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Maxim Mai1,a, Michael Döring1,2,b, and Akaki Rusetsky3,4,c

1 The George Washington University, Washington, DC 20052, USA
2 Thomas Jefferson Accelerator Facility, Newport News, VA 23606, USA
3 HISKP and BCTP, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
4 Tbilisi State University, 0186 Tbilisi, Georgia

Received 28 February 2021 / Accepted 19 May 2021 / Published online 11 June 2021
© The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of
Springer Nature 2021

Abstract The extraction of two- and three-body hadronic scattering amplitudes and the properties of the
low-lying hadronic resonances from the finite-volume energy levels in lattice QCD represents a rapidly
developing field of research. The use of various modifications of the Lüscher finite-volume method has
opened a path to calculate infinite-volume scattering amplitudes on the lattice. Many new results have
been obtained recently for different two- and three-body scattering processes, including the extraction of
resonance poles and their properties from lattice data. Such studies, however, require robust parametriza-
tions of the infinite-volume scattering amplitudes, which rely on basic properties of S-matrix theory and—
preferably—encompass systems with quark masses at and away from the physical point. Parametrizations
of this kind, provided by unitarized Chiral Perturbation Theory, are discussed in this review. Special atten-
tion is paid to three-body systems on the lattice, owing to the rapidly growing interest in the field. Here,
we briefly survey the formalism, chiral extrapolation, as well as finite-volume analyses of lattice data.

1 Introduction

Strong interactions govern the formation of protons,
neutrons, and nuclei. Scattering and decay experiments
provide access to strong interaction phenomena, imply-
ing that theoretical approaches should describe ampli-
tudes which involve two or more asymptotically stable
states. Quantum chromodynamics (QCD) on the lat-
tice represents a framework for the ab initio access to
such multiparticle amplitudes. However, pertinent cal-
culations are performed at Euclidean times that allows
a direct extraction of scattering amplitudes only at
threshold [1]. Furthermore, calculations of lattice QCD
(LQCD) are performed in small boxes. Since the spec-
trum in a finite volume is discrete, it is clear that, on the
lattice, one does not have direct access to the scatter-
ing amplitudes. However, in his groundbreaking papers
[2–4], Lüscher has shown that the quantization of the
energy levels in a finite box can be turned into an advan-
tage that allows one to circumvent the no-go theorem of
Ref. [1]. In particular, the two-body energy levels, mea-
sured on the Euclidean lattice, can be directly mapped
onto the two-body elastic scattering phase shift, which
is defined in the infinite-volume Minkowski space. This
novel idea paved the way to studies of scattering pro-
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cesses in lattice QCD, which have gained much popular-
ity. The approach has been subject to different gener-
alizations, including the application to study resonance
decays and form factors, as well as the extension to
three- and more particles. In the present review, we
address some of these developments.

Hadronic systems are accessed in LQCD by calcu-
lating correlation functions on a discretized Euclidean
space-time in a finite volume. Thus, the “raw” lattice
results should be corrected for different lattice artifacts
before a comparison to the real world can be made.
Effective field theory methods can be used to treat
each of these artifacts. First, there are the so-called
discretization effects that are linked to the finite lattice
spacing a. A continuum limit a → 0 needs to be per-
formed to relate lattice QCD results to physical quanti-
ties. In addition, one needs to establish a connection to
physical units, referred to as scale-setting. Both these
issues are related to practical aspects of LQCD calcu-
lations and are beyond the scope of the present review.
More importantly, LQCD calculations are necessarily
carried out in a finite volume. Consider for simplicity
a spatially1 cubic lattice with side length L. Imposing
boundary conditions in the spatial directions leads to
the quantization of the three-momenta of particles. For
example, in case of periodic boundary conditions, the

1 The Euclidean time dimension does not play any role in
this review and will be always assumed to be infinite.
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allowed momenta are p = 2πn/L for n ∈ Z3. The
spectrum in a finite volume is discrete as well, and the
position of the energy levels depends on L. Then, it can
be verified that the matrix elements, given by the sum
of all Feynman diagrams, calculated in a finite volume,
exhibit an irregular behavior in L. This is illustrated
in the left panel of Fig. 1 which schematically shows
a two-particle S-wave elastic amplitude, calculated in
infinite and finite volume (in the latter case, the inte-
gration over three-momenta in the Feynman integrals is
replaced by the summation over the discrete values). As
seen from this figure, the amplitude in the infinite vol-
ume is a complex-valued smooth function of the energy.
On the contrary, the amplitude in a finite volume is real
and discontinuous: it has first-order poles at the ener-
gies corresponding to the discrete energy eigenvalues
for a given L. Clearly, increasing L leads to the con-
densation of singularities on the real axis, but the limit
L → ∞ is not well defined. Hence, in a finite volume,
one first needs to identify the quantities which exhibit
smooth behavior for large L, and perform the limit
L → ∞ for these quantities only. This is the essence
of Lüscher’s method [5].

Over time, extensions of the two-body Lüscher for-
malism to moving frames and modified box geometries
have been formulated [8–24]. These techniques mostly
serve to calculate more energy eigenvalues in the elastic
scattering energy interval to better sample the ampli-
tude, in particular, when narrow resonance structures
like the ρ-meson lead to rapid variations in energy.
In this context, pion-pion scattering has been a prime
subject for lattice QCD calculations, in isospin I = 2
[25–42], I = 1 [6,43–57], and I = 0 [58–62] channels.
The πK and KK̄ scattering has been studied in Refs.
[35,47,63–71], πφ and πω scattering has been addressed
in the recent paper [72], while I = 2 πρ scattering was
calculated in Ref. [73], at pion masses sufficiently large
to make the ρ-meson stable so that Lüscher’s method
might be used to extract phase shifts (see also Ref. [74]
for a similar case). The scattering of mesons containing
heavy quarks has been considered in Refs. [75–85], see
also Ref. [86]. Furthermore, despite the increased com-
plexity of the pertinent LQCD calculations, the field
of excited baryons has seen a remarkable progress [87–
99]. Meson-baryon scattering amplitudes have been cal-
culated in Refs. [100–104], using Lüscher’s method [3],
see also Refs. [105–109]. A natural generalization of the
Lüscher approach in the two-body sector consists in the
inclusion of coupled two-body channels [12,15,17,110–
115]. The application of the method in meson-meson
scattering has been spearheaded by the Hadron Spec-
trum Collaboration [53,58,60,116–120] with a recent
highlight given by an eight-channel analysis of an exotic
π1 meson [121]. For reviews of the two-particle coupled
channel sector, see Refs. [122–126]. In this review we
can only discuss some of these developments, see Sect. 2.

The discussion of similar finite-volume techniques for
three-hadron systems is one of the major goals of this
manuscript and will be carried out in Sect. 3. There,
we review the so-called quantization condition (an ana-
log of the Lüscher equation), which relates the finite-

volume three-particle spectrum to the parameters of
the S-matrix. An alternative approach to the problem
focuses on the calculation of the interaction-induced
shifts of three- and more particle energy levels in per-
turbation theory [127–136]. Yet another methodology
to access multi-particle amplitudes utilizes the so-called
ordered double limit [137] (limImE→0+ limL→∞), with
E denoting the total energy of the system. Such an
approach was used in Ref. [138], extracting (complex-
valued) amplitudes. For related works see Refs. [139–
141]. These alternatives are outside of the scope of the
present review.

Furthermore, finite-volume techniques can be used to
study decays of resonances, as well as the matrix ele-
ments of currents. This will be discussed in Sect. 5,
where we reflect on the latest developments related to
the derivation of a three-body analog of the Lellouch–
Lüscher formula that enables one to measure three-
body decay amplitudes on the lattice [142,143].

Back to hadron spectroscopy on the lattice, we note
that LQCD calculations are often carried out with
quark masses larger than the physical ones. Hence,
physical observables are obtained by using extrapola-
tions in quark masses. Recently, simulations at phys-
ical quark masses in the two- and three-particle sec-
tors have become feasible, see, e.g., Refs. [47,144,145].
One might argue that, with the advance of comput-
ing capabilities and better algorithms, extrapolations
will soon become superfluous. However, the energy win-
dow between elastic and inelastic channels narrows
when approaching lower pion masses, see, e.g., Refs.
[144,146]. Thus, access to phase shifts or other relevant
quantities will be complicated by complex multiparti-
cle dynamics and finite-volume effects. Then, explor-
ing QCD resonance dynamics at heavier than physical
pion masses and performing chiral extrapolations to the
physical point represents a reasonable strategy.

The natural method to do this is to use input from
Chiral perturbation theory (ChPT), as discussed in
Sect. 2. At its core, ChPT relies on the expansion
of the QCD Green’s functions in small meson masses
and momenta. Hence, the information about the quark
mass dependence is encoded there by construction. On
the other hand, the coefficients of such an expansion
require input from either experiment or lattice calcu-
lations. Thus, there is a mutually advantageous rela-
tionship between lattice QCD and ChPT, which will
help to advance our understanding of hadronic dynam-
ics. This is illustrated in the right panel of Fig. 1 where
the P-wave ππ phase shift is shown for different pion
masses. At the physical point (Mπ = M phys

π ), the chi-
ral extrapolation should coincide with the experiment.
As the pion mass increases, the ρ meson becomes nar-
rower and LQCD can be used to scan the energy depen-
dence at these unphysical masses. Unitary extensions
of ChPT provide extrapolations both in the energy

√
σ

and pion mass, as the figure demonstrates. Turning the
argument around, one may use ChPT parametrizations
to fit the data both for physical and unphysical masses
that allows for the most efficient use of all available
information.
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Fig. 1 Left: a schematic representation of the S-wave scat-
tering amplitude in a scalar field theory as a function of
two-body energy

√
σ, calculated in the infinite and and in a

finite volume. Whereas the amplitude T ∞ is smooth apart
from threshold and complex, the real-valued finite-volume
amplitude T L has simple poles at the energies correspond-
ing to the spectrum of the Hamiltonian in a finite volume;

Right: an example of the interplay between lattice QCD
and ChPT in describing the ππ phase shift in the vicinity
of the ρ-resonance. ChPT connects phase shifts at different
energies and pion masses. The fixed-Mπ planes contain con-
straints from experiment and lattice QCD calculations [6,7]

In the present review, we discuss the extraction of
observables from lattice QCD calculations in the two-
and three-particle sectors with a focus on the merger
of finite-volume approach with methods of ChPT. The
layout of the paper is as follows. In Sect. 2 we briefly
consider foundations of unitarized ChPT and applica-
tions in the two-particle sector. Sect. 3 contains a brief
review of existing three-body approaches in a finite vol-
ume. Applications of these approaches for the analysis
of lattice data, with a focus on chiral extrapolations,
are described in Sect. 4. Finally, latest developments,
related to the treatment of three-particle decays in a
finite volume, are considered in Sect. 5.

2 Chiral extrapolations

Chiral perturbation theory [147,148] and extensions
thereof to the strangeness [149] and baryon sectors
[150–154] is a systematic approach to low-energy QCD,
which in many cases provides a benchmark for the cal-
culations of observables in the (sub)threshold energy
region [155–161]. By construction, ChPT offers an ideal
tool for extrapolations of LQCD results to the physi-
cal quark masses. See the extensive discussions in the
FLAG review [162].

If one aims at extracting complex resonance pole
positions and residues of the scattering amplitude, one
has to combine ChPT with the general principles of S-
matrix theory: unitarity, analyticity and crossing sym-
metry. The list of successful applications of the method
is extensive and covers both meson and baryon sectors,
see, e.g., the reviews [163,164] and references therein.
In the context of chiral extrapolations on the lattice,
we highlight pioneering works extending unitarized chi-
ral methods to unphysical quark masses [165,166], an
early paper on the ρ extrapolation [167], extrapolations

of the (isoscalar) f0(500) [62,168], and a global analy-
sis of ππ scattering in channels with different quan-
tum numbers [7] that is discussed below in more detail.
In most of these approaches, actual lattice data were
analyzed, but chiral extrapolations have also been per-
formed for other hadronic reactions [169,170]. Chiral
extrapolations have been implemented in recent three-
body studies as well, addressing the two-body subsys-
tem at unphysical pion masses. These developments will
be briefly discussed in Sect. 4.1.

There are numerous lattice calculations in the two-
pion sector, see e.g., Refs. [6,53,62,119,144,171]. These
calculations cover a wide energy range and involve pions
with the masses varying from the physical value up to
400 MeV. To make a full use of the available infor-
mation at different pion masses, a parametrization of
the scattering amplitude is required, which not only
exhibits the correct analytic properties, but also imple-
ments correct chiral behavior.

In order to achieve this goal, various approaches have
been used in the past. For example, the chiral unitary
approach in SU(3) with NLO contact terms [180], which
has been applied in Refs. [6,181,182] for extrapolations
of the ρ resonance (see also Refs. [183,184] for related
approaches). Unitarized U(3) ChPT [185–187] has been
used for the πη(′) − KK̄ coupled-channel extrapolation
of the a0(980) [188].

Another possibility for amplitude construction is
provided by the so-called modified Inverse Amplitude
Method (mIAM) [165,189–191]. Besides the usual con-
straints from perturbative ChPT at a given order,
mIAM also fulfils chiral constraints on resonance tra-
jectories [192]. While implementing the elastic unitarity
exactly, this method relies on the full next-to-leading
(NLO) chiral scattering amplitudes, obeying crossing
symmetry at this order. The mIAM amplitude is inde-
pendent of the renormalization scale, occurring in the
UV-divergent loops. Note that extensions to two loops
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Fig. 2 Phase shifts of two-pion scattering in all isospin
channels at physical and unphysical pion masses. Red curves
show the result of the mIAM global fits [7] to the GWQCD

lattice data [6,62,171] at Mπ � 224 MeV and Mπ �
315 MeV. Experimental results [172–179] (gray data points)
are not part of the fit and are plotted for comparison only

have also been worked out [193], including a chiral
extrapolation of the ρ resonance [194], see Ref. [195]
for a recent review.

Technically, mIAM is based on the leading-order
(T I�

2 (s)) and the NLO (T I�
4 (s)) chiral amplitudes, pro-

jected onto a given isospin I and angular momentum �.
A unitary scattering amplitude T I�

mIAM(s) can then be
derived [189], using dispersion relations:

T I�
mIAM(s) =

(T I�
2 (s))2

T I�
2 (s) − T I�

4 (s) + AI�
m(s)

,

AI�
m(s) = T I�

4 (s2) − (s2 − sA)(s − s2)
s − sA

×
(

∂T I�
2

∂s
(s2) − ∂T I�

4

∂s
(s2)

)
. (2.1)

The term AI�
m(s) has been introduced in Refs. [191,196],

in order to avoid the appearance of an unphysical pole
at T2(s) = T4(s). Further, sA denotes the position of
the Adler zero at NLO, given by the equation T I�

2 (sA)+
T I�
4 (sA) = 0, and s2 stands for the same quantity at

leading order, obeying the equation T I�
2 (s2) = 0.

The leading order chiral amplitude is a function of
energy, Goldstone-boson mass, M2 = B(mu +md), and
pion decay constant in the chiral limit, f0. In the two-
flavor case, the amplitude T I�

4 involves two low-energy
constants (LECs) l̄1 and l̄2. Two additional low-energy
constants l̄3, l̄4 enter the NLO chiral amplitude, when
M,f0 are replaced by the physical pion mass and pion
decay constant, using one-loop results [147]:

M2
π = M2

(
1 − M2

32π2f2
0

l̄3

)
,

fπ = f0

(
1 +

M2

16π2f2
0

l̄4

)
. (2.2)

For the description of the finite-volume LQCD spec-
tra, various strategies have been applied in the past
[62,144,168,197]. The most natural approach (see Ref.

[7,145,198]) is to re-write Eq. (2.1) in terms of the K-
matrix, or

cot δmIAM
I� (s) =

√
s

2k

(
T I�
2 (s) − T̄ I�

4 (s) + AI�
m(s)

(T2(s))2

−16π Re J(s)

)
, (2.3)

where k is the magnitude of the center-of-mass meson
momentum. Further, T̄ I�

4 = T I�
4 (s) − T I�

2 (s)J(s)T I�
2 (s),

where J(s) denotes the meson-meson loop in dimen-
sional regularization.

The finite-volume spectrum of a two-meson system is
determined using the Lüscher equation [4]

∏
Γ

det
(MΓ

�n,�′n′(s,P , L) − δ��′δnn′ cot δ�(s)
)

= 0 ,

(2.4)

where M denotes a known geometric function depend-
ing on the total three-momentum of the system P and
irreducible representation of the cubic group Γ . The
indices n, n′ label multiple irreducible representations
Γ for given values of �, �′. This equation holds indepen-
dently of the isospin. Considering only leading S and
P partial-wave contributions and the irreps Γ = A+

1
and Γ = T−, respectively, the determinant condition
in the center-of-mass frame decomposes into the ordi-
nary equation

cot δI�(s) =
Z00(1, q2)

π3/2q
, (2.5)

where � = 1 for I = 1 and � = 0 for I = 0, 2. For
generalizations and explicit formulas for the Lüscher
functions Z, which enter the expression of the matrix
MΓ , we refer the reader to, e.g., Refs. [3,4,22,23,38,57,
199].
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As already mentioned, mIAM was applied in differ-
ent isospin channels of ππ scattering [7,62,144,168],
leading to a very consistent picture across all three
channels. For example, the result of a simultane-
ous analysis of finite-volume spectra, obtained by the
GWUQCD collaboration [6,62,171], including also cor-
relations between different isospin channels, is depicted
in Fig. 2. The application of mIAM to the three-flavor
sector is straightforward, but more tedious due to the
fact that the strange quark mass is, typically, treated
differently from that of the light ones. One way [55] is
to fix the sum of all three quarks to the physical value.
Alternatively, one could assume that the strange quark
mass is fixed to its physical value [38,50,51,53,54].
LQCD results for the isovector channel along these
two ms(ml) “trajectories” have been studied recently
in Ref. [197], using Inverse Amplitude Method, which
is identical to the mIAM for this channel. Note that
SU(3) ChPT to one loop in the IAM implementation
was recently used in the first ever extrapolation for
a system of three kaons at maximal isospin [146], see
Sect. 4.3.

Finally, we wish to address the scale setting issue
in the analysis of the LQCD results. First, we note
that all involved scattering amplitudes are expressed in
powers of a dimensionless quantity M2/(4πf0)2. Thus
one can hope to perform an analysis directly in lattice
units. Still, the scattering amplitudes beyond leading
order depend explicitly on the LECs l̄i, which are inde-
pendent of the renormalization scale μ, but depend on
the quark masses. In order to perform the extrapola-
tion in the quark masses, it is necessary to introduce
the quark-mass independent renormalized LECs, which
then depend on μ:

lri =
γi

32π2

(
l̄i + log

M2

μ2

)

γ1 =
1
3
, γ2 =

2
3
, γ3 = −1

2
, γ4 = 2 . (2.6)

Hence, for a fixed scale μ, one can make predictions
for two-particle scattering at a different pion mass. Of
course, fixing the μ to some dimensionful value requires
to perform the scale setting. This issue was discussed
at length in Ref. [7], where the influence of the log μ
term in Eq. (2.6) was found to be well below the sta-
tistical uncertainties. This issue was also discussed in
Ref. [200]. Additionally, in some specific cases, such as
the isovector channel, the chiral NLO amplitude T 11

4
depends only on the difference l̄12 = l̄1− l̄2, which leads
to an exact cancelling of the log μ term and allows one
to perform the analysis entirely in lattice units [144].

3 Three-body quantization condition

Recent years have witnessed a rapid increase of interest
to the investigation of three-particle dynamics from lat-
tice calculations. Such challenging studies became fea-

sible only lately, owing to the increased computational
resources, as well as the progress achieved on methods
and algorithms [42,136,144,146,201–207]. In its turn,
this progress was triggered by the development of the
formalism that allows the mapping of the three-particle
spectrum on the scattering observables in the two- and
three-particle sectors, the so-called three-particle quan-
tization condition. The work in this direction started in
2012 [208]. During the next few years, the three-body
quantization condition has been derived in three dif-
ferent frameworks, usually termed as relativistic field
theory (RFT) [209,210], the non-relativistic effective
field theory (NREFT) [211,212] and finite volume uni-
tarity (FVU) [213,214] approaches, see Refs. [215,216]
for recent reviews. Recently, another approach based
on time-ordered perturbation theory was derived [217],
and used to relate some of the above approaches [218].
We note also the earlier work [219], where the three-
body analog of the Lüscher equation has been writ-
ten down in the particle-dimer picture. Overall, this
development has boosted activities in the field, as seen,
e.g., from Refs. [134,135,140,198,217,220–252]. Note
also earlier work on related issues [253–256].

Three alternative but essentially equivalent versions
of the three-body quantization condition are high-
lighted below. Those are the aforementioned NREFT
[211,212], RFT [209,210] and FVU [213,214] approaches.
Their applications in the analysis of lattice data will be
reviewed in Sect. 4. In the following, we will consider
the main features of three formalisms and the links
between them. Obviously, the details are too lengthy
for this short review, and we refer the reader to the
corresponding original papers. To ease the notation,
we additionally restrict the discussion to the case of
three identical particles of a mass m. In addition, Z2

symmetry is assumed to hold, under which all Green’s
functions with an odd number of external legs vanish
identically.

The common feature of all approaches is the identifi-
cation of the appearing intermediate states in the scat-
tering amplitude that can go on-shell. Such intermedi-
ate states are the only source of the power-law (in L)
finite-volume corrections, while the off-shell states give
only exponentially suppressed corrections in L, see, e.g.,
Ref. [4]. Taking L much larger than the inverse mass
of a particle, one may neglect these exponentially sup-
pressed corrections completely. Restricting the center-
of-mass energy of three particles to 3m <

√
s < 5m,

only the three-body intermediate states can go on-
shell. Then, in order to arrive at the quantization con-
dition, one has to re-sum all such contributions in a
finite volume and search for the position of the poles of
the Green’s function. At this point, each of the above-
mentioned formalisms takes a different path:

� The NREFT formalism [211,212] is based on non-
relativistic effective Lagrangians. Thus, only the
forward propagation in time is allowed, and the
virtual creation/annihilation into pairs is prohib-
ited but is implicitly contained in the effective cou-
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plings. Within this setting, only three-body inter-
mediate states emerge by construction, when the
total energy in the center-of-mass frame is below
5m. In addition, the approach of Refs. [211,212]
uses the so-called particle-dimer picture that ren-
ders the bookkeeping of Feynman diagrams in the
three-particle case very simple and transparent. It
should be stressed that the particle-dimer picture is
not an approximation but a mathematically equiv-
alent description of a three-particle system. Also, it
does not imply the existence of a stable two-body
bound state (the same remarks apply to isobars used
in the FVU approach discussed below).
The three-particle quantization condition follows
from the Faddeev equation for the particle-dimer
scattering amplitude, written down in a finite vol-
ume, where all three-momenta are discretized as
p = 2πn/L with n ∈ Z3. Such an amplitude is
singular at the energies corresponding to the eigen-
values of the Hamiltonian in a finite volume. In the
simplest case, assuming that pair interactions occur
only in the S-wave and the particle-dimer interac-
tion contains only the non-derivative term with cou-
pling H0, the quantization condition takes the form:

0 = det
(
τ̂L(E)−1 − Z(E)

)
,

[Z(E)]pq =
1

p2 + q2 + pq − mE
+

H0(Λ)
Λ2

,

8π[τ̂L(E)]−1
pq = δpq

(
p∗ cot δ(p∗)

− 4π

L3

∑
l

1
p2 + l2 + pl − mE

)
.

(3.1)

Here E =
√

s−3m, whereas Z and τ̂L are the three-
body kernel of the Faddeev equation and the finite-
volume two-body scattering amplitude, respectively.
Each of these elements enters as a matrix in the
space of spectator momenta. We also note here that
the UV behaviour of the spectator momenta is reg-
ulated by a hard cutoff Λ, while in the sum, entering
the definition of τ̂−1

L , the dimensional regularization
is implicit. The S-wave phase shift is denoted by
δ(p∗) for p∗ =

√
3/4p2 − mE.

Note that, although the above quantization condi-
tion was derived, dropping higher partial waves in
pair interactions, as well as higher order (deriva-
tive) particle-dimer couplings, these can be taken
into account without much ado. Relativistic correc-
tions can also be included systematically. It should
be realized that the crucial feature of NREFT is
barring the backward propagation as well as the
pair creation/annihilation, and not the use of the
non-relativistic dispersion law for a single particle.
In fact, the relativistic kinematics in this approach
can be easily implemented along the lines suggested
in Refs. [257,258]. At the leading order this was

demonstrated in Ref. [142], and the generalization
to higher orders is in progress.

� The RFT formalism [209,210] approaches the prob-
lem using relativistic Feynman diagrams. As a
result, one has to sort all emerging diagrams into
three-particle reducible ones (i.e., those which can
be made disconnected by cutting exactly three par-
ticle lines) and the three-particle irreducible ones
(all the rest). The irreducible diagrams are replaced
by their infinite-volume counterparts, dropping expo-
nentially suppressed contributions. Collecting all
terms that lead to power-law corrections, the RFT
quantization condition in the simplest case takes the
form:

0 = det

(
L3

(
F̃ /3−

F̃
(
K̃−1

2 + F̃ + G̃
)−1

F̃

)−1

+ Kdf,3

)
,

[F̃ (
√

s)]pq = δpq
H(p)

4Ep

(
1

L3

∑
a

−
∫
PV

d3a

(2π)3

)

× H2(a, −p − q)

4Ea Ep+q (
√

s − Ep − Ea − Ep+q )
,

[G̃(
√

s)]pq =
H(p)H(q)

L34Ep Eq ((
√

s−Ep −Eq )2−(p+q)2−m2)
,

[K̃2(
√

s)]pq = δpq

32πEp
√

σp

p∗ cot δ(p∗) + |p∗|(1 − H(p))
. (3.2)

Further details of the derivation can be found in a
comprehensive summary given in Ref. [215]. Again,
the quantization condition arises as a determinant
equation with respect to the spectator momenta. In
that, the functions H(p), H2(p) provide a smooth
cutoff at large values of momenta. Additionally, the
kinematical variables are defined as σx = (

√
s −

Ex)2 − x2 and Ex =
√

x2 + m2, while p∗ stands
for the magnitude of the relative three-momenta
defined in the two-body subsystem. The two-body
interactions are encoded in the K-matrix related
quantity K̃2, while Kdf,3 parametrizes what can
be termed the genuine three-body force within this
approach.
Note that the propagator G̃ that describes the rear-
rangement between the particle pair and the spec-
tator, is written down in relativistic-invariant form.
This on-shell form does not emerge from the begin-
ning in perturbation theory. However, since the
difference between G̃ and the original expression
obtained in perturbation theory represents a low-
energy polynomial, it was possible to rewrite the
quantization equation in terms of the G̃ [236]. It is
implicitly assumed here that the difference should
be accounted for by the change in the three-body
regular term Kdf,3. The choice of the relativistic-
invariant form for G̃ has far-reaching implications.
It can be shown now that the Kdf,3 in this equa-
tion has to be relativistic-invariant as well. More-
over, the quantization condition in non-rest frames
can be straightforwardly written down in terms of
the same Kdf,3.
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� The FVU formalism [213,214] takes another approach,
starting from three-body unitarity as a guiding prin-
ciple for the construction of a relativistic three-
body scattering amplitude. This approach is based
on the observation that the only diagrams, which
lead to the power-law corrections in a finite vol-
ume, are those that contribute to three-body uni-
tarity through their imaginary parts [259,260], see
also Refs. [261–263]. In order to carry out practical
implementations of this idea, the dynamics of the
three-body system in the FVU approach is formally
separated into a cluster of two-body states (called
isobar) and a spectator. This allows one to derive
analytic constraints on the form of the isobar prop-
agator as well as the Bethe–Salpeter kernel for the
isobar-spectator interaction.2 In a finite volume, dis-
cretizing three-momenta, this formulation leads to
a three-body quantization condition. In its simplest
form, this condition reads

0=det
(
B0+C0−EL[K−1/(32π)+ΣL]

)
,

[ΣL(
√

s)]pq = δ3pq

σp

L3

∑
k

√
σp√

s−Ep

1
8E3

k∗(σp−4E2
k∗)

,

[B0(
√

s)]−1
pq = −2Ep+q (

√
s − Ep − Eq − Ep+q ) ,

[EL]pq = δ3pq2L3Ep ,

[K−1(s)]pq = δ3pq p∗ cot δ(p∗) . (3.3)

The asterisk as a superscript means that the per-
tinent quantity is calculated in the two-body rest
frame. The UV divergences in this approach, like
other approaches, can be tamed in different ways.
For example, in Ref. [214], this has been achieved
using smooth cutoff functions. In a more recent work
[198], the divergences of the isobar self-energy were
regularized, using subtractions in σ and putting a
hard cutoff on the spectator momenta (p, q). The
genuine two and three-body forces are encoded in
the scattering phase shift δ(p∗) and the isobar-
spectator contact term C0, which is a real-valued
function of energy and spectator momenta.
The above approach makes no direct connection to
a Lagrangian formalism. However, one can interpret
its building blocks in a diagrammatic language as
illustrated to the top of Fig. 3. The term B0 can
be referred to as the one-particle exchange term in
forward time propagation (Fig. 3b) and the term
(K−1/(32π) + ΣL)−1 of Eq. (3.3) corresponds to
the isobar-spectator propagation shown in Fig. 3a.
Finally, we note that generalizations of the above
condition to moving frames and three-flavor sector
can be found in Refs. [171,198,239].

2 Note that a relativistic infinite-volume amplitude [260],
constructed along the same lines, was used recently [264]
to address Dalitz plots of the reaction τ → ντ (a1(1260) →
πππ).

To summarize, in their basic form, all approaches lead
to a very similar general form of the quantization con-
dition. In contrast to the two-body case [5], the deter-
minant that appears in the quantization condition of
Eqs. (3.1), (3.2) or (3.3) depends, in addition, on the
spectator momenta. Explicit equivalence between RFT
and FVU formalisms was shown in Ref. [218], whereas
the correspondence of the infinite-volume approaches
was discussed in Ref. [238]. Also, it was shown in Ref.
[212] that topologies arising in the RFT formalism have
exact correspondence to those in the NREFT approach.

It should be also noted that, in recent years, differ-
ent generalizations of the basic formalism have been
worked out in different approaches. For example, the
coupling of two- and three-particle channels has been
considered withing RFT setting in Ref. [227]. In the
same setting, two-particle subsystems with spin were
studied in Ref. [241]. The case of non-identical parti-
cles has been addressed within RFT and NREFT set-
tings in Refs. [246,251]. Different isospin channels in
the three-pion final state have been included within the
same settings in Refs. [247,252], and Refs. [204,239]
consider the generalization of the approach to moving
frames within the RFT and FVU settings. The thresh-
old expansion was checked within the RFT and NREFT
settings in Refs. [134,135]. Shallow bound states were
studied within the RFT and NREFT settings in Refs.
[211,265], reproducing the earlier result obtained within
the potential scattering theory [222].

Finally, we briefly consider the workflow in the pro-
cess of fitting the data. In case of the two-body Lüscher
equation, an observable quantity—the phase shift—can
be directly extracted from the measured energy levels.
This is no longer the case in three-particle systems,
where the unphysical quantities—the regular ampli-
tudes (H0, Kdf,3 or C0, respectively)—are determined
in a first step by fitting them to the three-body lattice
spectrum. Or, more generally, these quantities are fit
together with the K-matrix to the two and three-body
lattice spectrum simultaneously. In a second step, the
physical amplitudes are then determined through the
solution of integral equations in the infinite volume,
using this input. The need of the two-step approach
constitutes a major difference to the two-body case but
does not pose a conceptual problem.

A final remark concerns the “three-body forces” H0,
Kdf,3 or C0 in the different approaches. As discussed,
their values cannot be compared directly because they
are defined differently. In addition, they depend on the
regulator of the three-body equation, as well as on the
details of the chosen parametrization of the two-body
input in the subthreshold region. In that sense, the
three-body force is not an observable.

4 Analysis of lattice data

In this section, we review the use of the discussed finite-
volume frameworks for the analysis of lattice data. Due
to the limited scope of the present review, we focus on
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Fig. 3 Top: a Isobar-spectator propagator; b exchange
process; c isobar-spectator interaction vs d the three-pion
vertex in ChPT. Bottom: The energy spectrum of three
pions at maximal isospin from Ref. [205], as calculated in
lattice QCD (GW Latt.) and predicted from FVU with IAM
extrapolation of the two-body input using LECs from Ref.

[7] (GW, red vertical lines) and Ref. [147] (GL, dotted ver-
tical lines). The energy shifts from the noninteracting levels
(dashed lines) are predicted, using the interaction kernel
(b) fixed from unitarity, as highlighted. See text for further
explanations

applications that involve chiral extrapolations including
an outlook for these methods given in Sect. 6.

4.1 Chiral extrapolations for three pions at maximal
isospin

In a three-pion system, ChPT describes the quark mass
dependence of both the two-particle and three-particle
interactions, which are encoded in the non-singular ker-
nel (H0, Kdf,3 or C0, in different approaches). The for-
mer is far more important for non-resonant systems like
three π+. This can be seen, e.g., from the perturba-
tive expression of the ground-state energy shift, given
in Ref. [131]—there, the contribution of the three-body
force comes at next-to-next-to-next-to-leading (N3LO)
order in the expansion in 1/L.

Furthermore, owing to three-particle unitarity [260],
the exchange diagrams, shown in Fig. 3b, are deter-
mined by the same two-body input as the ones shown
in Fig. 3a. The exchange term (in the u-channel) pro-
duces known relative and absolute interaction strengths
in different partial waves/irreducible representations
(irreps) in the infinite/finite volume. Therefore, the
isobar-spectator interaction in, e.g., the A1u and Eu

irreps is a prediction, directly stemming from three-
body unitarity. This prediction manifests itself in the
size of the energy shifts in the excited states, as high-
lighted in orange in Fig. 3. As the figure shows, the pre-
dictions based on unitarity and lattice data for these
two irreps indeed agree, if the three-body force is set
to zero; in conclusion, three-body unitarity is directly
visible in the lattice data. Note that all approaches dis-
cussed in Sect. 3 contain the exchange contribution.

The first chiral extrapolation of three-body finite-
volume spectra was performed in Ref. [214], using the
FVU framework and IAM for the two-body input. The
main result of the study of the three-pion lattice spec-

Fig. 4 Chiral extrapolation of the π+π+π+ finite-volume
spectrum, taken from Ref. [214]. Full and dashed lines
denote the interacting and non-interacting energy eigenval-
ues as a function of pion mass for a fixed volume L = 2.5 fm.
The data in red show results of the NPLQCD lattice calcu-
lation [202]

trum in this approach is depicted in Fig. 4, left panel,
showing a prediction for the excited level spectrum of
three pions at maximal isospin, as a function of the
pion mass for a fixed lattice volume (L = 2.5 fm). The
figure also demonstrates that working at unphysically
large pion masses can actually be an advantage, because
more energy eigenvalues can be found in the elastic
region 3Mπ <

√
s < 5Mπ, allowing for a finer-grained

sampling of the amplitude. As the figure shows, the
chiral extrapolation matches the NPLQCD lattice cal-
culation for the threshold energy level. The extraction
of the three-body force, also performed in Ref. [214], is
discussed in the following section.

Next, we consider the chiral extrapolation of the
three-body force. Note that since FVU does not oper-
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ate directly with Feynman diagrams, a certain effort is
needed to properly map ChPT to the FVU input—for
example, the six-pion contact term in ChPT (Fig. 3d)
should be related to the isobar-spectator vertex, see
Fig. 3c. This has been discussed recently, with explicit
expressions given in Eqs. (4-6) of Ref. [198].

The first lattice QCD calculation producing excited
states for the three-pion system at maximal isospin was
performed in Ref. [42]. Using, again, ChPT to NLO for
the two-body input, and extending the FVU formalism
to moving frames and different irreps (the latter based
on Ref. [237]), these levels were predicted in Ref. [239].
Assuming a vanishing three-body force resulted in a
χ2
dof ≈ 0.86 for the three-body sector and χ2

dof ≈ 1.79
for the combined (correlated) two- and three-body sec-
tors. We also note here that the measurements of the
ground-state and excited two- and three-pion levels,
carried out in Ref. [42], follow the perturbative pre-
dictions of the NREFT approach [134].

Finally, it should be mentioned that the three-body
spectrum of Ref. [42] was recently analyzed in Ref.
[266] with a combination of variational approach and
Faddeev formalism (see also Ref. [232]). Including rel-
ativistic kinematics and even effects of lattice spac-
ing, the two and three-body spectra were qualitatively
described in a one-parameter fit corresponding to the
two-body interaction strength.

4.2 Three-body force

As noted above, a relevant output from lattice calcula-
tions in the three-particle sector is the three-body force.
The parameters of two-body interactions can be most
conveniently extracted in the two-particle sector, and
the interactions between more than three particles do
not show up yet explicitly in the elastic energy window.
The main problem in the extraction of the three-body
force is that its contribution is very much suppressed,
and a full control on the accuracy needs to be achieved,
to separate this small effect from much larger contribu-
tions, coming from the two-body rescattering.

An important remark is in order. As it is well known,
the notion of the three-body force is ambiguous. It
depends, for example, on a particular framework used
to describe the many-body system (in other words, the
system of equations that is satisfied by the many-body
scattering amplitude). Within a given framework, it
depends on the regularization used (for example, on
the ultraviolet cutoff). In addition, it is linked to the
off-shell behavior of the two-body amplitude that can
be demonstrated by using field redefinition or the uni-
tary transformations in the many-body systems (see,
e.g., Ref. [267] for a very concise discussion of the
subject). Consequently, comparing the results of two
different approaches, it is necessary to establish in
advance the relation between two definitions of the
three-body force. The most convenient way is to param-
eterize the three-body force in terms of physical observ-
ables and then compare these observables. For exam-
ple, this could be the regular part of the three-body

S-matrix at threshold, defined in Eq. (2.30) of Ref.
[136], or the particle-dimer (or particle-isobar) scatter-
ing length.

The first extraction of a three-body force from few-
body systems in lattice QCD at higher than physical
quark masses was performed by the NPLQCD collab-
oration in Ref. [202]. This paper also contained the
pertinent lattice calculations for up to 12 pions at
maximal isospin. In this work, the three-body force is
parametrized by the coupling ¯̄ηL

3 which was found to
be non-zero except for the heaviest quark mass. The
relation of this coupling constant to the (observable)
threshold amplitude is discussed in detail in Ref. [136].

The FVU formalism, discussed in Sect. 3 has also
been applied [214] to the analysis of the lattice data
from Ref. [202], extracting the three-body force C0.
Within the uncertainties and using a simple parametriza-
tion C0(

√
s,p, q) = c0 · 1pq , this three-body force was

found to be zero, c0 = (0.3 ± 2.3) × 10−6 MeV−2.
As mentioned above, this does not necessarily contra-
dict the findings of Ref. [202]. Later, the excited levels
of Ref. [42] for different boosts and irreps were ana-
lyzed with the RFT formalism, leading to a more pre-
cise determination of the three-body force [204]. Tech-
nically, the two- and three-body sectors were fitted
jointly, with a simple parametrization for the energy
dependence of the two-body input adjusted to the corre-
sponding two-body energy eigenvalues. The three-body
force was found to be non-zero. Even attempts to deter-
mine its energy dependence could be made, as the data
of Ref. [42] are much more precise and abundant than
those of Ref. [202]. In addition, the authors of Ref.
[204] calculated the three-to-three contact term from
LO ChPT and compared with the pertinent lattice val-
ues. While the energy-independent part was found to
be non-zero and in broad agreement with the LO ChPT
prediction, the energy-dependent piece appeared in dis-
agreement with that prediction.

Furthermore, the GWUQCD collaboration calcu-
lated the three-π+ spectrum for different quark masses,
box geometries, and boosts, mapping out a plethora of
states and carrying out the comparison with the FVU
predictions that were made under the assumption of
vanishing three-body forces [205]. A small subset of
results is shown in Fig. 3. A fair agreement was found
with a noticeable tension between the lattice data and
predictions, leading to a χ2

dof ≈ 2.68 or more, depend-
ing on the two-body input. Yet, Ref. [205] allowed, for
the first time, to track the pion mass dependence of
the three-body amplitude and its qualitative agreement
with the chiral extrapolation.

Subsequently, the ETMC collaboration calculated
the three-π+ spectrum at three different pion masses,
including the physical point for the first time [144]. The
extraction of the three-body force with the RFT for-
malism was compared with the LO ChPT prediction
for the three-to-three process. Similar to Ref. [204], the
three-body term was found to be non-zero, its energy-
independent part being in qualitative agreement with
LO ChPT, in contrast to the energy-dependent part.
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Later, the three-body force was extracted by the
HadronSpectrum collaboration [206], using the RFT
formalism. The pion mass in this calculation is rela-
tively large (Mπ ≈ 390 MeV). Within uncertainties
and different fit strategies/parametrizations tried, the
three-body term in the isotropic approximation was
found to be compatible with zero. This study can be
understood as a first step towards the production of
Dalitz plots from lattice QCD, because it included the
actual solution of the infinite-volume equivalent of the
finite-volume three-body problem, with lattice input.
In Ref. [206], some kinematical variables in the three-
to-three amplitude were fixed, to be able to produce
Dalitz plot-like distributions in the remaining variables.
In this context, it should be mentioned that the FVU
framework was recently extended to the infinite vol-
ume (albeit without lattice input), in order to study
the decay a1(1260) → πρ in coupled S- and D-waves.

Recently, the GWUQCD collaboration extracted the
three-body force [198] from the data of Ref. [205], using
the FVU formalism [198]. Similarly to what was done
in Ref. [204], the fit was performed without assuming
any particular energy dependence for the three-body
force. Each of the three-body energy eigenvalues was
fitted individually, while leaving two-body input fixed.
In general such a “tomography plot” allows one to map
out energy and pion-mass dependence of the three-body
force in terms of a local three-body scattering ampli-
tude T̄3, see Ref. [198] for more details and comparison
to C0 and Kdf,3. Then an energy-dependent global fit
was also carried out, isolating the energy-independent
and energy-dependent parts of the three-body force.

A summary plot, taken from Ref. [198], is pro-
vided in Fig. 5. In particular, it shows the nom-
inal value of the fitted three-body force in terms
of the isotropic (spectator-momentum independent)
parametrization K iso

df,3 = K iso,0
df,3 + (s/(9M2

π) − 1)K iso1
df,3

as a function of the I = 2 scattering length. This repre-
sentation allows one to compare dimensionless quanti-
ties, conveniently incorporating the leading order chiral
perturbation result, see Refs. [198,204] for more details.
A caveat regarding comparability of results in order.
As mentioned above, one cannot compare three-body
forces in different approaches because the former are
regulator dependent, which implies the dependence on
the sub-threshold isobar amplitude. For the π+π+π+

case, this dependence is weak [214] and a qualitative
comparison as shown in Fig. 5 should be possible, with
the approximate mapping from the FVU term C0 to
the RFT definition of Kdf,3 given in Refs. [198,215].

The overall picture is not entirely clear yet, in par-
ticular when comparing with the LO chiral predictions.
The figure also shows that, at higher pion masses, there
is, generally, a better chance to find a non-zero three-
body force. Note, however, that there is no reason to
expect that LO ChPT is valid for pion masses of up to
three times the physical one.

Finally, we mention the extraction of the three-body
force in ϕ4 theory, which was carried out recently
[136,207]. Even there is no direct relation with the

chiral extrapolation, these calculations, that were per-
formed at many different values of L, provide informa-
tion which can be useful in the analysis of data from
lattice QCD. For example, it has been argued there that
the effects of finite spacing might play an important
role in the extraction of derivative (energy-dependent)
couplings in the two-body sector, which are strongly
correlated with the three-body force.

4.3 Three kaons at maximal isospin

To conclude this section, we briefly discuss extensions
of three-body physics on the lattice to the strangeness
sector. As compared to the pion sector, there are
only few results focusing on the (multi-)strange sec-
tor [35,68,268]. The threshold energy levels of multi-
kaon states were first calculated by the NPLQCD col-
laboration [203,269] more than a decade ago. The first
determination of excited levels was achieved by the
GWUQCD collaboration in Ref. [146] from ensem-
bles that are generated with two mass-degenerate light
quarks (Nf = 2 QCD), using the nHYP-smeared clover
action. The valence strange quark mass was tuned by
setting the ratio R = (MK/Mπ)2 to its physical value.

Extending the FVU formalism of Refs. [213,214,239]
to the three-flavor sector allows for chiral extrapolations
along arbitrary MK(Mπ) trajectories, using constraints
from chiral symmetry. Such implementations are stan-
dard in the two-body sector [166,182,188,197,270–272],
but not yet explored for three-body systems. The two-
body input was extrapolated from the physical point,
using the inverse amplitude method and, in particu-
lar, the SU(3) chiral amplitude to one loop [189,273].
Low-energy constants were chosen from a recent deter-
mination [197] that includes many modern lattice QCD
data along different MK(Mπ) trajectories.

The NPLQCD lattice data for the I = 1 KK scat-
tering length [268] and the three-body threshold energy
shift [268] were well predicted, including their light
quark-mass dependence up to pion masses, for which
chiral extrapolations usually fail to converge (Mπ ≈
500 MeV). Second, the excited energy eigenvalues of the
GWUQCD collaboration were, at least qualitatively,
well predicted, though there were some discrepancies at
higher energies. These discrepancies might be a sign of
a three-body force, but this question cannot be settled
without more lattice data. Also, it should be mentioned
that the elastic window for the KKK system is partic-
ularly narrow due to the possibility of πKKK states.
This, again, points to the fact that unphysically heavy
pions can be advantageous in the study of multi-particle
processes on the lattice.

5 Decay into three-particle final states

The latest developments of the three-particle formalism
are not limited to the derivation of the quantization
condition and the extraction of the three-particle force
from lattice data. Recently, important progress has
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Fig. 5 Three-body force (I = 3) as a function of the
I = 26 scattering length for the energy-independent
(left) and energy-dependent (right) part. Results from
GWUQCD/FVU [198], ETMC/RFT [144] and BRS/RFT
[204] are shown by red circles, blue triangles and green dia-
monds, respectively. The leading order chiral prediction is

denoted by the dashed line. The dashed vertical lines show
the physical point. The FVU results were mapped to the def-
inition of Kdf,3 [198]. Note that RFT and FVU approaches
can only be compared approximately, e.g., due to different
regulator dependence

been achieved addressing decay processes with three-
particle final states. Namely, a formula that relates the
decay amplitudes in a finite and in the infinite volume,
has been derived in the NREFT approach [142] and,
later, in the RFT setting [143]. In addition, a gener-
alization to the case of non-rest frames, non-identical
particles and partial-wave mixing was discussed within
the RFT approach. It is clear that the latest develop-
ments will boost the study of three-particle decays on
the lattice. In this section, we give a brief overview of
the recent developments in the field.

Generally, decay processes in QCD can be formally
subdivided into two categories. The decays of parti-
cles which are stable in pure QCD can be attributed
to the first category. This includes, for example, the
weak decays K → 2π, K → 3π, but also electromag-
netic transitions γ∗ → 2π, γ∗ → 3π that represent an
important input in the study of the muon g − 2 factor.
Moreover, the decays that occur only when isospin is
not conserved, as e.g., in η → 3π, can be also included
here (in this case, a particle is stable in pure QCD with
equal quark masses, md = mu, and the decay amplitude
is proportional to (md−mu). Since the interactions that
lead to such decays are much weaker than strong inter-
actions, they can be considered at the first order in
perturbation theory. The particles in the unperturbed
theory are stable and their masses are located on the
real energy axis. In contrast to this, the strong decays,
like ρ → 2π or Δ → Nπ, belong to the second category.
Such unstable particles correspond to poles in the com-
plex energy plane. In order to extract the parameters
of these decays on the lattice (the real and imaginary
parts of the pole position), as well as the matrix ele-
ments containing these resonances (say, the electromag-
netic form factor of a resonance), one has to perform
analytic continuation of lattice data from the real axis
to a resonance pole.

Similar to the two- and three-particle scattering
amplitudes, discussed above, the decay amplitudes
obtained from a finite-volume calculation cannot be

simply mapped onto the physical ones in the limit
L → ∞. Again, this non-trivial volume dependence
can be attributed to the three-body final-state interac-
tion. Hence, in order to be able to interpret the lattice
results, one has to first derive a formula, which relates
the amplitudes in a finite and in the infinite volume. A
crucial point is that the final-state interactions repre-
sent a long-range phenomenon and, therefore, one may
utilize the effective field theories of QCD in order to
arrive at the desired result.

In their seminal paper, Lellouch and Lüscher [274]
have shown that the finite- and infinite-volume matrix
elements for the K → 2π decay are related by a sin-
gle factor (LL factor), which depends only on the ππ
phase shift and L. The LL factor contains all power-
law L-dependence. Thus, removing this factor, one may
perform the limit L → ∞. The absolute value of the
infinite-volume matrix element is obtained in this limit,
and the phase of this matrix element, which is deter-
mined by Watson’s theorem, can be also measured on
the same lattice configuration. Note also that K → 2π
belongs to the first category, and hence the analytic
continuation should not be considered.

The paper [274] paved the way to the systematic
investigation of two-body decays on the lattice. A com-
prehensive study of the K → ππ decays, carried out
recently by the RBC and UKQCD Collaborations [275],
is just one example of this. Various generalizations of
the Lellouch–Lüscher approach emerged. In particular,
it has been extended to moving frames [11,276] and
coupled two-body channels [277]. A simple and trans-
parent derivation of the Lellouch–Lüscher formula with
the use of NREFT formalism has been given in [278]
where, in particular, the analytic continuation to the
resonance pole is discussed in detail, see also Refs.
[279,280]. In relation to this work we also mention the
study of matrix elements of currents, corresponding to
the 1 → 2 transition [281,282], and of the timelike pion
form factor [283], which all feature the LL factor in a
finite volume.
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Despite significant progress in the description of
two-body decays, the decays into three particles have
remained terra incognita until very recently. The crucial
difference between two- and three-particle cases consists
in the fact that, in the two-particle system, there exists
a single LL factor that relates the matrix elements in a
finite and in the infinite volume. This is easy to under-
stand from kinematics alone. Indeed, in the center-of-
mass frame, the magnitude of the momenta of the decay
products is determined by the mass of the decaying
particle. Hence, there is no variable left for the LL fac-
tor to depend on. On the contrary, in three-particle
decays, the relative momenta are not completely fixed
by energy-momentum conservation and the LL factor
in general depends on the momenta. For this reason,
in order to extract the matrix element, it is convenient
to adopt a two-step approach. First, the momentum
dependence of the short-range part of the decay ver-
tex should be parametrized, e.g., via polynomials of a
given order. This parametrization is already built in
the NREFT approach [142], and can be conveniently
introduced in the RFT setting [143], expanding the
vertex in the vicinity of the decay threshold. Second,
the long-range part can be systematically calculated
(in both approaches) within effective theory in a finite
volume, leading to the momentum-dependent LL fac-
tor one is looking for. This LL factor depends on the
parameters of the interactions in the final state (to be
measured simultaneously with the matrix element), but
not on the interactions that lead to a particular decay.
The information about the latter is contained solely
in the coefficients of the above-mentioned polynomial
that should be fitted to the results of the lattice mea-
surements at different momenta of external particles.
Finally, the physical matrix element is obtained by com-
bining this polynomial with the long-range part, which
is determined by the solutions of an infinite-volume
integral equation that describes scattering in a final
state. The procedure described above represents an ana-
log of the LL formalism for a three-particle system.

6 Conclusions and outlook

Recent years have seen a surge of interest in the study
of three- (and more) particle systems on the lattice.
On the side of formalism, a major breakthrough was
associated with the derivation of the quantization con-
dition, which relates the finite-volume spectrum with
S-matrix elements in the three-particle sector. Several
physically equivalent formulations of the quantization
condition are available at present. In addition, a three-
particle analog of the Lellouch–Lüscher formula has
been derived recently, which enables one to perform
lattice measurements of three-particle decay matrix ele-
ments. These developments have boosted lattice simu-
lations in the three-particle sector which, at present, are
mainly focused on the extraction of the three-particle
force from the finite-volume energy levels.

The advance of the lattice studies may have far-
reaching implications in particle and nuclear physics.
First and foremost, this concerns three-particle pro-
cesses in the light quark sector, say, the decays of
charged and neutral kaons, η, η′, ω and a1(1260) mesons
[264]. Here, one should also mention the long-standing
problem with the Roper resonance [103], which decays
with a significant fraction into the ππN channel. There
are very interesting applications in the charm-quark
sector as well, for example, in the study of the pro-
cess X(3872) → DD̄∗ → DD̄π [284–286]. As for other
multi-meson systems, note that the study of pion, kaon,
and proton correlations in heavy ion collisions by the
ALICE@CERN collaboration [287] relies on the value of
the K−K− scattering length determined in a lattice cal-
culation [268]. Apart from this, the information about
multi-K− systems is relevant for the understanding of
strange nuclear matter and its implications to the equa-
tion of state of neutron stars. In particular, it is well
known that ultra-dense environments (such as those in
the core of neutron stars) allow for an appearance of
kaon condensates [288–291], that can soften the equa-
tion of state of neutron stars [289,290,292,293] (further
details on the antikaon interaction with baryonic mat-
ter can be found in reviews [164,294]). In this context,
quantifying multineutron forces is also necessary for the
equation of state of neutron matter in the extreme con-
ditions of a neutron star [295,296]. Recent advances
in lattice QCD on few-nucleon systems [297,298] com-
plement dedicated experimental programs, e.g., at the
FRIB facility [299].

In view of such perspectives, a question about the
optimal strategies for carrying out lattice calculations
in multi-particle systems becomes important. In the
present review, we have focused in particular on the
issue of chiral extrapolations. There are several reasons
to do this. First of all, the lattice calculations at present
are often carried out at larger than physical quark
masses. This will remain so in a foreseeable future, espe-
cially in the multi-particle sector. Hence, one has to
learn to perform a global fit to all available data, taken
at different quark masses, and even combine them with
experimental data, in order to reliably extract the phys-
ical quantities of interest. This cannot be achieved with-
out a robust control over the chiral extrapolations that
is provided by the use of the (unitarized versions of)
ChPT. Furthermore, for quark masses close to physical
ones, inelastic channels come close and there are only
few data points available in the elastic region, if the vol-
ume is not taken very large. Finally, it should be also
noted that, for large quark masses, some of the light
resonances in the ππ scattering (e.g., f0(500), ρ(770))
become bound states, see, e.g., [58,62,165,168]. Hence,
for larger quark masses and energies below the breakup
threshold, the three-particle problem effectively turns
into a two-particle one and, in some cases, it might be
possible to apply the Lüscher and Lellouch–Lüscher for-
malisms, combined with chiral extrapolation, in order
to extract three-particle observables.
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136. F. Romero-López, A. Rusetsky, N. Schlage, C. Urbach,
Relativistic N -particle energy shift in finite volume.
arXiv:2010.11715

137. B.S. DeWitt, Transition from discrete to continuous
spectra. Phys. Rev. 103, 1565 (1956)
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amplitude method and adler zeros. Phys. Rev. D 77,
056006 (2008). arXiv:0712.2763

192. P.C. Bruns, M. Mai, Chiral symmetry constraints on
resonant amplitudes. Phys. Lett. B 778, 43 (2018).
arXiv:1707.08983

193. J.R. Pelaez, G. Rios, Nature of the f0(600) from its
N(c) dependence at two loops in unitarized chiral per-
turbation theory. Phys. Rev. Lett. 97, 242002 (2006).
arXiv:hep-ph/0610397

194. M. Niehus, M. Hoferichter, B. Kubis, J. Ruiz de Elvira,
Two-loop analysis of the pion-mass dependence of the
ρ meson. arXiv:2009.04479
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Döring, Three pion spectrum in the I = 3 channel
from lattice QCD. Phys. Rev. D 101, 114507 (2020).
arXiv:1911.09047

206. M.T. Hansen, R.A. Briceño, R.G. Edwards, C.E.
Thomas, D.J. Wilson, The energy-dependent π+π+π+

scattering amplitude from QCD. Phys. Rev. Lett. 126,
012001 (2021). arXiv:2009.04931
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