. Theorem 1.1 is proved.

Let X be a compact complex manifold of dimension n. Let X̃ ×X be the blow-
up of X × X along the diagonal. The exceptional divisor EX in X [2] is known
to be 2 times an element e in H2(X [2],Z). This follows from the existence of the

double covering g from S := X̃ ×X to T := X [2], ramified along EX . Namely, we
can define e to be −c1 of the holomorphic line bundle (g∗OS)/OT . (When X has
torsion-free homology, the fact that the class of EX in X [2] is divisible by 2 can also
be seen from Theorem 1.2 and the blow-up sequence, above.) We also write e for
the associated element of H2(X [2],F2).

The restriction of e to the exceptional divisor EX = P (T ∗X) is e = c1O(−1).
The cohomology of EX with any coefficient ring is a free module over H∗X with
basis 1, e, . . . , en−1. Let i : EX → X [2] be the inclusion, and let π : EX → X be
the projection. To simplify notation, we omit the symbol π∗ when considering
cohomology classes on X pulled back to EX .

2 Main results

Theorem 2.1. Let X be a complex manifold of complex dimension n. Suppose
that X is homeomorphic to the complement of a closed subcomplex in a finite CW-
complex; this is no restriction for X compact. Then the kernel of the pushforward
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homomorphism i∗ : H
∗(EX ,F2) → H∗(X [2],F2) is spanned over F2 by the following

elements, for u in H∗(X,F2):

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a, 0 ≤ j ≤ n− 1− a;

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a+ 1, 0 ≤ j ≤ n− 1− a;

ej(ea−1 Sq1 u+ ea−2 Sq3 u+ · · ·+ Sq2a−1 u) for |u| = 2a, 0 ≤ j ≤ n− 1− a;

ej(ea Sq1 u+ ea−1 Sq3 u+ · · ·+ Sq2a+1 u) for |u| = 2a+ 1, 0 ≤ j ≤ n− 2− a.

We have a localization exact sequence, in particular with F2 coefficients:

→ Hj+1X [2] → Hj+1(S2X −X) → HjEX → Hj+2X [2] →

Moreover, the F2-Betti numbers of EX and S2X−X are determined by those of X
(see Theorem 4.2 for S2X−X). So Theorem 2.1 determines the F2-Betti numbers of
X [2] in terms of the action of Steenrod operations on H∗(X,F2). The description is
complicated, but this is unavoidable: Example 2.5 shows that the F2-Betti numbers
of X [2] are not determined by the F2-Betti numbers of X, in general.

On the other hand, the following result implies that X [2] has several good prop-
erties when the integral cohomology of X has no 2-torsion; in particular, its F2-Betti
numbers are determined by those of X in that case.

Theorem 2.2. Let X be a complex manifold of complex dimension n whose inte-
gral cohomology has no 2-torsion. Suppose that X is homeomorphic to the comple-
ment of a closed subcomplex in a finite CW-complex; this is no restriction for X
compact. Then a basis over F2 for the kernel of the pushforward homomorphism
i∗ : H

∗(EX ,F2) → H∗(X [2],F2) is given by the elements:

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a, 0 ≤ j ≤ n− 1− a;

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a+ 1, 0 ≤ j ≤ n− 1− a,

where u runs through a basis for H∗(X,F2).
Moreover, if the integral cohomology of X has no 2-torsion (resp. no torsion),

then the integral cohomology of X [2] has no 2-torsion (resp. no torsion).

The following corollary gives a basis for the cohomology of X [2] when the coho-
mology of X has no 2-torsion. We use the maps g and i from the end of section 1.
Note that any cohomology class on X can be represented by a pseudomanifold (as
discussed in section 3).

Corollary 2.3. Let X be as in Theorem 2.2. Let z0, . . . , zs be Z-cohomology classes
that form a basis for H∗(X,Z(2)). For each j, let Zj be a closed pseudomanifold in
X that represents the class zj.

For each j from 0 to s with |zj | ≤ 2n − 2, if |zj | is even, |zj | = 2a, then there
is an element xj of H4a(X [2],Z) that restricts to the class [S2Zj − Zj ] in the Z-
cohomology of S2X−X; and if |zj | = 2a+1, there is an element yj of H

4a+3(X [2],Z)
that restricts to the Bockstein β[S2Zj−Zj ] in the Z-cohomology of S2X−X. Choose
such elements. Then H∗(X [2],Z(2)) is a free Z(2)-module, with a basis given by the
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elements:

g∗(zj ⊗ zk) for j < k,

i∗(e
mzj) for each j, 0 ≤ m ≤ ⌊|zj |/2⌋ − 1,

emxj for each j with |zj | = 2a, 0 ≤ m ≤ n− 1− a,

emyj for each j with |zj | = 2a+ 1, 0 ≤ m ≤ n− 2− a.

If zj is the cohomology class of a complex submanifold Zj of X, then the element

xj in Corollary 2.3 can be taken to be the class of the sub-Hilbert scheme Z
[2]
j in

X [2]. Beyond that case, it is not clear how to describe the classes xj and yj in
geometric terms.

The following statement is used in Voisin’s paper on cubic hypersurfaces. It is
proved there in the case of odd-degree complete intersections in projective space
[22, Lemma 2.8].

Corollary 2.4. Let X be a compact complex manifold whose integral cohomology
has no 2-torsion. Let k ≥ l be integers, and let α be an element of H2k(EX ,Z) of
the form

α = ek−lβl + ek−l−1βl+1 + · · ·

with β in H2j(X,Z). If i∗α is divisible by 2 in H2k+2(X [2],Z) and 2l > k, then βl
is divisible by 2 in H2l(X,Z).

Proof. Consider α as a class in H2k(EX ,F2). We are assuming that α is in the
kernel of i∗ : H

2k(EX ,F2) → H2k+2(X [2],F2). The kernel of i∗ on H∗(EX ,F2) is
computed in Theorem 2.2, which implies the conclusion here.

Example 2.5. We give an example of compact complex manifolds X and Y with
the same F2-Betti numbers such that X [2] and Y [2] do not have the same F2-Betti
numbers. First, let W → P1 be a minimal rational elliptic surface with section, for
example defined by blowing up the intersection of two cubic curves in P2. Then
W has second Betti number equal to 10. By Ogg and Shafarevich, for any finite
sequence of integersm1, . . . ,mr ≥ 2, there is a smooth projective elliptic surface over
P1 which is a principal homogeneous space for W → P1 outside r points in P1 and
which has multiple fibers with multiplicity m1, . . . ,mr at those points [7, Theorem
III.6.12]. Such a surface automatically has b2 = 10, since b2(W ) = 10 [7, Lemma
I.3.18, Proposition I.3.21, Theorem I.6.7]. Let X and Y be such elliptic surfaces
with multiple fibers of multiplicities 2, 2 and 4, 4, respectively. Then π1(X) ∼= Z/2
and π1(Y ) ∼= Z/4 [7, Theorem I.2.3]. Here X is an Enriques surface and Y has
Kodaira dimension 1.

By Poincaré duality and the universal coefficient theorem, the integral cohomol-
ogy groups of X and Y are:

0 1 2 3 4
X Z 0 Z10 ⊕ Z/2 Z/2 Z
Y Z 0 Z10 ⊕ Z/4 Z/4 Z

It follows that the Enriques surface X and the surface Y have the same F2-Betti
numbers: 1, 1, 12, 1, 1. Because the Bockstein Sq1 is zero on H∗(Y,F2) but not on
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H∗(X,F2), Y
[2] has smaller F2-Betti numbers than X [2]. Explicitly, by Theorem

2.1, the F2-Betti numbers are:

0 1 2 3 4 5 6 7 8

X [2] 1 1 13 15 94 15 13 1 1

Y [2] 1 1 13 14 92 14 13 1 1

3 The boundary map

Recall the localization exact sequence with F2 coefficients:

Hj+1X [2] → Hj+1(S2X −X) → HjEX → Hj+2X [2].

The key step in determining the kernel of the pushforward i∗ : H
jEX → Hj+2X [2] is

to compute the boundary homomorphism on interesting elements of Hj+1(S2X−X),
as we now do.

Lemma 3.1. Let Z be a closed C∞ submanifold of real codimension r in a complex
manifold X. Let u be the cohomology class of Z in Hr(X,F2). Then the boundary
in H2r−1(EX ,F2) of the class [S2Z − Z] in H2r(S2X −X,F2) is{

ea−1 Sq1 u+ ea−2 Sq3 u+ · · ·+ Sq2a−1 u if r = 2a,

eau+ ea−1 Sq2 u+ · · ·+ Sq2a u if r = 2a+ 1.

Proof. We can view S2Z − Z as the interior of a manifold with boundary, where
the boundary is the real projective bundle PR(T

∗Z) over Z. So the boundary of
[S2Z−Z] is the class t∗1 in H2r−1(EX ,F2), where t is the proper map PR(T

∗Z) →
EX = PC(T

∗X), taking a real line in TzZ for a point z in Z to the complex line
that it spans in TzX.

We can factor t as PR(T
∗Z) ↪→ PR(T

∗X)|Z ↪→ PR(T
∗X) ↠ PC(T

∗X). Write
ρ : PR(T

∗X)|Z → Z for the projection. Then PR(T
∗Z) is the zero set of a trans-

verse section of the real vector bundle Hom(O(−1), ρ∗NZ/X) over PR(T
∗X)|Z ; that

section is the one associated to the subbundle O(−1) ⊂ ρ∗TX|Z . So the cohomology
class of PR(T

∗Z) on PR(T
∗X)|Z is the top Stiefel-Whitney class wr(O(1)⊗ρ∗NZ/X).

(This follows from the description of the top Stiefel-Whitney class in Milnor and
Stasheff [15, p. 145].) The top Stiefel-Whitney class of the tensor product of a line
bundle L with a vector bundle W of rank r is

wr(L⊗W ) = (w1L)
r + (w1L)

r−1w1W + · · ·+ wrW

by the splitting principle, as in Bott and Tu [2, p. 279]. Write b for the class
w1O(1) in H1(PR(TX),F2). We deduce that the F2-cohomology class of PR(T

∗Z)
on PR(T

∗X)|Z is br + br−1w1NZ/X + · · · + wrNZ/X , where we omit the symbol ρ∗

for cohomology classes on Z pulled back to PR(T
∗X)|Z .

Write s for the inclusion Z ↪→ X, and u for the cohomology class s∗1 = [Z]
in Hr(X,F2). Then the pushforward of the class of PR(T

∗Z) from PR(T
∗X)|Z to

PR(T
∗X) is bru + br−1s∗w1NZ/X + · · · + s∗wrNZ/X . The Steenrod squares of the

class u = [Z] in H∗(X,F2) are the pushforward to X of the Stiefel-Whitney classes
of the normal bundle NZ/X by the inclusion s : Z → X,

Sqj u = s∗wj(NZ/X),
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by Thom [17]. (For an introduction to Steenrod squares, see Hatcher [9, section
4.L].) So the class of PR(T

∗Z) on PR(T
∗X) is bru+ br−1 Sq1 u+ · · ·+ Sqr u.

Finally, we have to push this class forward via the S1-bundle h : PR(T
∗X) →

PC(T
∗X). (We sometimes write O(1)R instead of O(1) for the natural real line

bundle on PR(T
∗X), and likewise O(1)C instead for O(1) for the natural com-

plex line bundle on PC(T
∗X), to avoid confusion.) The class e = c1O(−1) in

H2(PC(T
∗X),F2) pulls back to b

2, since the complex line bundle O(1)C on PC(T
∗X)

pulls back to O(1)R ⊗R C on PR(T
∗X), and c1(O(1)R ⊗R C) = w1(O(1)R)

2 = b2.
All classes on PR(T

∗X) pulled back from H∗(X,F2) (such as the classes Sqj u)
are also pulled back from PC(T

∗X). Here H∗(PR(T
∗X),F2) is a free module over

H∗(X,F2) with basis 1, b, . . . , b2n−1, where n is the complex dimension of X. (This
follows from the Leray-Hirsch theorem [9, Theorem 4D.1].) So to compute the push-
forward h∗ on F2-cohomology, it suffices to compute h∗1 and h∗b. Here h∗1 is in
H−1(PC(T

∗X),F2) = 0, and so h∗1 = 0. Also, h∗b is in H0(PC(T
∗X),F2), and

so it is either 0 or 1. In fact, h∗b = 1. This can be proved by restricting over a
point in X, and noting that the inclusion of a hyperplane b = [RP2n−2] in RP2n−1

composed with the surjection to CPn−1 has degree 1 (mod 2), as it restricts to a
diffeomorphism from R2n−2 to Cn−1.

Therefore, for Z of codimension r = 2a, the boundary of [S2Z−Z] inH4a−1(EX ,F2)
is

h∗(b
2au+ b2a−1 Sq1 u+ · · ·+ Sq2a u) = ea−1 Sq1 u+ ea−2 Sq3 u+ · · ·+ Sq2a−1 u.

For Z of codimension r = 2a+ 1, the boundary of [S2Z − Z] in H4a+1(EX ,F2) is

h∗(b
2a+1u+ b2a Sq1 u+ · · ·+ Sq2a+1 u) = eau+ ea−1 Sq2 u+ · · ·+ Sq2a u.

Let b be the element of H1(S2X − X,F2) associated to the double cover X ×
X −X → S2X −X.

Lemma 3.2. Let Z be a closed C∞ submanifold of real codimension r in a complex
manifold X. Let u be the cohomology class of Z in Hr(X,F2). Then the boundary
in H2r(EX ,F2) of the product b[S2Z − Z] in H2r+1(S2X −X,F2) is{

eau+ ea−1 Sq2 u+ · · ·+ Sq2a u if r = 2a,

ea Sq1 u+ ea−1 Sq3 u+ · · ·+ Sq2a+1 u if r = 2a+ 1.

Proof. We can think of S2X −X as the interior of a real manifold with boundary,
where the boundary is the real projective bundle PR(T

∗X). Then the element b in
H1(S2X −X,F2) restricts to the class b = w1(O(1)R) on PR(T

∗X).
As in the proof of Lemma 3.1, the boundary in H2r(EX ,F2) of the product

b[S2Z−Z] is the pushforward of the cohomology class b on PR(T
∗Z) via the proper

map PR(T
∗Z) → PC(T

∗X). We can factor that map as PR(T
∗Z) ↪→ PR(T

∗X) ↠
PC(T

∗X), and the class b is pulled back from PR(T
∗X). So the pushforward of b to

PR(T
∗X) is b times the class of PR(T

∗Z) on PR(T
∗X), as computed in the proof

of Lemma 3.1. Thus the pushforward of b to PR(T
∗X) is b(bru+ br−1 Sq1 u+ · · ·+

Sqr u) = br+1u+ br Sq1 u+ · · ·+ b Sqr u.
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It remains to push this class forward via the S1-bundle h : PR(T
∗X) → PC(T

∗X).
We recall from the proof of Lemma 3.1 that h∗e = b2, h∗1 = 0, and h∗b = 1. Thus,
for Z of even codimension r = 2a, the boundary of b[S2Z − Z] in H4a(EX ,F2) is

h∗(b
2a+1u+ b2a Sq1 u+ · · ·+ b Sq2a u) = eau+ ea−1 Sq2 u+ · · ·+ Sq2a u.

For Z of codimension r = 2a+ 1, the boundary of b[S2Z − Z] in H4a+2(EX ,F2) is

h∗(b
2a+2u+ b2a+1 Sq1 u+ · · ·+ b Sq2a+1 u) = ea Sq1 u+ ea−1 Sq3 u+ · · ·+ Sq2a+1 u.

Next, we prove the same formulas for any F2-cohomology class on X, not neces-
sarily the class of a submanifold. We can view any cohomology class on a manifold
as the class of a pseudomanifold, that is, a closed piecewise linear subspace that is
a manifold outside a closed subset of real codimension at least 2.

Lemma 3.3. Let X be a complex manifold, and let u be an element of Hr(X,F2)
for some r. Consider u as the class of a closed pseudomanifold Z in X. Then the
boundary in H2r−1(EX ,F2) of the class [S2Z − Z] in H2r(S2X −X,F2) is{

ea−1 Sq1 u+ ea−2 Sq3 u+ · · ·+ Sq2a−1 u if r = 2a,

eau+ ea−1 Sq2 u+ · · ·+ Sq2a u if r = 2a+ 1.

Also, the boundary in H2r(EX ,F2) of the product b[S
2Z−Z] in H2r+1(S2X−X,F2)

is {
eau+ ea−1 Sq2 u+ · · ·+ Sq2a u if r = 2a,

ea Sq1 u+ ea−1 Sq3 u+ · · ·+ Sq2a+1 u if r = 2a+ 1.

Proof. By Thom, the F2-homology of any space X is generated by classes of closed
(unoriented) C∞ manifolds Z with continuous maps Z → X [18, Théorème III.2].
When X is a manifold, Thom also showed that H∗(X,F2) is not always generated
by submanifolds; that is, we cannot always take the maps Z → X to be embeddings
[18, p. 46]. For a locally compact space X, Thom’s argument shows that the Borel-
Moore homology of X with F2 coefficients is generated by C∞ manifolds Z with
proper maps Z → X. (The Borel-Moore homology of a “reasonable” locally compact
space such as a manifold is isomorphic to the singular homology with locally finite
chains. For a survey, see Fulton [8, section 19.1].)

Let X be a complex manifold of complex dimension n. By Thom’s theorem, it
suffices to prove the lemma for the class u in Hr(X,F2) of a C∞ manifold Z of real
dimension 2n− r with a proper map Z → X. The idea is that for N large enough,
the composition Z → X ↪→ X × PN associated to a point in complex projective
space PN can be approximated by a proper C∞ embedding, by Whitney. (Namely,
it suffices that dimR(X × PN ) ≥ 2 dimR(Z) + 1.) Perturbing Z in this way does
not change the class of S2Z − Z in H∗(S2(X ×PN )−X ×PN ,F2).

Let v be the generator of H2(PN ,F2); then vN is the class of a point on PN , and
so the class of Z on X × PN is uvN . Lemmas 3.1 and 3.2 compute the boundary
of the classes [S2Z − Z] and b[S2Z − Z] in H∗(EX×PN ,F2), whether r is even
or odd. For example, suppose r = 2a and look at the boundary of b[S2Z − Z];
the argument is completely analogous in the other three cases. The boundary of
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b[S2Z−Z] in H4a+4N (EX×PN ,F2) is e
a+NuvN + ea+N−1 Sq2(uvN )+ · · · . Since vN

is in the top-degree cohomology group H2N (PN ,F2), we have Sqj(vN ) = 0 for all
j > 0. By the Cartan formula Sqi(xy) =

∑i
j=0 Sq

j(x) Sqi−j(y) [9, section 4.L], the

boundary of b[S2Z − Z] in H4a+4N (EX×PN ,F2) can be rewritten as ea+NuvN +

ea+N−1 Sq2(u)vN + · · · .
We want to compute the boundary of [S2Z − Z] in H4a(EX ,F2). Clearly this

element pushes forward to the boundary of [S2Z−Z] in H4a+4N (EX×PN ,F2). Since

EX is the complex projective bundle P (T ∗X) and EX×PN is P (T ∗(X ×PN )), it is
straightforward to check that this pushforward homomorphism is injective. So to
show that the boundary of b[S2Z − Z] in H4a(EX ,F2) is e

au+ ea−1 Sq2 u+ · · · as
we want, it suffices to show that the latter element pushes forward to ea+NuvN +
ea+N−1 Sq2(u)vN + · · · .

We can factor the inclusion we are considering as P (T ∗X) ↪→ P (T ∗(X×PN ))|X ↪→
P (T ∗(X × PN )). Here p : P (T ∗X) → P (T ∗(X × PN ))|X is the zero set of a
transverse section of the complex vector bundle O(1) ⊗ NX/X×PN = O(1)⊕N over

P (T ∗(X ×PN ))|X . So p∗1 is the top Chern class cN (O(1)⊕N ) = eN . So

p∗(e
au+ ea−1 Sq2 u+ · · · ) = (p∗1)(e

au+ ea−1 Sq2 u+ · · · )
= ea+Nu+ ea+N−1 Sq2 u+ · · · .

Next, we push this class forward by q : P (T ∗(X×PN ))|X ↪→ P (T ∗(X×PN )). Here
q∗1 = vN . So

q∗(e
a+Nu+ ea+N−1 Sq2 u+ · · · ) = (q∗1)(e

a+Nu+ ea+N−1 Sq2 u+ · · · )
= ea+NuvN + ea+N−1 Sq2(u)vN + · · · .

By the previous paragraph, this proves that the formulas we want hold in H∗(EX ,F2).

4 Cohomology of the configuration space, and proof of
Theorem 2.1

Milgram, Löffler, Bödigheimer, Cohen, and Taylor computed the F2-homology of
the configuration space B(X, a) of subsets of X of order a in terms of the F2-
homology of X and the dimension of X, for any compact manifold X (possibly with
boundary) and any natural number a [14, 1]. Since we need explicit generators for
the cohomology of B(X, 2) = S2X−X, we compute this cohomology directly for X
a closed manifold in Theorem 4.2, not relying on their work. It would be interesting
to compute the ring structure on the F2-cohomology of the configuration spaces
B(X, a) for manifolds X.

As a tool, we use the calculation of the homology of symmetric products by
Nakaoka and Milgram [13], as follows. We need a statement (unlike Theorem 1.2)
that does not require X to have torsion-free integral cohomology. Let f : X ×X →
S2X be the obvious map.

Theorem 4.1. Let X be the complement of a closed subcomplex in a finite CW-
complex. Let u0, . . . , us be a basis for HBM

∗ (X,F2) over F2. Then HBM
∗ (S2X,F2)
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has a basis consisting of the element f∗(ui ⊗ uj) in degree |ui|+ |uj | for each i < j,
one element in each degree

|ui|+ 2, |ui|+ 3, . . . , 2|ui|

for each i with |ui| > 0, and one element in degree 0 for each i with |ui| = 0.

Proof. First suppose that X is a finite CW-complex, so that Borel-Moore homology
coincides with homology in the usual sense. Dold showed that the Fp-homology
of a symmetric product SaX (as a graded vector space) is determined by the Fp-
homology of X [6, Theorem 7.2]. So to compute the F2-homology of S2X, it suffices
to compute this when X is a wedge (one-point union) of spheres. That easily
reduces to the case of a single sphere X, where the calculation of H∗(S

2X,F2) was
made by Nakaoka. For any finite CW-complex X, the identification of some of
the generators as pushforwards f∗(ui ⊗ uj) is part of Milgram’s calculation of the
“Pontrjagin product” on symmetric products, the action on homology of the natural
maps SaX × SbX → Sa+bX [13, Theorem 5.2].

More generally, let X = Y − Z for some finite CW-complex Y and closed sub-
complex Z. Then X is the complement of a point p0 in the quotient space Y/Z,
which is a finite CW-complex. So S2X = S2(Y/Z) − (Y/Z), where the inclusion
Y/Z → S2(Y/Z) is the map x ↦→ x+p0. Steenrod showed that this inclusion induces
an injection on F2-homology [6, Theorem 2]. So the exact sequence

Hj(Y/Z) → HjS
2(Y/Z) → HBM

j S2X → Hj−1(Y/Z)

with F2 coefficients determines the Borel-Moore homology of S2X with F2 coeffi-
cients from the results of Nakaoka and Milgram.

Using that, we give an explicit basis for the cohomology of S2X −X.

Theorem 4.2. Let X be a C∞ manifold of real dimension m. Assume that X is
homeomorphic to the complement of a closed subcomplex in a finite CW-complex;
this is automatic for X compact. Let z0, . . . , zs be a basis for H∗(X,F2), and let Zi

be a closed pseudomanifold in X that represents the class zi. Let b in H1(S2X −
X,F2) be the class of the double cover g : X × X − X → S2X − X. Then a basis
for H∗(S2X − X,F2) is given by the elements g∗(zi ⊗ zj) in degree |zi| + |zj | for
i < j, together with the elements bj [S2Zi − Zi] in degree 2|zi| + j for all i and all
0 ≤ j ≤ m− 1− |zi|.

Proof. We compute the F2-Betti numbers of S2X − X by reducing to the better-
understood homology of symmetric products. Namely, we have an exact sequence
of Borel-Moore homology groups with F2 coefficients:

→ HBM
i X → HBM

i S2X → HBM
i (S2X −X) → HBM

i−1 X → .

By Poincaré duality, HBM
i (S2X −X,F2) ∼= H2m−i(S2X −X,F2); so the F2-Betti

numbers of S2X−X are determined by the pushforward homomorphism associated
to the diagonal inclusion ∆: X → S2X.

In fact, this homomorphism is zero in positive degrees. To see this, note that it
suffices to prove this for X a finite CW-complex, by the proof of Theorem 4.1. We
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can also assume that X is connected. Fix a base point p0 in X. This determines a
sequence of inclusions

X → S2X → S3X → · · ·

given by adding the point p0. (Do not confuse this map X → S2X, x ↦→ x + p0,
with the diagonal inclusion, x ↦→ 2x.) The colimit of this sequence is called the
infinite symmetric product S∞X. It can be viewed as a topological commuta-
tive monoid, with the homotopy type of the product of Eilenberg-MacLane spaces∏

j>0K(Hj(X,Z), j), by Dold and Thom [9, section 4.K]. This product decompo-
sition is compatible with the addition on S∞X, up to homotopy. Moreover, by
Steenrod, all the maps X → S2X → · · · → S∞X given by adding p0 give injections
on F2-homology [6, Theorem 2].

The Dold-Thom theorem implies that R := H∗(S∞X,F2) is a primitively gener-
ated Hopf algebra, with generators given by applying Steenrod operations to gener-
ators of Hj(K(Hj(X,Z), j),F2) [12, section 4.4, Theorem 6.19]. The multiplication
by 2 map on S∞X is the composition of the diagonal S∞X → S∞X×S∞X with the
addition S∞X×S∞X → S∞X, and so the corresponding pullback homomorphism
on R is the composition of the coproduct R → R⊗R with the product R⊗R → R.
Pulling back the multiplication by 2 map sends a primitive class x in R to zero (as
x ↦→ 1⊗ x+ x⊗ 1 ↦→ 2x = 0). Since R is primitively generated, the multiplication
by 2 map induces zero on R in positive degrees. Equivalently, the multiplication
by 2 map induces zero on the F2-homology of S∞X in positive degrees. By the
commutative diagram

X
∆ →→

↓↓

S2X

↓↓

S∞X
2 →→ S∞X,

the composition of the diagonal map ∆: X → S2X with the inclusion S2X → S∞X
induces zero on F2-homology in positive degrees. By Steenrod’s theorem (above),
it follows that ∆ induces zero on F2-homology in positive degrees, as we want.

We return to considering a C∞ manifold X, possibly noncompact. We know the
Borel-Moore homology of S2X with F2 coefficients from Theorem 4.1. Together
with the previous paragraph, this determines the cohomology of S2X −X with F2

coefficients, by the exact sequence

HBM
i X → HBM

i S2X → H2m−i(S2X −X) → HBM
i−1 X.

Namely, given a basis z0, . . . , zs for H∗(X,F2), H
∗(S2X −X,F2) has a basis with

one element in degree |zi|+ |zj | for all i < j and one element in each degree

2|zi|, 2|zi|+ 1, . . . , |zi|+m− 1

for each i.
We want to show that a basis for H∗(S2X − X,F2) is given by the classes

g∗(zi ⊗ zj) for i < j together with the elements bj [S2Zi − Zi] for all i and all
0 ≤ j ≤ m− 1− |zi|. Since we know the dimension of H∗(S2X −X,F2), it suffices
to show that these elements are linearly independent over F2.
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To see this, think of S2X − X as the interior of a manifold with boundary,
where the boundary is the real projective bundle PR(T

∗X). This gives a restriction
homomorphism

H∗(S2X −X,F2) → H∗(PR(T
∗X),F2).

I claim that the elements g∗(zi ⊗ zj) restrict to zero on PR(T
∗X). For this, think

of X ×X −X as the interior of a manifold with boundary, where the boundary is
the unit sphere bundle SR(TX) inside TX. Because the cohomology class zi ⊗ zj
on X × X − X extends to X × X, the restriction of zi ⊗ zj to SR(TX) extends
to the unit disc bundle DR(TX), which is homotopy equivalent to X. Clearly this
restriction of zi ⊗ zj to H∗DR(TX) ∼= H∗X is zizj ∈ H∗X; so the restriction of
zi ⊗ zj to H∗SR(TX) is the pullback of zizj . So the pushforward by the double
cover g : SR(TX) → PR(T

∗X) is g∗g
∗(zizj) = (g∗1)zizj = 0, where g∗1 = 0 ∈

H0(PR(T
∗X),F2) since g has degree 0 (mod 2). That is, the classes g∗(zi ⊗ zj)

restrict to zero on PR(T
∗X).

Next, let u be the class in Hr(X,F2) of a closed pseudomanifold Z in X. The
restriction of b in H1(S2X − X,F2) to PR(T

∗X) is the Stiefel-Whitney class b =
w1(O(1)R). By the proof of Lemma 3.1, the restriction of [S2Z−Z] fromH2r(S2X−
X,F2) to H2r(PR(T

∗X),F2) is bru + br−1 Sq1 u + · · · . (To be precise, Lemma 3.1
proves this when Z is a closed C∞ submanifold of X, but the proof of Lemma 3.3,
replacing X by a product X×PN

C (or X×SN ) for N large, extends this to arbitrary
cohomology classes u.) So the element bj [S2Z − Z] for 0 ≤ j ≤ m− 1− r restricts
to bj(bru+ br−1 Sq1 u+ · · · ) on PR(T

∗X). Since H∗(PR(T
∗X),F2) is a free module

over H∗(X,F2) with basis 1, b, . . . , bm−1, we read off that the elements bj(S2Zi−Zi)
for zi = [Zi] running through a basis for H∗(X,F2) and 0 ≤ j ≤ m − 1 − |zi| have
linearly independent restrictions to PR(T

∗X).
By the previous two paragraphs, to show that the given elements are linearly

independent in H∗(S2X − X,F2) and hence form a basis, it suffices to show that
the elements g∗(zi⊗zj) for i < j are linearly independent in H∗(S2X−X,F2). But
this is clear from the exact sequence with F2 coefficients:

HBM
a X → HBM

a S2X → H2m−a(S2X −X) → HBM
a−1X.

Indeed, the elements g∗(zi ⊗ zj) in the cohomology of S2X −X are the restrictions
of the Borel-Moore homology classes f∗(zi ⊗ zj) on S2X, where f : X ×X → S2X
is the obvious map. These classes in HBM

∗ S2X are linearly independent for i < j
by Theorem 4.1. Since the diagonal homomorphism HBM

a X → HBM
a S2X is zero

in positive degrees, the elements g∗(zi ⊗ zj) for i < j are linearly independent in
H∗(S2X −X,F2). Theorem 4.2 is proved.

Proof. (Theorem 2.1) By the exact sequence of F2-cohomology groups

Hj+1X [2] → Hj+1(S2X −X) → HjEX → Hj+2X [2],

the kernel of the pushforward i∗ : H
∗EX → H∗X [2] is equal to the image of the

boundary homomorphism from H∗(S2X − X,F2). Theorem 4.2 gives a basis for
H∗(S2X −X,F2), and Lemma 3.3 computes the boundary of the classes [S2Z −Z]
and b[S2Z − Z], for a pseudomanifold Z in X. That determines the boundary of
all classes bj [S2Z − Z], since b2 in H2(S2X −X,F2) is the pullback of the class e
in H2(X [2],F2). This gives the elements of ker(i∗) listed in Theorem 2.1.
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It remains to show that the boundary of each remaining basis element g∗(vi⊗vj)
for H∗(S2X − X,F2) (where i < j) is zero. By the exact sequence, it suffices to
show that these classes are restrictions of cohomology classes on X [2]. To see this,

let g : X̃ ×X → X [2] be the obvious degree-2 map. Since g is a proper map of
manifolds, it induces a pushforward homomorphism on cohomology. Consider each

cohomology class vi ⊗ vj in H∗(X ×X) as a class on X̃ ×X by pulling back. Then
the class g∗(vi⊗vj) on S2X−X is the restriction of the cohomology class g∗(vi⊗vj)
on X [2]. Theorem 2.1 is proved.

5 Torsion-free cohomology

Proof. (Theorem 2.2) The Adem relations among Steenrod operations imply that
Sq1 Sq2j = Sq2j+1 on the F2-cohomology of any space [9, section 4.L]. Here Sq1 is
the Bockstein on F2-cohomology. Since we assume that H∗(X,Z) has no 2-torsion,
we have Sq1 = 0 on H∗(X,F2), and hence all odd Steenrod operations are zero.

As a result, Theorem 2.1 gives that the kernel of the pushforward homomorphism
i∗ : H

∗(EX ,F2) → H∗(X [2],F2) is spanned by the elements

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a, 0 ≤ j ≤ n− 1− a, and

ej(eau+ ea−1 Sq2 u+ · · ·+ Sq2a u) for |u| = 2a+ 1, 0 ≤ j ≤ n− 1− a,

where u runs through a basis for H∗(X,F2). Since H∗(EX ,F2) is a free module
overH∗(X,F2) with basis 1, e, . . . , en−1, the elements listed are linearly independent
over F2.

Thus we have a basis for ker(i∗). By the exact sequence with F2 coefficients

Hj+1X [2] → Hj+1(S2X −X) → HjEX → Hj+2X [2],

we now know the F2-Betti numbers of X [2]. Namely, let v0, . . . , vs be a basis for
H∗(X,F2). Then H∗(X [2],F2) has a basis with one element in degree |vi|+ |vj | for
each i ≤ j except when i = j and |vi| is odd, together with one element in each
degree

|vi|+ 2, |vi|+ 4, . . . , |vi|+ 2n− 2

for each i.
Since H∗(X,Z) has no 2-torsion, the rational cohomology of X has a basis

v0, . . . , vs in the same degrees. To show that H∗(X [2],Z) has no 2-torsion, it suffices
to show that the rational cohomology of X [2] has a basis in the same degrees as
the basis above for H∗(X [2],F2). Since the Hilbert scheme X [2] is the quotient by

the symmetric group S2 of the blow-up X̃ ×X along the diagonal, H∗(X [2],Q) is

the subspace of S2-invariants in H∗(X̃ ×X,Q). Since X̃ ×X is the blow-up of the
complex manifold X ×X along the closed complex submanifold X of codimension
n, we have

H∗(X̃ ×X) = H∗(X ×X)⊕ E ·H∗X ⊕ · · · ⊕ En−1 ·H∗X,

where E denotes the class of the exceptional divisor EX inH2(X̃ ×X) [20, Theorem
7.31]. Since the nontrivial element of S2 acts on H∗(X × X,Q) by vi ⊗ vj ↦→
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(−1)|vi||vj |vj ⊗ vi, the S2-invariants in H∗(X ×X,Q) have a basis with one element
in each degree |vi| + |vj | for each i ≤ j except when i = j and |vi| is odd. The

other summands Ej ·H∗(X,Q) of H∗(X̃ ×X,Q) are fixed by S2. We conclude that

H∗(X [2],Q) = H∗(X̃ ×X,Q)S2 has a basis in the same degrees as the basis above
for H∗(X [2],F2). So the integral cohomology of X [2] has no 2-torsion.

Finally, suppose that H∗(X,Z) has no torsion. The easy computation of the
rational cohomology of X [2] above works with Z[1/2]-coefficients. In particular, the
integral cohomology ofX [2] has no odd torsion. By the previous paragraph, it follows
that the integral cohomology of X [2] is torsion-free. Theorem 2.2 is proved.

Proof. (Corollary 2.3) We first construct the classes xj and yj in the Z-cohomology
of the Hilbert scheme X [2].

Suppose that |zj | is odd, |zj | = 2a+1. Then S2Zj−Zj is typically not orientable,
because the action of Z/2 on Zj × Zj does not preserve orientation. In this case,
the Bockstein β[S2Zj − Zj ] is an integral cohomology class on S2X −X killed by
2. Consider the exact sequence of Z-cohomology groups

H l+1X [2] → H l+1(S2X −X) → H lEX .

Because the integral cohomology of EX has no 2-torsion, the boundary of β[S2Zj −
Zj ] must be zero in the integral cohomology of EX . So there is an element yj in
H4a+3(X [2],Z) that restricts to β[S2Zj − Zj ] on S2X − X, as we want. In the
F2-cohomology of S2X − X, yj restricts to b[S2Zj − Zj ], by Thom’s formula (cf.
section 3) applied to the smooth locus of S2Zj −Zj . This uses that the orientation
class w1 on S2Zj−Zj (corresponding to the double cover Zj×Zj−Zj → S2Zj−Zj)
is the restriction of b ∈ H1(S2X −X,F2).

Suppose that |zj | is even, |zj | = 2a. Then [S2Zj − Zj ] is a Z-cohomology class
on S2X − X, and 2[S2Zj − Zj ] is the restriction of the class g∗(zj ⊗ zj) on X [2].
It follows that the boundary of 2[S2Zj − Zj ] is zero in the integral cohomology of
EX . Because the cohomology of EX has no 2-torsion, it follows that the boundary
of [S2Zj − Zj ] is also zero. So there is an element xj in H4a(X [2],Z) that restricts
to [S2Zj − Zj ] on S2X −X, as we want.

Since H∗(X,Z(2)) is torsion-free, we know by Theorem 2.2 that H∗(X [2],Z(2)) is
torsion-free. Being finitely generated, it is in fact a free Z(2)-module. Therefore, in

order to show that the elements listed in Corollary 2.3 form a basis for H∗(X [2],Z(2)),

it suffices to show that they form a basis for H∗(X [2],F2) as an F2-vector space.
This follows by going through the proof of Theorem 2.2. Namely, we have

computed the boundary map in the exact sequence of F2-cohomology groups

H l+1X [2] → H l+1(S2X −X) → H lEX → H l+2X [2],

as well as a basis for the kernel of the pushforward i∗ : H
∗EX → H∗X [2]. As a result,

we can write down a basis for the image of i∗, as listed in Corollary 2.3. We also
know, using Lemma 3.3 and Theorem 4.2, a basis for the kernel of the boundary map
on H∗(S2X−X): the elements g∗(zj⊗zk) for j < k, and the elements bm[S2Zj−Zj ]
for 0 ≤ m ≤ 2n − 2 − |zj | with m ≡ |zj | (mod 2). Equivalently, this is a basis for
H∗X [2] modulo the image of i∗.

Using that the element e in H2X [2] restricts to b2 in H2(S2X −X), we read off
that the elements listed in Corollary 2.3 form a basis for the F2-cohomology of X [2].
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As mentioned above, it follows that the corresponding classes in Z(2)-cohomology
also form a basis. Corollary 2.3 is proved.

6 Complex submanifolds

In a special case, the formulas in Theorems 2.1 and 2.2 have a simple geometric
explanation, and that is what led to guessing those formulas in general. Namely,
let Y be a closed complex submanifold of codimension a in a complex manifold X,
and let u be the cohomology class of Y in H2a(X,F2). The Hilbert scheme Y [2] is
a closed complex submanifold of codimension 2a in X [2]. As throughout the paper,
we omit the symbol π∗ for cohomology classes on X pulled back to EX .

Lemma 6.1. The restriction of the cohomology class of Y [2] in H4a(X [2],F2) to
EX is

eau+ ea−1 Sq2 u+ · · ·+ Sq2a u.

Proof. We have an exact sequence of holomorphic vector bundles on Y , 0 → TY →
TX|Y → NY/X → 0. The exceptional divisor EX is the complex projective bundle
π : P (T ∗X) → X of lines in TX. (Following our conventions for projective bundles
from section 1, the natural line subbundle in the vector bundle π∗TX is called
O(−1).) We also write π for the projection P (T ∗X)|Y → Y . The intersection
Y [2] ∩ EX , which is transverse, is W := P (T ∗Y ) ⊂ P (T ∗X)|Y ⊂ P (T ∗X) = EX .
The submanifold W is the zero set of a transverse section of the vector bundle
Hom(O(−1), π∗NY/X) over P (T ∗X)|Y ; that section is the one associated to the
subbundle O(−1) ⊂ π∗(TX|Y ).

So the cohomology class of W on P (T ∗X)|Y is the top Chern class ca(O(1) ⊗
NY/X). The top Chern class of the tensor product of a line bundle L with a vector
bundle F of rank a is

ca(L⊗ F ) = (c1L)
a + (c1L)

a−1c1F + · · ·+ caF.

The class e on X [2] restricted to EX is e = c1O(−1). So the cohomology class of W
on P (T ∗X)|Y in F2-cohomology is ea + ea−1c1NY/X + · · ·+ caNY/X .

The Steenrod squares of the class u = [Y ] in H∗(X,F2) are the pushforward
to X of the Stiefel-Whitney classes of the normal bundle NY/X by the inclusion
s : Y → X,

Sqj u = s∗wj(NY/X),

by Thom [17]. Since NY/X is a complex vector bundle, the odd Stiefel-Whitney
classes are zero and the even Stiefel-Whitney classes are the Chern classes in F2-
cohomology:

w2iNY/X = ciNY/X (mod 2)

[15, Problem 14-B]. We conclude that the class of W = Y [2] ∩EX in H∗(EX ,F2) is
eau+ ea−1 Sq2 u+ · · ·+ Sq2a u.

To relate this to Theorems 2.1 and 2.2, note that the element e in H2(EX ,F2)
is in the image of restriction i∗ from X [2]. So Lemma 6.1 implies that for the
class u in H2a(X,F2) of a complex submanifold, the image of restriction i∗ contains
ej(eau+ea−1 Sq2 u+ · · ·+Sq2a u) for all j ≥ 0, in particular for all 0 ≤ j ≤ n−1−a.
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Moreover, the class [EX ] in H2(X [2],Z) is equal to 2e, and so i∗1 = [EX ] = 0
in H2(X [2],F2). So i∗i

∗y = (i∗1)y = 0 for all y in H∗(EX ,F2). Thus Lemma 6.1
shows that the kernel of i∗ contains ej(eau+ ea−1 Sq2 u+ · · ·+Sq2a u) for all classes
u in H2a(X,F2) of complex submanifolds and all 0 ≤ j ≤ n−1−a. This calculation
suggested the complete description of the kernel of i∗ in Theorems 2.1 and 2.2.
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[14] R. J. Milgram and P. Löffler. The structure of deleted symmetric products.
Braids (Santa Cruz, 1986), 415–424. Amer. Math. Soc. (1988).

[15] J. Milnor and J. Stasheff. Characteristic classes. Princeton (1974).

[16] M. Shen and C. Vial. The motive of the Hilbert cube X [3]. arXiv:1503.00876

[17] R. Thom. Variétés plongées et i-carrés. Comptes Rendus Acad. Sci. Paris 230
(1950), 507–508.

[18] R. Thom. Quelques propriétés globales des variétés différentiables. Comment.
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