

Review

Multi-particle systems on the lattice and chiral extrapolations: a brief review

Maxim Mai^{1,a}, Michael Döring^{1,2,b}, and Akaki Rusetsky^{3,4,c}

- ¹ The George Washington University, Washington, DC 20052, USA
- ² Thomas Jefferson Accelerator Facility, Newport News, VA 23606, USA
- ³ HISKP and BCTP, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
- ⁴ Tbilisi State University, 0186 Tbilisi, Georgia

Received 28 February 2021 / Accepted 19 May 2021 / Published online 11 June 2021 \odot The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract The extraction of two- and three-body hadronic scattering amplitudes and the properties of the low-lying hadronic resonances from the finite-volume energy levels in lattice QCD represents a rapidly developing field of research. The use of various modifications of the Lüscher finite-volume method has opened a path to calculate infinite-volume scattering amplitudes on the lattice. Many new results have been obtained recently for different two- and three-body scattering processes, including the extraction of resonance poles and their properties from lattice data. Such studies, however, require robust parametrizations of the infinite-volume scattering amplitudes, which rely on basic properties of S-matrix theory and—preferably—encompass systems with quark masses at and away from the physical point. Parametrizations of this kind, provided by unitarized Chiral Perturbation Theory, are discussed in this review. Special attention is paid to three-body systems on the lattice, owing to the rapidly growing interest in the field. Here, we briefly survey the formalism, chiral extrapolation, as well as finite-volume analyses of lattice data.

1 Introduction

Strong interactions govern the formation of protons, neutrons, and nuclei. Scattering and decay experiments provide access to strong interaction phenomena, implying that theoretical approaches should describe amplitudes which involve two or more asymptotically stable states. Quantum chromodynamics (QCD) on the lattice represents a framework for the ab initio access to such multiparticle amplitudes. However, pertinent calculations are performed at Euclidean times that allows a direct extraction of scattering amplitudes only at threshold [1]. Furthermore, calculations of lattice QCD (LOCD) are performed in small boxes. Since the spectrum in a finite volume is discrete, it is clear that, on the lattice, one does not have direct access to the scattering amplitudes. However, in his groundbreaking papers [2-4], Lüscher has shown that the quantization of the energy levels in a finite box can be turned into an advantage that allows one to circumvent the no-go theorem of Ref. [1]. In particular, the two-body energy levels, measured on the Euclidean lattice, can be directly mapped onto the two-body elastic scattering phase shift, which is defined in the infinite-volume Minkowski space. This novel idea paved the way to studies of scattering pro-

^ae-mail: maximmai@gwu.edu (corresponding author)

^be-mail: doring@gwu.edu

^ce-mail: rusetsky@hiskp.uni-bonn.de

cesses in lattice QCD, which have gained much popularity. The approach has been subject to different generalizations, including the application to study resonance decays and form factors, as well as the extension to three- and more particles. In the present review, we address some of these developments.

Hadronic systems are accessed in LQCD by calculating correlation functions on a discretized Euclidean space-time in a finite volume. Thus, the "raw" lattice results should be corrected for different lattice artifacts before a comparison to the real world can be made. Effective field theory methods can be used to treat each of these artifacts. First, there are the so-called discretization effects that are linked to the finite lattice spacing a. A continuum limit $a \to 0$ needs to be performed to relate lattice QCD results to physical quantities. In addition, one needs to establish a connection to physical units, referred to as scale-setting. Both these issues are related to practical aspects of LQCD calculations and are beyond the scope of the present review. More importantly, LQCD calculations are necessarily carried out in a finite volume. Consider for simplicity a spatially 1 cubic lattice with side length L. Imposing boundary conditions in the spatial directions leads to the quantization of the three-momenta of particles. For example, in case of periodic boundary conditions, the

¹ The Euclidean time dimension does not play any role in this review and will be always assumed to be infinite.

allowed momenta are $p = 2\pi n/L$ for $n \in \mathbb{Z}^3$. The spectrum in a finite volume is discrete as well, and the position of the energy levels depends on L. Then, it can be verified that the matrix elements, given by the sum of all Feynman diagrams, calculated in a finite volume, exhibit an irregular behavior in L. This is illustrated in the left panel of Fig. 1 which schematically shows a two-particle S-wave elastic amplitude, calculated in infinite and finite volume (in the latter case, the integration over three-momenta in the Feynman integrals is replaced by the summation over the discrete values). As seen from this figure, the amplitude in the infinite volume is a complex-valued smooth function of the energy. On the contrary, the amplitude in a finite volume is real and discontinuous: it has first-order poles at the energies corresponding to the discrete energy eigenvalues for a given L. Clearly, increasing L leads to the condensation of singularities on the real axis, but the limit $L \to \infty$ is not well defined. Hence, in a finite volume, one first needs to identify the quantities which exhibit smooth behavior for large L, and perform the limit $L \to \infty$ for these quantities only. This is the essence of Lüscher's method [5].

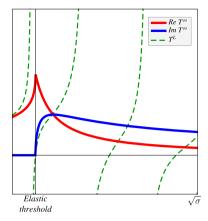
Over time, extensions of the two-body Lüscher formalism to moving frames and modified box geometries have been formulated [8–24]. These techniques mostly serve to calculate more energy eigenvalues in the elastic scattering energy interval to better sample the amplitude, in particular, when narrow resonance structures like the ρ -meson lead to rapid variations in energy. In this context, pion-pion scattering has been a prime subject for lattice QCD calculations, in isospin I=2[25-42], I = 1 [6,43-57], and I = 0 [58-62] channels. The πK and KK scattering has been studied in Refs. [35,47,63-71], $\pi\phi$ and $\pi\omega$ scattering has been addressed in the recent paper [72], while $I=2 \pi \rho$ scattering was calculated in Ref. [73], at pion masses sufficiently large to make the ρ -meson stable so that Lüscher's method might be used to extract phase shifts (see also Ref. [74] for a similar case). The scattering of mesons containing heavy quarks has been considered in Refs. [75–85], see also Ref. [86]. Furthermore, despite the increased complexity of the pertinent LQCD calculations, the field of excited baryons has seen a remarkable progress [87-99]. Meson-baryon scattering amplitudes have been calculated in Refs. [100–104], using Lüscher's method [3], see also Refs. [105–109]. A natural generalization of the Lüscher approach in the two-body sector consists in the inclusion of coupled two-body channels [12,15,17,110-115]. The application of the method in meson-meson scattering has been spearheaded by the Hadron Spectrum Collaboration [53, 58, 60, 116-120] with a recent highlight given by an eight-channel analysis of an exotic π_1 meson [121]. For reviews of the two-particle coupled channel sector, see Refs. [122–126]. In this review we can only discuss some of these developments, see Sect. 2.

The discussion of similar finite-volume techniques for three-hadron systems is one of the major goals of this manuscript and will be carried out in Sect. 3. There, we review the so-called quantization condition (an analog of the Lüscher equation), which relates the finitevolume three-particle spectrum to the parameters of the S-matrix. An alternative approach to the problem focuses on the calculation of the interaction-induced shifts of three- and more particle energy levels in perturbation theory [127–136]. Yet another methodology to access multi-particle amplitudes utilizes the so-called ordered double limit [137] ($\lim_{L\to0} \lim_{L\to\infty}$), with E denoting the total energy of the system. Such an approach was used in Ref. [138], extracting (complex-valued) amplitudes. For related works see Refs. [139–141]. These alternatives are outside of the scope of the present review.

Furthermore, finite-volume techniques can be used to study decays of resonances, as well as the matrix elements of currents. This will be discussed in Sect. 5, where we reflect on the latest developments related to the derivation of a three-body analog of the Lellouch–Lüscher formula that enables one to measure three-body decay amplitudes on the lattice [142,143].

Back to hadron spectroscopy on the lattice, we note that LQCD calculations are often carried out with quark masses larger than the physical ones. Hence, physical observables are obtained by using extrapolations in quark masses. Recently, simulations at physical quark masses in the two- and three-particle sectors have become feasible, see, e.g., Refs. [47,144,145]. One might argue that, with the advance of computing capabilities and better algorithms, extrapolations will soon become superfluous. However, the energy window between elastic and inelastic channels narrows when approaching lower pion masses, see, e.g., Refs. [144, 146]. Thus, access to phase shifts or other relevant quantities will be complicated by complex multiparticle dynamics and finite-volume effects. Then, exploring QCD resonance dynamics at heavier than physical pion masses and performing chiral extrapolations to the physical point represents a reasonable strategy.

The natural method to do this is to use input from Chiral perturbation theory (ChPT), as discussed in Sect. 2. At its core, ChPT relies on the expansion of the QCD Green's functions in small meson masses and momenta. Hence, the information about the quark mass dependence is encoded there by construction. On the other hand, the coefficients of such an expansion require input from either experiment or lattice calculations. Thus, there is a mutually advantageous relationship between lattice QCD and ChPT, which will help to advance our understanding of hadronic dynamics. This is illustrated in the right panel of Fig. 1 where the P-wave $\pi\pi$ phase shift is shown for different pion masses. At the physical point $(M_{\pi} = M_{\pi}^{\text{phys}})$, the chiral extrapolation should coincide with the experiment. As the pion mass increases, the ρ meson becomes narrower and LQCD can be used to scan the energy dependence at these unphysical masses. Unitary extensions of ChPT provide extrapolations both in the energy $\sqrt{\sigma}$ and pion mass, as the figure demonstrates. Turning the argument around, one may use ChPT parametrizations to fit the data both for physical and unphysical masses that allows for the most efficient use of all available information.



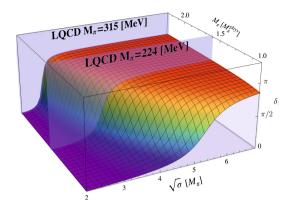


Fig. 1 Left: a schematic representation of the S-wave scattering amplitude in a scalar field theory as a function of two-body energy $\sqrt{\sigma}$, calculated in the infinite and and in a finite volume. Whereas the amplitude T^{∞} is smooth apart from threshold and complex, the real-valued finite-volume amplitude T^L has simple poles at the energies corresponding to the spectrum of the Hamiltonian in a finite volume;

Right: an example of the interplay between lattice QCD and ChPT in describing the $\pi\pi$ phase shift in the vicinity of the ρ -resonance. ChPT connects phase shifts at different energies and pion masses. The fixed- M_{π} planes contain constraints from experiment and lattice QCD calculations [6,7]

In the present review, we discuss the extraction of observables from lattice QCD calculations in the two-and three-particle sectors with a focus on the merger of finite-volume approach with methods of ChPT. The layout of the paper is as follows. In Sect. 2 we briefly consider foundations of unitarized ChPT and applications in the two-particle sector. Sect. 3 contains a brief review of existing three-body approaches in a finite volume. Applications of these approaches for the analysis of lattice data, with a focus on chiral extrapolations, are described in Sect. 4. Finally, latest developments, related to the treatment of three-particle decays in a finite volume, are considered in Sect. 5.

2 Chiral extrapolations

Chiral perturbation theory [147,148] and extensions thereof to the strangeness [149] and baryon sectors [150–154] is a systematic approach to low-energy QCD, which in many cases provides a benchmark for the calculations of observables in the (sub)threshold energy region [155–161]. By construction, ChPT offers an ideal tool for extrapolations of LQCD results to the physical quark masses. See the extensive discussions in the FLAG review [162].

If one aims at extracting complex resonance pole positions and residues of the scattering amplitude, one has to combine ChPT with the general principles of S-matrix theory: unitarity, analyticity and crossing symmetry. The list of successful applications of the method is extensive and covers both meson and baryon sectors, see, e.g., the reviews [163,164] and references therein. In the context of chiral extrapolations on the lattice, we highlight pioneering works extending unitarized chiral methods to unphysical quark masses [165,166], an early paper on the ρ extrapolation [167], extrapolations

of the (isoscalar) $f_0(500)$ [62,168], and a global analysis of $\pi\pi$ scattering in channels with different quantum numbers [7] that is discussed below in more detail. In most of these approaches, actual lattice data were analyzed, but chiral extrapolations have also been performed for other hadronic reactions [169,170]. Chiral extrapolations have been implemented in recent three-body studies as well, addressing the two-body subsystem at unphysical pion masses. These developments will be briefly discussed in Sect. 4.1.

There are numerous lattice calculations in the twopion sector, see e.g., Refs. [6,53,62,119,144,171]. These calculations cover a wide energy range and involve pions with the masses varying from the physical value up to 400 MeV. To make a full use of the available information at different pion masses, a parametrization of the scattering amplitude is required, which not only exhibits the correct analytic properties, but also implements correct chiral behavior.

In order to achieve this goal, various approaches have been used in the past. For example, the chiral unitary approach in SU(3) with NLO contact terms [180], which has been applied in Refs. [6,181,182] for extrapolations of the ρ resonance (see also Refs. [183,184] for related approaches). Unitarized U(3) ChPT [185–187] has been used for the $\pi\eta^{(\prime)}-K\bar{K}$ coupled-channel extrapolation of the $a_0(980)$ [188].

Another possibility for amplitude construction is provided by the so-called modified Inverse Amplitude Method (mIAM) [165,189–191]. Besides the usual constraints from perturbative ChPT at a given order, mIAM also fulfils chiral constraints on resonance trajectories [192]. While implementing the elastic unitarity exactly, this method relies on the full next-to-leading (NLO) chiral scattering amplitudes, obeying crossing symmetry at this order. The mIAM amplitude is independent of the renormalization scale, occurring in the UV-divergent loops. Note that extensions to two loops

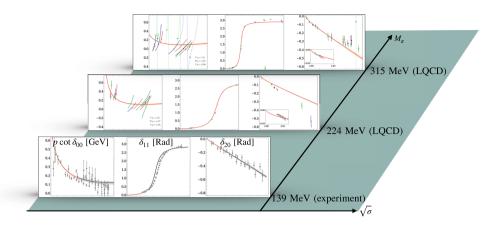


Fig. 2 Phase shifts of two-pion scattering in all isospin channels at physical and unphysical pion masses. Red curves show the result of the mIAM global fits [7] to the GWQCD

lattice data [6,62,171] at $M_{\pi} \simeq 224$ MeV and $M_{\pi} \simeq 315$ MeV. Experimental results [172-179] (gray data points) are not part of the fit and are plotted for comparison only

have also been worked out [193], including a chiral extrapolation of the ρ resonance [194], see Ref. [195] for a recent review.

Technically, mIAM is based on the leading-order $(T_2^{I\ell}(s))$ and the NLO $(T_4^{I\ell}(s))$ chiral amplitudes, projected onto a given isospin I and angular momentum ℓ . A unitary scattering amplitude $T_{\mathrm{mIAM}}^{I\ell}(s)$ can then be derived [189], using dispersion relations:

$$\begin{split} T_{\text{mIAM}}^{I\ell}(s) &= \frac{(T_2^{I\ell}(s))^2}{T_2^{I\ell}(s) - T_4^{I\ell}(s) + A_m^{I\ell}(s)} \,, \\ A_m^{I\ell}(s) &= T_4^{I\ell}(s_2) - \frac{(s_2 - s_A)(s - s_2)}{s - s_A} \\ &\times \left(\frac{\partial T_2^{I\ell}}{\partial s}(s_2) - \frac{\partial T_4^{I\ell}}{\partial s}(s_2) \right) \,. \end{split} \tag{2.1}$$

The term $A_m^{I\ell}(s)$ has been introduced in Refs. [191,196], in order to avoid the appearance of an unphysical pole at $T_2(s) = T_4(s)$. Further, s_A denotes the position of the Adler zero at NLO, given by the equation $T_2^{I\ell}(s_A) + T_4^{I\ell}(s_A) = 0$, and s_2 stands for the same quantity at leading order, obeying the equation $T_2^{I\ell}(s_2) = 0$.

The leading order chiral amplitude is a function of energy, Goldstone-boson mass, $M^2 = B(m_u + m_d)$, and pion decay constant in the chiral limit, f_0 . In the two-flavor case, the amplitude $T_4^{I\ell}$ involves two low-energy constants (LECs) \bar{l}_1 and \bar{l}_2 . Two additional low-energy constants \bar{l}_3 , \bar{l}_4 enter the NLO chiral amplitude, when M, f_0 are replaced by the physical pion mass and pion decay constant, using one-loop results [147]:

$$M_{\pi}^{2} = M^{2} \left(1 - \frac{M^{2}}{32\pi^{2} f_{0}^{2}} \bar{l}_{3} \right) ,$$

$$f_{\pi} = f_{0} \left(1 + \frac{M^{2}}{16\pi^{2} f_{0}^{2}} \bar{l}_{4} \right) . \tag{2.2}$$

For the description of the finite-volume LQCD spectra, various strategies have been applied in the past [62,144,168,197]. The most natural approach (see Ref.

[7,145,198]) is to re-write Eq. (2.1) in terms of the K-matrix, or

$$\cot \, \delta_{I\ell}^{\text{mIAM}}(s) = \frac{\sqrt{s}}{2k} \left(\frac{T_2^{I\ell}(s) - \bar{T}_4^{I\ell}(s) + A_m^{I\ell}(s)}{(T_2(s))^2} - 16\pi \operatorname{Re} J(s) \right), \tag{2.3}$$

where k is the magnitude of the center-of-mass meson momentum. Further, $\bar{T}_4^{I\ell} = T_4^{I\ell}(s) - T_2^{I\ell}(s)J(s)T_2^{I\ell}(s)$, where J(s) denotes the meson-meson loop in dimensional regularization.

The finite-volume spectrum of a two-meson system is determined using the Lüscher equation [4]

$$\prod_{\Gamma} \det \left(\mathcal{M}_{\ell n, \ell' n'}^{\Gamma}(s, \boldsymbol{P}, L) - \delta_{\ell \ell'} \delta_{n n'} \cot \delta_{\ell}(s) \right) = 0,$$
(2.4)

where \mathcal{M} denotes a known geometric function depending on the total three-momentum of the system P and irreducible representation of the cubic group Γ . The indices n,n' label multiple irreducible representations Γ for given values of ℓ,ℓ' . This equation holds independently of the isospin. Considering only leading S and P partial-wave contributions and the irreps $\Gamma=A_1^+$ and $\Gamma=T^-$, respectively, the determinant condition in the center-of-mass frame decomposes into the ordinary equation

$$\cot \delta_{I\ell}(s) = \frac{\mathcal{Z}_{00}(1, q^2)}{\pi^{3/2}q}, \qquad (2.5)$$

where $\ell=1$ for I=1 and $\ell=0$ for I=0,2. For generalizations and explicit formulas for the Lüscher functions \mathcal{Z} , which enter the expression of the matrix M^{Γ} , we refer the reader to, e.g., Refs. [3,4,22,23,38,57,199].

As already mentioned, mIAM was applied in different isospin channels of $\pi\pi$ scattering [7,62,144,168], leading to a very consistent picture across all three channels. For example, the result of a simultaneous analysis of finite-volume spectra, obtained by the GWUQCD collaboration [6,62,171], including also correlations between different isospin channels, is depicted in Fig. 2. The application of mIAM to the three-flavor sector is straightforward, but more tedious due to the fact that the strange quark mass is, typically, treated differently from that of the light ones. One way [55] is to fix the sum of all three quarks to the physical value. Alternatively, one could assume that the strange quark mass is fixed to its physical value [38,50,51,53,54]. LQCD results for the isovector channel along these two $m_s(m_l)$ "trajectories" have been studied recently in Ref. [197], using Inverse Amplitude Method, which is identical to the mIAM for this channel. Note that SU(3) ChPT to one loop in the IAM implementation was recently used in the first ever extrapolation for a system of three kaons at maximal isospin [146], see Sect. 4.3.

Finally, we wish to address the scale setting issue in the analysis of the LQCD results. First, we note that all involved scattering amplitudes are expressed in powers of a dimensionless quantity $M^2/(4\pi f_0)^2$. Thus one can hope to perform an analysis directly in lattice units. Still, the scattering amplitudes beyond leading order depend explicitly on the LECs \bar{l}_i , which are independent of the renormalization scale μ , but depend on the quark masses. In order to perform the extrapolation in the quark masses, it is necessary to introduce the quark-mass independent renormalized LECs, which then depend on μ :

$$l_i^r = \frac{\gamma_i}{32\pi^2} \left(\bar{l}_i + \log \frac{M^2}{\mu^2} \right)$$

$$\gamma_1 = \frac{1}{3}, \gamma_2 = \frac{2}{3}, \ \gamma_3 = -\frac{1}{2}, \ \gamma_4 = 2.$$
 (2.6)

Hence, for a fixed scale μ , one can make predictions for two-particle scattering at a different pion mass. Of course, fixing the μ to some dimensionful value requires to perform the scale setting. This issue was discussed at length in Ref. [7], where the influence of the $\log \mu$ term in Eq. (2.6) was found to be well below the statistical uncertainties. This issue was also discussed in Ref. [200]. Additionally, in some specific cases, such as the isovector channel, the chiral NLO amplitude T_4^{11} depends only on the difference $\bar{l}_{12} = \bar{l}_1 - \bar{l}_2$, which leads to an exact cancelling of the $\log \mu$ term and allows one to perform the analysis entirely in lattice units [144].

3 Three-body quantization condition

Recent years have witnessed a rapid increase of interest to the investigation of three-particle dynamics from lattice calculations. Such challenging studies became feasible only lately, owing to the increased computational resources, as well as the progress achieved on methods and algorithms [42, 136, 144, 146, 201–207]. In its turn, this progress was triggered by the development of the formalism that allows the mapping of the three-particle spectrum on the scattering observables in the two- and three-particle sectors, the so-called three-particle quantization condition. The work in this direction started in 2012 [208]. During the next few years, the three-body quantization condition has been derived in three different frameworks, usually termed as relativistic field theory (RFT) [209,210], the non-relativistic effective field theory (NREFT) [211,212] and finite volume unitarity (FVU) [213, 214] approaches, see Refs. [215, 216] for recent reviews. Recently, another approach based on time-ordered perturbation theory was derived [217], and used to relate some of the above approaches [218]. We note also the earlier work [219], where the threebody analog of the Lüscher equation has been written down in the particle-dimer picture. Overall, this development has boosted activities in the field, as seen, e.g., from Refs. [134, 135, 140, 198, 217, 220–252]. Note also earlier work on related issues [253–256].

Three alternative but essentially equivalent versions of the three-body quantization condition are high-lighted below. Those are the aforementioned NREFT [211,212], RFT [209,210] and FVU [213,214] approaches. Their applications in the analysis of lattice data will be reviewed in Sect. 4. In the following, we will consider the main features of three formalisms and the links between them. Obviously, the details are too lengthy for this short review, and we refer the reader to the corresponding original papers. To ease the notation, we additionally restrict the discussion to the case of three identical particles of a mass m. In addition, Z^2 symmetry is assumed to hold, under which all Green's functions with an odd number of external legs vanish identically.

The common feature of all approaches is the identification of the appearing intermediate states in the scattering amplitude that can go on-shell. Such intermediate states are the only source of the power-law (in L) finite-volume corrections, while the off-shell states give only exponentially suppressed corrections in L, see, e.g., Ref. [4]. Taking L much larger than the inverse mass of a particle, one may neglect these exponentially suppressed corrections completely. Restricting the centerof-mass energy of three particles to $3m < \sqrt{s} < 5m$, only the three-body intermediate states can go onshell. Then, in order to arrive at the quantization condition, one has to re-sum all such contributions in a finite volume and search for the position of the poles of the Green's function. At this point, each of the abovementioned formalisms takes a different path:

■ The NREFT formalism [211,212] is based on nonrelativistic effective Lagrangians. Thus, only the forward propagation in time is allowed, and the virtual creation/annihilation into pairs is prohibited but is implicitly contained in the effective cou-

plings. Within this setting, only three-body intermediate states emerge by construction, when the total energy in the center-of-mass frame is below 5m. In addition, the approach of Refs. [211,212] uses the so-called particle-dimer picture that renders the bookkeeping of Feynman diagrams in the three-particle case very simple and transparent. It should be stressed that the particle-dimer picture is not an approximation but a mathematically equivalent description of a three-particle system. Also, it does not imply the existence of a stable two-body bound state (the same remarks apply to isobars used in the FVU approach discussed below).

The three-particle quantization condition follows from the Faddeev equation for the particle-dimer scattering amplitude, written down in a finite volume, where all three-momenta are discretized as $p = 2\pi n/L$ with $n \in \mathbb{Z}^3$. Such an amplitude is singular at the energies corresponding to the eigenvalues of the Hamiltonian in a finite volume. In the simplest case, assuming that pair interactions occur only in the S-wave and the particle-dimer interaction contains only the non-derivative term with coupling H_0 , the quantization condition takes the form:

$$0 = \det \left(\hat{\tau}_{L}(E)^{-1} - Z(E) \right) ,$$

$$[Z(E)]_{pq} = \frac{1}{p^{2} + q^{2} + pq - mE} + \frac{H_{0}(\Lambda)}{\Lambda^{2}} ,$$

$$8\pi [\hat{\tau}_{L}(E)]_{pq}^{-1} = \delta_{pq} \left(p^{*} \cot \delta(p^{*}) - \frac{4\pi}{L^{3}} \sum_{l} \frac{1}{p^{2} + l^{2} + pl - mE} \right) .$$
(3.1)

Here $E=\sqrt{s}-3m$, whereas Z and $\hat{\tau}_L$ are the three-body kernel of the Faddeev equation and the finite-volume two-body scattering amplitude, respectively. Each of these elements enters as a matrix in the space of spectator momenta. We also note here that the UV behaviour of the spectator momenta is regulated by a hard cutoff Λ , while in the sum, entering the definition of $\hat{\tau}_L^{-1}$, the dimensional regularization is implicit. The S-wave phase shift is denoted by $\delta(p^*)$ for $p^*=\sqrt{3/4\,p^2-mE}$.

Note that, although the above quantization condition was derived, dropping higher partial waves in pair interactions, as well as higher order (derivative) particle-dimer couplings, these can be taken into account without much ado. Relativistic corrections can also be included systematically. It should be realized that the crucial feature of NREFT is barring the backward propagation as well as the pair creation/annihilation, and not the use of the non-relativistic dispersion law for a single particle. In fact, the relativistic kinematics in this approach can be easily implemented along the lines suggested in Refs. [257,258]. At the leading order this was

demonstrated in Ref. [142], and the generalization to higher orders is in progress.

The RFT formalism [209,210] approaches the problem using relativistic Feynman diagrams. As a result, one has to sort all emerging diagrams into three-particle reducible ones (i.e., those which can be made disconnected by cutting exactly three particle lines) and the three-particle irreducible ones (all the rest). The irreducible diagrams are replaced by their infinite-volume counterparts, dropping exponentially suppressed contributions. Collecting all terms that lead to power-law corrections, the RFT quantization condition in the simplest case takes the form:

$$0 = \det\left(L^{3}\left(\tilde{F}/3 - \tilde{F}\left(\tilde{K}_{2}^{-1} + \tilde{F} + \tilde{G}\right)^{-1}\tilde{F}\right)^{-1} + K_{df,3}\right),$$

$$[\tilde{F}(\sqrt{s})]_{pq} = \delta_{pq} \frac{H(p)}{4E_{p}} \left(\frac{1}{L^{3}} \sum_{a} - \int_{PV} \frac{d^{3}a}{(2\pi)^{3}}\right)$$

$$\times \frac{H_{2}(a, -p - q)}{4E_{a}E_{p+q}(\sqrt{s} - E_{p} - E_{a} - E_{p+q})},$$

$$[\tilde{G}(\sqrt{s})]_{pq} = \frac{H(p)H(q)}{L^{3}4E_{p}E_{q}((\sqrt{s} - E_{p} - E_{q})^{2} - (p+q)^{2} - m^{2})},$$

$$[\tilde{K}_{2}(\sqrt{s})]_{pq} = \delta_{pq} \frac{32\pi E_{p}\sqrt{\sigma_{p}}}{p^{*}\cot\delta(p^{*}) + |p^{*}|(1 - H(p))}.$$
(3.2)

Further details of the derivation can be found in a comprehensive summary given in Ref. [215]. Again, the quantization condition arises as a determinant equation with respect to the spectator momenta. In that, the functions $H(\boldsymbol{p})$, $H_2(\boldsymbol{p})$ provide a smooth cutoff at large values of momenta. Additionally, the kinematical variables are defined as $\sigma_x = (\sqrt{s} - E_x)^2 - x^2$ and $E_x = \sqrt{x^2 + m^2}$, while p^* stands for the magnitude of the relative three-momenta defined in the two-body subsystem. The two-body interactions are encoded in the K-matrix related quantity \tilde{K}_2 , while $K_{\rm df,3}$ parametrizes what can be termed the genuine three-body force within this approach.

Note that the propagator \tilde{G} that describes the rearrangement between the particle pair and the spectator, is written down in relativistic-invariant form. This on-shell form does not emerge from the beginning in perturbation theory. However, since the difference between \hat{G} and the original expression obtained in perturbation theory represents a lowenergy polynomial, it was possible to rewrite the quantization equation in terms of the G [236]. It is implicitly assumed here that the difference should be accounted for by the change in the three-body regular term $K_{\rm df,3}$. The choice of the relativisticinvariant form for \tilde{G} has far-reaching implications. It can be shown now that the $K_{df,3}$ in this equation has to be relativistic-invariant as well. Moreover, the quantization condition in non-rest frames can be straightforwardly written down in terms of the same $K_{df,3}$.

■ The FVU formalism [213,214] takes another approach, starting from three-body unitarity as a guiding principle for the construction of a relativistic threebody scattering amplitude. This approach is based on the observation that the only diagrams, which lead to the power-law corrections in a finite volume, are those that contribute to three-body unitarity through their imaginary parts [259,260], see also Refs. [261–263]. In order to carry out practical implementations of this idea, the dynamics of the three-body system in the FVU approach is formally separated into a cluster of two-body states (called isobar) and a spectator. This allows one to derive analytic constraints on the form of the isobar propagator as well as the Bethe-Salpeter kernel for the isobar-spectator interaction.² In a finite volume, discretizing three-momenta, this formulation leads to a three-body quantization condition. In its simplest form, this condition reads

$$0 = \det \left(B_0 + C_0 - E_L [K^{-1}/(32\pi) + \Sigma_L] \right),$$

$$[\Sigma_L(\sqrt{s})]_{pq} = \delta_{pq}^3 \frac{\sigma_p}{L^3} \sum_{k} \frac{\sqrt{\sigma_p}}{\sqrt{s} - E_p} \frac{1}{8E_{k^*}^3 (\sigma_p - 4E_{k^*}^2)},$$

$$[B_0(\sqrt{s})]_{pq}^{-1} = -2E_{p+q} (\sqrt{s} - E_p - E_q - E_{p+q}),$$

$$[E_L]_{pq} = \delta_{pq}^3 2L^3 E_p,$$

$$[K^{-1}(s)]_{pq} = \delta_{pq}^3 p^* \cot \delta(p^*).$$
(3.3)

The asterisk as a superscript means that the pertinent quantity is calculated in the two-body rest frame. The UV divergences in this approach, like other approaches, can be tamed in different ways. For example, in Ref. [214], this has been achieved using smooth cutoff functions. In a more recent work [198], the divergences of the isobar self-energy were regularized, using subtractions in σ and putting a hard cutoff on the spectator momenta (p, q). The genuine two and three-body forces are encoded in the scattering phase shift $\delta(p^*)$ and the isobar-spectator contact term C_0 , which is a real-valued function of energy and spectator momenta.

The above approach makes no direct connection to a Lagrangian formalism. However, one can interpret its building blocks in a diagrammatic language as illustrated to the top of Fig. 3. The term B_0 can be referred to as the one-particle exchange term in forward time propagation (Fig. 3b) and the term $(K^{-1}/(32\pi) + \Sigma_L)^{-1}$ of Eq. (3.3) corresponds to the isobar-spectator propagation shown in Fig. 3a. Finally, we note that generalizations of the above condition to moving frames and three-flavor sector can be found in Refs. [171,198,239].

To summarize, in their basic form, all approaches lead to a very similar general form of the quantization condition. In contrast to the two-body case [5], the determinant that appears in the quantization condition of Eqs. (3.1), (3.2) or (3.3) depends, in addition, on the spectator momenta. Explicit equivalence between RFT and FVU formalisms was shown in Ref. [218], whereas the correspondence of the infinite-volume approaches was discussed in Ref. [238]. Also, it was shown in Ref. [212] that topologies arising in the RFT formalism have exact correspondence to those in the NREFT approach.

It should be also noted that, in recent years, different generalizations of the basic formalism have been worked out in different approaches. For example, the coupling of two- and three-particle channels has been considered withing RFT setting in Ref. [227]. In the same setting, two-particle subsystems with spin were studied in Ref. [241]. The case of non-identical particles has been addressed within RFT and NREFT settings in Refs. [246,251]. Different isospin channels in the three-pion final state have been included within the same settings in Refs. [247,252], and Refs. [204,239] consider the generalization of the approach to moving frames within the RFT and FVU settings. The threshold expansion was checked within the RFT and NREFT settings in Refs. [134,135]. Shallow bound states were studied within the RFT and NREFT settings in Refs. [211, 265], reproducing the earlier result obtained within the potential scattering theory [222].

Finally, we briefly consider the workflow in the process of fitting the data. In case of the two-body Lüscher equation, an observable quantity—the phase shift—can be directly extracted from the measured energy levels. This is no longer the case in three-particle systems, where the unphysical quantities—the regular amplitudes $(H_0, K_{df,3})$ or C_0 , respectively)—are determined in a first step by fitting them to the three-body lattice spectrum. Or, more generally, these quantities are fit together with the K-matrix to the two and three-body lattice spectrum simultaneously. In a second step, the physical amplitudes are then determined through the solution of integral equations in the infinite volume, using this input. The need of the two-step approach constitutes a major difference to the two-body case but does not pose a conceptual problem.

A final remark concerns the "three-body forces" H_0 , $K_{\rm df,3}$ or C_0 in the different approaches. As discussed, their values cannot be compared directly because they are defined differently. In addition, they depend on the regulator of the three-body equation, as well as on the details of the chosen parametrization of the two-body input in the subthreshold region. In that sense, the three-body force is not an observable.

4 Analysis of lattice data

In this section, we review the use of the discussed finitevolume frameworks for the analysis of lattice data. Due to the limited scope of the present review, we focus on

² Note that a relativistic infinite-volume amplitude [260], constructed along the same lines, was used recently [264] to address Dalitz plots of the reaction $\tau \to \nu_{\tau}(a_1(1260) \to \pi\pi\pi)$.

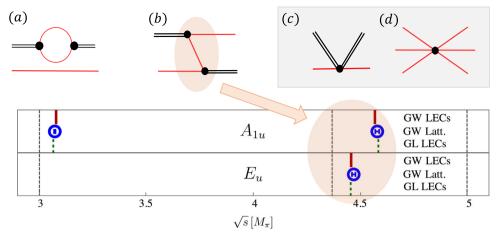


Fig. 3 Top: a Isobar-spectator propagator; b exchange process; c isobar-spectator interaction vs d the three-pion vertex in ChPT. Bottom: The energy spectrum of three pions at maximal isospin from Ref. [205], as calculated in lattice QCD (GW Latt.) and predicted from FVU with IAM extrapolation of the two-body input using LECs from Ref.

[7] (GW, red vertical lines) and Ref. [147] (GL, dotted vertical lines). The energy shifts from the noninteracting levels (dashed lines) are predicted, using the interaction kernel (b) fixed from unitarity, as highlighted. See text for further explanations

applications that involve chiral extrapolations including an outlook for these methods given in Sect. 6.

4.1 Chiral extrapolations for three pions at maximal isospin

In a three-pion system, ChPT describes the quark mass dependence of both the two-particle and three-particle interactions, which are encoded in the non-singular kernel (H_0 , $K_{df,3}$ or C_0 , in different approaches). The former is far more important for non-resonant systems like three π^+ . This can be seen, e.g., from the perturbative expression of the ground-state energy shift, given in Ref. [131]—there, the contribution of the three-body force comes at next-to-next-to-next-to-leading (N³LO) order in the expansion in 1/L.

Furthermore, owing to three-particle unitarity [260], the exchange diagrams, shown in Fig. 3b, are determined by the same two-body input as the ones shown in Fig. 3a. The exchange term (in the u-channel) produces known relative and absolute interaction strengths in different partial waves/irreducible representations (irreps) in the infinite/finite volume. Therefore, the isobar-spectator interaction in, e.g., the A_{1u} and E_u irreps is a prediction, directly stemming from threebody unitarity. This prediction manifests itself in the size of the energy shifts in the excited states, as highlighted in orange in Fig. 3. As the figure shows, the predictions based on unitarity and lattice data for these two irreps indeed agree, if the three-body force is set to zero; in conclusion, three-body unitarity is directly visible in the lattice data. Note that all approaches discussed in Sect. 3 contain the exchange contribution.

The first chiral extrapolation of three-body finite-volume spectra was performed in Ref. [214], using the FVU framework and IAM for the two-body input. The main result of the study of the three-pion lattice spec-

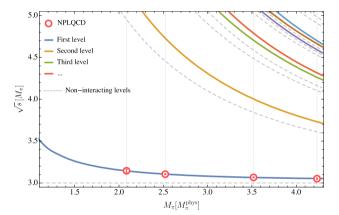


Fig. 4 Chiral extrapolation of the $\pi^+\pi^+\pi^+$ finite-volume spectrum, taken from Ref. [214]. Full and dashed lines denote the interacting and non-interacting energy eigenvalues as a function of pion mass for a fixed volume L=2.5 fm. The data in red show results of the NPLQCD lattice calculation [202]

trum in this approach is depicted in Fig. 4, left panel, showing a prediction for the excited level spectrum of three pions at maximal isospin, as a function of the pion mass for a fixed lattice volume (L=2.5 fm). The figure also demonstrates that working at unphysically large pion masses can actually be an advantage, because more energy eigenvalues can be found in the elastic region $3M_\pi < \sqrt{s} < 5M_\pi$, allowing for a finer-grained sampling of the amplitude. As the figure shows, the chiral extrapolation matches the NPLQCD lattice calculation for the threshold energy level. The extraction of the three-body force, also performed in Ref. [214], is discussed in the following section.

Next, we consider the chiral extrapolation of the three-body force. Note that since FVU does not oper-

ate directly with Feynman diagrams, a certain effort is needed to properly map ChPT to the FVU input—for example, the six-pion contact term in ChPT (Fig. 3d) should be related to the isobar-spectator vertex, see Fig. 3c. This has been discussed recently, with explicit expressions given in Eqs. (4-6) of Ref. [198].

The first lattice QCD calculation producing excited states for the three-pion system at maximal isospin was performed in Ref. [42]. Using, again, ChPT to NLO for the two-body input, and extending the FVU formalism to moving frames and different irreps (the latter based on Ref. [237]), these levels were predicted in Ref. [239]. Assuming a vanishing three-body force resulted in a $\chi^2_{\rm dof} \approx 0.86$ for the three-body sector and $\chi^2_{\rm dof} \approx 1.79$ for the combined (correlated) two- and three-body sectors. We also note here that the measurements of the ground-state and excited two- and three-pion levels, carried out in Ref. [42], follow the perturbative predictions of the NREFT approach [134].

Finally, it should be mentioned that the three-body spectrum of Ref. [42] was recently analyzed in Ref. [266] with a combination of variational approach and Faddeev formalism (see also Ref. [232]). Including relativistic kinematics and even effects of lattice spacing, the two and three-body spectra were qualitatively described in a one-parameter fit corresponding to the two-body interaction strength.

4.2 Three-body force

As noted above, a relevant output from lattice calculations in the three-particle sector is the three-body force. The parameters of two-body interactions can be most conveniently extracted in the two-particle sector, and the interactions between more than three particles do not show up yet explicitly in the elastic energy window. The main problem in the extraction of the three-body force is that its contribution is very much suppressed, and a full control on the accuracy needs to be achieved, to separate this small effect from much larger contributions, coming from the two-body rescattering.

An important remark is in order. As it is well known, the notion of the three-body force is ambiguous. It depends, for example, on a particular framework used to describe the many-body system (in other words, the system of equations that is satisfied by the many-body scattering amplitude). Within a given framework, it depends on the regularization used (for example, on the ultraviolet cutoff). In addition, it is linked to the off-shell behavior of the two-body amplitude that can be demonstrated by using field redefinition or the unitary transformations in the many-body systems (see, e.g., Ref. [267] for a very concise discussion of the subject). Consequently, comparing the results of two different approaches, it is necessary to establish in advance the relation between two definitions of the three-body force. The most convenient way is to parameterize the three-body force in terms of physical observables and then compare these observables. For example, this could be the regular part of the three-body

S-matrix at threshold, defined in Eq. (2.30) of Ref. [136], or the particle-dimer (or particle-isobar) scattering length.

The first extraction of a three-body force from few-body systems in lattice QCD at higher than physical quark masses was performed by the NPLQCD collaboration in Ref. [202]. This paper also contained the pertinent lattice calculations for up to 12 pions at maximal isospin. In this work, the three-body force is parametrized by the coupling $\bar{\eta}_3^L$ which was found to be non-zero except for the heaviest quark mass. The relation of this coupling constant to the (observable) threshold amplitude is discussed in detail in Ref. [136].

The FVU formalism, discussed in Sect. 3 has also been applied [214] to the analysis of the lattice data from Ref. [202], extracting the three-body force C_0 . Within the uncertainties and using a simple parametrization $C_0(\sqrt{s}, \boldsymbol{p}, \boldsymbol{q}) = c_0 \cdot \mathbb{1}_{\boldsymbol{p}\boldsymbol{q}}$, this three-body force was found to be zero, $c_0 = (0.3 \pm 2.3) \times 10^{-6} \text{ MeV}^{-2}$. As mentioned above, this does not necessarily contradict the findings of Ref. [202]. Later, the excited levels of Ref. [42] for different boosts and irreps were analyzed with the RFT formalism, leading to a more precise determination of the three-body force [204]. Technically, the two- and three-body sectors were fitted jointly, with a simple parametrization for the energy dependence of the two-body input adjusted to the corresponding two-body energy eigenvalues. The three-body force was found to be non-zero. Even attempts to determine its energy dependence could be made, as the data of Ref. [42] are much more precise and abundant than those of Ref. [202]. In addition, the authors of Ref. [204] calculated the three-to-three contact term from LO ChPT and compared with the pertinent lattice values. While the energy-independent part was found to be non-zero and in broad agreement with the LO ChPT prediction, the energy-dependent piece appeared in disagreement with that prediction.

Furthermore, the GWUQCD collaboration calculated the three- π^+ spectrum for different quark masses, box geometries, and boosts, mapping out a plethora of states and carrying out the comparison with the FVU predictions that were made under the assumption of vanishing three-body forces [205]. A small subset of results is shown in Fig. 3. A fair agreement was found with a noticeable tension between the lattice data and predictions, leading to a $\chi^2_{\rm dof} \approx 2.68$ or more, depending on the two-body input. Yet, Ref. [205] allowed, for the first time, to track the pion mass dependence of the three-body amplitude and its qualitative agreement with the chiral extrapolation.

Subsequently, the ETMC collaboration calculated the three- π^+ spectrum at three different pion masses, including the physical point for the first time [144]. The extraction of the three-body force with the RFT formalism was compared with the LO ChPT prediction for the three-to-three process. Similar to Ref. [204], the three-body term was found to be non-zero, its energy-independent part being in qualitative agreement with LO ChPT, in contrast to the energy-dependent part.

Later, the three-body force was extracted by the HadronSpectrum collaboration [206], using the RFT formalism. The pion mass in this calculation is relatively large ($M_{\pi} \approx 390 \text{ MeV}$). Within uncertainties and different fit strategies/parametrizations tried, the three-body term in the isotropic approximation was found to be compatible with zero. This study can be understood as a first step towards the production of Dalitz plots from lattice QCD, because it included the actual solution of the infinite-volume equivalent of the finite-volume three-body problem, with lattice input. In Ref. [206], some kinematical variables in the threeto-three amplitude were fixed, to be able to produce Dalitz plot-like distributions in the remaining variables. In this context, it should be mentioned that the FVU framework was recently extended to the infinite volume (albeit without lattice input), in order to study the decay $a_1(1260) \to \pi \rho$ in coupled S- and D-waves.

Recently, the GWUQCD collaboration extracted the three-body force [198] from the data of Ref. [205], using the FVU formalism [198]. Similarly to what was done in Ref. [204], the fit was performed without assuming any particular energy dependence for the three-body force. Each of the three-body energy eigenvalues was fitted individually, while leaving two-body input fixed. In general such a "tomography plot" allows one to map out energy and pion-mass dependence of the three-body force in terms of a local three-body scattering amplitude \bar{T}_3 , see Ref. [198] for more details and comparison to C_0 and $K_{\rm df,3}$. Then an energy-dependent global fit was also carried out, isolating the energy-independent and energy-dependent parts of the three-body force.

A summary plot, taken from Ref. [198], is provided in Fig. 5. In particular, it shows the nominal value of the fitted three-body force in terms of the isotropic (spectator-momentum independent) parametrization $K_{\rm df,3}^{\rm iso}=K_{\rm df,3}^{\rm iso,0}+(s/(9M_\pi^2)-1)K_{\rm df,3}^{\rm iso1}$ as a function of the I=2 scattering length. This representation allows one to compare dimensionless quantities, conveniently incorporating the leading order chiral perturbation result, see Refs. [198, 204] for more details. A caveat regarding comparability of results in order. As mentioned above, one cannot compare three-body forces in different approaches because the former are regulator dependent, which implies the dependence on the sub-threshold isobar amplitude. For the $\pi^+\pi^+\pi^+$ case, this dependence is weak [214] and a qualitative comparison as shown in Fig. 5 should be possible, with the approximate mapping from the FVU term C_0 to the RFT definition of $\mathcal{K}_{df,3}$ given in Refs. [198,215].

The overall picture is not entirely clear yet, in particular when comparing with the LO chiral predictions. The figure also shows that, at higher pion masses, there is, generally, a better chance to find a non-zero three-body force. Note, however, that there is no reason to expect that LO ChPT is valid for pion masses of up to three times the physical one.

Finally, we mention the extraction of the three-body force in φ^4 theory, which was carried out recently [136,207]. Even there is no direct relation with the

chiral extrapolation, these calculations, that were performed at many different values of L, provide information which can be useful in the analysis of data from lattice QCD. For example, it has been argued there that the effects of finite spacing might play an important role in the extraction of derivative (energy-dependent) couplings in the two-body sector, which are strongly correlated with the three-body force.

4.3 Three kaons at maximal isospin

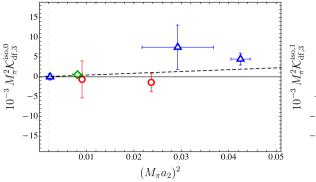
To conclude this section, we briefly discuss extensions of three-body physics on the lattice to the strangeness sector. As compared to the pion sector, there are only few results focusing on the (multi-)strange sector [35,68,268]. The threshold energy levels of multi-kaon states were first calculated by the NPLQCD collaboration [203,269] more than a decade ago. The first determination of excited levels was achieved by the GWUQCD collaboration in Ref. [146] from ensembles that are generated with two mass-degenerate light quarks $(N_f=2~\rm QCD)$, using the nHYP-smeared clover action. The valence strange quark mass was tuned by setting the ratio $R=(M_K/M_\pi)^2$ to its physical value.

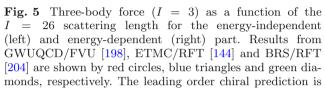
Extending the FVU formalism of Refs. [213,214,239] to the three-flavor sector allows for chiral extrapolations along arbitrary $M_K(M_\pi)$ trajectories, using constraints from chiral symmetry. Such implementations are standard in the two-body sector [166,182,188,197,270–272], but not yet explored for three-body systems. The two-body input was extrapolated from the physical point, using the inverse amplitude method and, in particular, the SU(3) chiral amplitude to one loop [189,273]. Low-energy constants were chosen from a recent determination [197] that includes many modern lattice QCD data along different $M_K(M_\pi)$ trajectories.

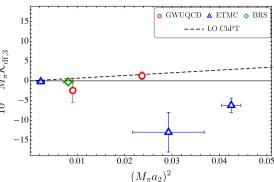
The NPLQCD lattice data for the I = 1 KK scattering length [268] and the three-body threshold energy shift [268] were well predicted, including their light quark-mass dependence up to pion masses, for which chiral extrapolations usually fail to converge $(M_{\pi} \approx$ 500 MeV). Second, the excited energy eigenvalues of the GWUQCD collaboration were, at least qualitatively, well predicted, though there were some discrepancies at higher energies. These discrepancies might be a sign of a three-body force, but this question cannot be settled without more lattice data. Also, it should be mentioned that the elastic window for the KKK system is particularly narrow due to the possibility of πKKK states. This, again, points to the fact that unphysically heavy pions can be advantageous in the study of multi-particle processes on the lattice.

5 Decay into three-particle final states

The latest developments of the three-particle formalism are not limited to the derivation of the quantization condition and the extraction of the three-particle force from lattice data. Recently, important progress has







denoted by the dashed line. The dashed vertical lines show the physical point. The FVU results were mapped to the definition of $\mathcal{K}_{\mathrm{df},3}$ [198]. Note that RFT and FVU approaches can only be compared approximately, e.g., due to different regulator dependence

been achieved addressing decay processes with three-particle final states. Namely, a formula that relates the decay amplitudes in a finite and in the infinite volume, has been derived in the NREFT approach [142] and, later, in the RFT setting [143]. In addition, a generalization to the case of non-rest frames, non-identical particles and partial-wave mixing was discussed within the RFT approach. It is clear that the latest developments will boost the study of three-particle decays on the lattice. In this section, we give a brief overview of the recent developments in the field.

Generally, decay processes in QCD can be formally subdivided into two categories. The decays of particles which are stable in pure QCD can be attributed to the first category. This includes, for example, the weak decays $K \to 2\pi, K \to 3\pi$, but also electromagnetic transitions $\gamma^* \to 2\pi, \, \gamma^* \to 3\pi$ that represent an important input in the study of the muon g-2 factor. Moreover, the decays that occur only when isospin is not conserved, as e.g., in $\eta \to 3\pi$, can be also included here (in this case, a particle is stable in pure QCD with equal quark masses, $m_d = m_u$, and the decay amplitude is proportional to (m_d-m_u) . Since the interactions that lead to such decays are much weaker than strong interactions, they can be considered at the first order in perturbation theory. The particles in the unperturbed theory are stable and their masses are located on the real energy axis. In contrast to this, the strong decays, like $\rho \to 2\pi$ or $\Delta \to N\pi$, belong to the second category. Such unstable particles correspond to poles in the complex energy plane. In order to extract the parameters of these decays on the lattice (the real and imaginary parts of the pole position), as well as the matrix elements containing these resonances (say, the electromagnetic form factor of a resonance), one has to perform analytic continuation of lattice data from the real axis to a resonance pole.

Similar to the two- and three-particle scattering amplitudes, discussed above, the decay amplitudes obtained from a finite-volume calculation cannot be simply mapped onto the physical ones in the limit $L \to \infty$. Again, this non-trivial volume dependence can be attributed to the three-body final-state interaction. Hence, in order to be able to interpret the lattice results, one has to first derive a formula, which relates the amplitudes in a finite and in the infinite volume. A crucial point is that the final-state interactions represent a long-range phenomenon and, therefore, one may utilize the effective field theories of QCD in order to arrive at the desired result.

In their seminal paper, Lellouch and Lüscher [274] have shown that the finite- and infinite-volume matrix elements for the $K\to 2\pi$ decay are related by a single factor (LL factor), which depends only on the $\pi\pi$ phase shift and L. The LL factor contains all power-law L-dependence. Thus, removing this factor, one may perform the limit $L\to \infty$. The absolute value of the infinite-volume matrix element is obtained in this limit, and the phase of this matrix element, which is determined by Watson's theorem, can be also measured on the same lattice configuration. Note also that $K\to 2\pi$ belongs to the first category, and hence the analytic continuation should not be considered.

The paper [274] paved the way to the systematic investigation of two-body decays on the lattice. A comprehensive study of the $K \to \pi\pi$ decays, carried out recently by the RBC and UKQCD Collaborations [275], is just one example of this. Various generalizations of the Lellouch-Lüscher approach emerged. In particular, it has been extended to moving frames [11,276] and coupled two-body channels [277]. A simple and transparent derivation of the Lellouch-Lüscher formula with the use of NREFT formalism has been given in [278] where, in particular, the analytic continuation to the resonance pole is discussed in detail, see also Refs. [279, 280]. In relation to this work we also mention the study of matrix elements of currents, corresponding to the $1 \rightarrow 2$ transition [281, 282], and of the timelike pion form factor [283], which all feature the LL factor in a finite volume.

Despite significant progress in the description of two-body decays, the decays into three particles have remained terra incognita until very recently. The crucial difference between two- and three-particle cases consists in the fact that, in the two-particle system, there exists a single LL factor that relates the matrix elements in a finite and in the infinite volume. This is easy to understand from kinematics alone. Indeed, in the center-ofmass frame, the magnitude of the momenta of the decay products is determined by the mass of the decaying particle. Hence, there is no variable left for the LL factor to depend on. On the contrary, in three-particle decays, the relative momenta are not completely fixed by energy-momentum conservation and the LL factor in general depends on the momenta. For this reason, in order to extract the matrix element, it is convenient to adopt a two-step approach. First, the momentum dependence of the short-range part of the decay vertex should be parametrized, e.g., via polynomials of a given order. This parametrization is already built in the NREFT approach [142], and can be conveniently introduced in the RFT setting [143], expanding the vertex in the vicinity of the decay threshold. Second, the long-range part can be systematically calculated (in both approaches) within effective theory in a finite volume, leading to the momentum-dependent LL factor one is looking for. This LL factor depends on the parameters of the interactions in the final state (to be measured simultaneously with the matrix element), but not on the interactions that lead to a particular decay. The information about the latter is contained solely in the coefficients of the above-mentioned polynomial that should be fitted to the results of the lattice measurements at different momenta of external particles. Finally, the physical matrix element is obtained by combining this polynomial with the long-range part, which is determined by the solutions of an infinite-volume integral equation that describes scattering in a final state. The procedure described above represents an analog of the LL formalism for a three-particle system.

6 Conclusions and outlook

Recent years have seen a surge of interest in the study of three- (and more) particle systems on the lattice. On the side of formalism, a major breakthrough was associated with the derivation of the quantization condition, which relates the finite-volume spectrum with S-matrix elements in the three-particle sector. Several physically equivalent formulations of the quantization condition are available at present. In addition, a three-particle analog of the Lellouch-Lüscher formula has been derived recently, which enables one to perform lattice measurements of three-particle decay matrix elements. These developments have boosted lattice simulations in the three-particle sector which, at present, are mainly focused on the extraction of the three-particle force from the finite-volume energy levels.

The advance of the lattice studies may have farreaching implications in particle and nuclear physics. First and foremost, this concerns three-particle processes in the light quark sector, say, the decays of charged and neutral kaons, η, η', ω and $a_1(1260)$ mesons [264]. Here, one should also mention the long-standing problem with the Roper resonance [103], which decays with a significant fraction into the $\pi\pi N$ channel. There are very interesting applications in the charm-quark sector as well, for example, in the study of the process $X(3872) \rightarrow D\bar{D}^* \rightarrow D\bar{D}\pi$ [284–286]. As for other multi-meson systems, note that the study of pion, kaon, and proton correlations in heavy ion collisions by the ALICE@CERN collaboration [287] relies on the value of the K^-K^- scattering length determined in a lattice calculation [268]. Apart from this, the information about multi- K^- systems is relevant for the understanding of strange nuclear matter and its implications to the equation of state of neutron stars. In particular, it is well known that ultra-dense environments (such as those in the core of neutron stars) allow for an appearance of kaon condensates [288–291], that can soften the equation of state of neutron stars [289, 290, 292, 293] (further details on the antikaon interaction with baryonic matter can be found in reviews [164,294]). In this context, quantifying multineutron forces is also necessary for the equation of state of neutron matter in the extreme conditions of a neutron star [295, 296]. Recent advances in lattice QCD on few-nucleon systems [297,298] complement dedicated experimental programs, e.g., at the FRIB facility [299].

In view of such perspectives, a question about the optimal strategies for carrying out lattice calculations in multi-particle systems becomes important. In the present review, we have focused in particular on the issue of chiral extrapolations. There are several reasons to do this. First of all, the lattice calculations at present are often carried out at larger than physical quark masses. This will remain so in a foreseeable future, especially in the multi-particle sector. Hence, one has to learn to perform a global fit to all available data, taken at different quark masses, and even combine them with experimental data, in order to reliably extract the physical quantities of interest. This cannot be achieved without a robust control over the chiral extrapolations that is provided by the use of the (unitarized versions of) ChPT. Furthermore, for quark masses close to physical ones, inelastic channels come close and there are only few data points available in the elastic region, if the volume is not taken very large. Finally, it should be also noted that, for large quark masses, some of the light resonances in the $\pi\pi$ scattering (e.g., $f_0(500)$, $\rho(770)$) become bound states, see, e.g., [58,62,165,168]. Hence, for larger quark masses and energies below the breakup threshold, the three-particle problem effectively turns into a two-particle one and, in some cases, it might be possible to apply the Lüscher and Lellouch-Lüscher formalisms, combined with chiral extrapolation, in order to extract three-particle observables.

Acknowledgements We thank R. Brett for a careful reading of the manuscript. The work of MD and MM is supported by the National Science Foundation under Grant no. PHY-2012289 and by the US Department of Energy under Award No. DE-SC0016582. MD is also supported by the US Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. The work of AR is funded in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)—Project-ID 196253076—TRR 110, Volkswagenstiftung (Grant no. 93562) and the Chinese Academy of Sciences (CAS) President's International Fellowship Initiative (PIFI) (Grant no. 2021VMB0007).

References

- L. Maiani, M. Testa, Final state interactions from Euclidean correlation functions. Phys. Lett. B 245, 585 (1990)
- 2. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states. Commun. Math. Phys. **104**, 177 (1986)
- 3. M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states. Commun. Math. Phys. 105, 153 (1986)
- 4. M. Lüscher, Two particle states on a torus and their relation to the scattering matrix. Nucl. Phys. B **354**, 531 (1991)
- M. Lüscher, P. Weisz, On-shell improved lattice gauge theories. Commun. Math. Phys. 97, 59 (1985)
- D. Guo, A. Alexandru, R. Molina, M. Döring, Rho resonance parameters from lattice QCD. Phys. Rev. D 94, 034501 (2016). arXiv:1605.03993
- M. Mai, C. Culver, A. Alexandru, M. Döring, F.X. Lee, Cross-channel study of pion scattering from lattice QCD. Phys. Rev. D 100, 114514 (2019). arXiv:1908.01847
- K. Rummukainen, S.A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice. Nucl. Phys. B 450, 397 (1995). arXiv:hep-lat/9503028
- X. Li, C. Liu, Two particle states in an asymmetric box. Phys. Lett. B 587, 100 (2004). arXiv:hep-lat/0311035
- X. Feng, X. Li, C. Liu, Two particle states in an asymmetric box and the elastic scattering phases. Phys. Rev. D 70, 014505 (2004). arXiv:hep-lat/0404001
- C.H. Kim, C.T. Sachrajda, S.R. Sharpe, Finite-volume effects for two-hadron states in moving frames. Nucl. Phys. B 727, 218 (2005). arXiv:hep-lat/0507006
- M. Lage, U.-G. Meißner, A. Rusetsky, A method to measure the antikaon-nucleon scattering length in lattice QCD. Phys. Lett. B 681, 439 (2009). arXiv:0905.0069
- Z. Fu, Rummukainen–Gottlieb's formula on twoparticle system with different mass. Phys. Rev. D 85, 014506 (2012). arXiv:1110.0319
- Z. Davoudi, M.J. Savage, Improving the volume dependence of two-body binding energies calculated with lattice QCD. Phys. Rev. D 84, 114502 (2011). arXiv:1108.5371
- M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Scalar mesons moving in a finite volume and the role of par-

- tial wave mixing. Eur. Phys. J. A **48**, 114 (2012). arXiv:1205.4838
- L. Leskovec, S. Prelovsek, Scattering phase shifts for two particles of different mass and non-zero total momentum in lattice QCD. Phys. Rev. D 85, 114507 (2012). arXiv:1202.2145
- R.A. Briceno, Z. Davoudi, Moving multichannel systems in a finite volume with application to proton-proton fusion. Phys. Rev. D 88, 094507 (2013). arXiv:1204.1110
- M. Gockeler, R. Horsley, M. Lage, U.G. Meißner, P.E.L. Rakow, A. Rusetsky et al., Scattering phases for meson and baryon resonances on general movingframe lattices. Phys. Rev. D 86, 094513 (2012). arXiv:1206.4141
- P. Guo, J. Dudek, R. Edwards, A.P. Szczepaniak, Coupled-channel scattering on a torus. Phys. Rev. D 88, 014501 (2013). arXiv:1211.0929
- N. Li, C. Liu, Generalized Lüscher formula in multichannel baryon-meson scattering. Phys. Rev. D 87, 014502 (2013). arXiv:1209.2201
- R.A. Briceño, Z. Davoudi, T.C. Luu, M.J. Savage, Two-baryon systems with twisted boundary conditions. Phys. Rev. D 89, 074509 (2014). arXiv:1311.7686
- F.X. Lee, A. Alexandru, Scattering phase-shift formulas for mesons and baryons in elongated boxes. Phys. Rev. D 96, 054508 (2017). arXiv:1706.00262
- C. Morningstar, J. Bulava, B. Singha, R. Brett, J. Fallica, A. Hanlon et al., Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies. Nucl. Phys. B 924, 477 (2017). arXiv:1707.05817
- 24. Y. Li, J.-J. Wu, C.D. Abell, D.B. Leinweber, A.W. Thomas, Partial wave mixing in Hamiltonian effective field theory. Phys. Rev. D 101, 114501 (2020). arXiv:1910.04973
- 25. S.R. Sharpe, R. Gupta, G.W. Kilcup, Lattice calculation of I=2 pion scattering length. Nucl. Phys. B $\bf 383$, $\bf 309~(1992)$
- Y. Kuramashi, M. Fukugita, H. Mino, M. Okawa, A. Ukawa, Lattice QCD calculation of full pion scattering lengths. Phys. Rev. Lett. 71, 2387 (1993)
- 27. R. Gupta, A. Patel, S.R. Sharpe, I=2 pion scattering amplitude with Wilson fermions. Phys. Rev. D **48**, 388 (1993). arXiv:hep-lat/9301016
- 28. Shape CP-PACS Collaboration, I=2 pi pi scattering phase shift with two flavors of O(a) improved dynamical quarks. Phys. Rev. D **70**, 074513 (2004). arXiv:hep-lat/0402025
- 29. Shape CP-PACS Collaboration, I=2 pion scattering length from two-pion wave functions. Phys. Rev. D **71**, 094504 (2005). arXiv:hep-lat/0503025
- 30. Shape NPLQCD Collaboration, I=2 pi-pi scattering from fully-dynamical mixed-action lattice QCD. Phys. Rev. D **73**, 054503 (2006). arXiv:hep-lat/0506013
- 31. S.R. Beane, T.C. Luu, K. Orginos, A. Parreño, M.J. Savage, A. Torok et al., Precise determination of the I=2 pi pi scattering length from mixed-action lattice QCD. Phys. Rev. D **77**, 014505 (2008). arXiv:0706.3026
- 32. X. Feng, K. Jansen, D.B. Renner, The $\pi^+\pi^+$ scattering length from maximally twisted mass lattice QCD. Phys. Lett. B **684**, 268 (2010). arXiv:0909.3255

- 33. T. Yagi, S. Hashimoto, O. Morimatsu, M. Ohtani, I=2 $\pi-\pi$ scattering length with dynamical overlap fermion. arXiv:1108.2970
- 34. Z. Fu, Lattice QCD study of the s-wave $\pi\pi$ scattering lengths in the I=0 and 2 channels. Phys. Rev. D 87, 074501 (2013). arXiv:1303.0517
- Shape PACS-CS Collaboration, Scattering lengths for two pseudoscalar meson systems. Phys. Rev. D 89, 054502 (2014). arXiv:1311.7226
- 36. HAL QCD Collaboration, $I=2~\pi\pi$ scattering phase shift from the HAL QCD method with the LapH smearing. PTEP **2018**, 043B04 (2018). arXiv: 1711.01883
- J.J. Dudek, R.G. Edwards, C.E. Thomas, S and D-wave phase shifts in isospin-2 pi pi scattering from lattice QCD. Phys. Rev. D 86, 034031 (2012). arXiv:1203.6041
- 38. J. Bulava, B. Fahy, B. Hörz, K.J. Juge, C. Morningstar, C.H. Wong, I=1 and I=2 $\pi-\pi$ scattering phase shifts from $N_{\rm f}=2+1$ lattice QCD. Nucl. Phys. B **910**, 842 (2016). arXiv:1604.05593
- 39. Y. Akahoshi, S. Aoki, T. Aoyama, T. Doi, T. Miyamoto, K. Sasaki, I=2 $\pi\pi$ potential in the HAL QCD method with all-to-all propagators. arXiv:1904.09549
- 40. Shape ETM Collaboration, Hadron-hadron interactions from $N_f=2+1+1$ lattice QCD: isospin-2 $\pi\pi$ scattering length. JHEP **09**, 109 (2015). arXiv:1506.00408
- C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, F. Pittler et al., Meson-meson scattering lengths at maximum isospin from lattice QCD. in 9th International Workshop on Chiral Dynamics (CD18) Durham, NC, USA, September 17–21, 2018, 2019. arXiv:1904.00191
- 42. B. Hörz, A. Hanlon, Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD. Phys. Rev. Lett. **123**, 142002 (2019). arXiv:1905.04277
- Shape CP-PACS Collaboration, Lattice QCD calculation of the rho meson decay width. Phys. Rev. D 76, 094506 (2007). arXiv:0708.3705
- X. Feng, K. Jansen, D.B. Renner, Resonance parameters of the rho-meson from lattice QCD. Phys. Rev. D 83, 094505 (2011). arXiv:1011.5288
- QCDSF Collaboration, Extracting the rho resonance from lattice QCD simulations at small quark masses. PoS LATTICE2008, 136 (2008). arXiv:0810.5337
- C.B. Lang, D. Mohler, S. Prelovsek, M. Vidmar, Coupled channel analysis of the rho meson decay in lattice QCD. Phys. Rev. D 84, 054503 (2011). arXiv:1105.5636
- 47. Shape RQCD Collaboration, ρ and K^* resonances on the lattice at nearly physical quark masses and $N_f = 2$. Phys. Rev. D **93**, 054509 (2016). arXiv:1512.08678
- C. Pelissier, A. Alexandru, Resonance parameters of the rho-meson from asymmetrical lattices. Phys. Rev. D 87, 014503 (2013). arXiv:1211.0092
- 49. Shape CS Collaboration, ρ meson decay in 2+1 flavor lattice QCD. Phys. Rev. D **84**, 094505 (2011). arXiv:1106.5365
- 50. Shape Hadron Spectrum Collaboration, Energy dependence of the ρ resonance in $\pi\pi$ elastic scattering from lattice QCD. Phys. Rev. D **87**, 034505 (2013). arXiv:1212.0830

- X. Feng, S. Aoki, S. Hashimoto, T. Kaneko, Timelike pion form factor in lattice QCD. Phys. Rev. D 91, 054504 (2015). arXiv:1412.6319
- 52. Budapest-Marseille-Wuppertal Collaboration, Lattice study of $\pi\pi$ scattering using $N_f=2+1$ Wilson improved quarks with masses down to their physical values. PoS **LATTICE2014**, 079 (2015). arXiv:1410.8447
- 53. D.J. Wilson, R.A. Briceno, J.J. Dudek, R.G. Edwards, C.E. Thomas, Coupled $\pi\pi$, $K\bar{K}$ scattering in P-wave and the ρ resonance from lattice QCD. Phys. Rev. D **92**, 094502 (2015). arXiv:1507.02599
- 54. C. Alexandrou, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies et al., P-wave $\pi\pi$ scattering and the ρ resonance from lattice QCD. Phys. Rev. D **96**, 034525 (2017). arXiv:1704.05439
- 55. C. Andersen, J. Bulava, B. Hörz, C. Morningstar, The I=1 pion-pion scattering amplitude and timelike pion form factor from $N_{\rm f}=2+1$ lattice QCD. Nucl. Phys. B **939**, 145 (2019). arXiv:1808.05007
- 56. Z. Fu, L. Wang, Studying the ρ resonance parameters with staggered fermions. Phys. Rev. D **94**, 034505 (2016). arXiv:1608.07478
- 57. M. Werner et al., Hadron–hadron interactions from $N_f=2+1+1$ lattice QCD: the ρ -resonance. arXiv:1907.01237
- 58. R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Isoscalar $\pi\pi$ scattering and the σ meson resonance from QCD. Phys. Rev. Lett. **118**, 022002 (2017). arXiv:1607.05900
- 59. L. Liu et al., Isospin-0 $\pi\pi$ s-wave scattering length from twisted mass lattice QCD. Phys. Rev. D **96**, 054516 (2017). arXiv:1612.02061
- 60. R.A. Briceno, J.J. Dudek, R.G. Edwards, D.J. Wilson, Isoscalar $\pi\pi$, $K\overline{K}$, $\eta\eta$ scattering and the σ , f_0 , f_2 mesons from QCD. Phys. Rev. D **97**, 054513 (2018). arXiv:1708.06667
- 61. Z. Fu, X. Chen, I=0 $\pi\pi$ s-wave scattering length from lattice QCD. Phys. Rev. D **98**, 014514 (2018). arXiv:1712.02219
- 62. D. Guo, A. Alexandru, R. Molina, M. Mai, M. Döring, Extraction of isoscalar $\pi\pi$ phase-shifts from lattice QCD. Phys. Rev. D **98**, 014507 (2018). arXiv:1803.02897
- 63. S.R. Beane, P.F. Bedaque, T.C. Luu, K. Orginos, E. Pallante, A. Parreño et al., πK scattering in full QCD with domain-wall valence quarks. Phys. Rev. D 74, 114503 (2006). arXiv:hep-lat/0607036
- C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, K pi scattering for isospin 1/2 and 3/2 in lattice QCD. Phys. Rev. D 86, 054508 (2012). arXiv:1207.3204
- 65. Z. Fu, The preliminary lattice QCD calculation of κ meson decay width. JHEP **01**, 017 (2012). arXiv:1110.5975
- 66. S. Prelovsek, L. Leskovec, C.B. Lang, D. Mohler, K π scattering and the K* decay width from lattice QCD. Phys. Rev. D 88, 054508 (2013). arXiv:1307.0736
- T. Janowski, P.A. Boyle, A. Jüttner, C. Sachrajda, Kpi scattering lengths at physical kinematics. PoS LAT-TICE2014, 080 (2014)
- 68. C. Helmes, C. Jost, B. Knippschild, B. Kostrzewa, L. Liu, C. Urbach et al., Hadron–hadron interactions from $N_f=2+1+1$ lattice QCD: isospin-1 KK

- scattering length. Phys. Rev. D **96**, 034510 (2017). arXiv:1703.04737
- 69. R. Brett, J. Bulava, J. Fallica, A. Hanlon, B. Hörz, C. Morningstar, Determination of s- and p-wave I=1/2 $K\pi$ scattering amplitudes in $N_{\rm f}=2+1$ lattice QCD. Nucl. Phys. B **932**, 29 (2018). arXiv:1802.03100
- 70. Shape ETM Collaboration, Hadron–hadron interactions from $N_f=2+1+1$ lattice QCD: I=3/2 πK scattering length. Phys. Rev. D **98**, 114511 (2018). arXiv:1809.08886
- 71. D.J. Wilson, R.A. Briceño, J.J. Dudek, R.G. Edwards, C.E. Thomas, The quark-mass dependence of elastic πK scattering from QCD. Phys. Rev. Lett. **123**, 042002 (2019). arXiv:1904.03188
- 72. A.J. Woss, C.E. Thomas, J.J. Dudek, R.G. Edwards, D.J. Wilson, b_1 resonance in coupled $\pi\omega$, $\pi\phi$ scattering from lattice QCD. Phys. Rev. D **100**, 054506 (2019). arXiv:1904.04136
- 73. A. Woss, C.E. Thomas, J.J. Dudek, R.G. Edwards, D.J. Wilson, Dynamically-coupled partial-waves in $\rho\pi$ isospin-2 scattering from lattice QCD. arXiv:1802.05580
- C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, Axial resonances a₁(1260), b₁(1235) and their decays from the lattice. JHEP 04, 162 (2014). arXiv:1401.2088
- 75. L. Gayer, N. Lang, S.M. Ryan, D. Tims, C.E. Thomas, D.J. Wilson, Isospin-1/2 $D\pi$ scattering and the lightest D_0^* resonance from lattice QCD. arXiv:2102.04973
- 76. G.K.C. Cheung, C.E. Thomas, D.J. Wilson, G. Moir, M. Peardon, S.M. Ryan, DK I=0, $D\bar{K}I=0$, 1 scattering and the $D_{s0}^*(2317)$ from lattice QCD. arXiv:2008.06432
- 77. S. Prelovsek, S. Collins, D. Mohler, M. Padmanath, S. Piemonte, Charmonium-like resonances with $J^{PC}=0^{++},2^{++}$ in coupled $D\bar{D},\,D_s\bar{D}_s$ scattering on the lattice. arXiv:2011.02542
- 78. S. Piemonte, S. Collins, D. Mohler, M. Padmanath, S. Prelovsek, Charmonium resonances with $J^{PC}=1^-$ and 3^- from $\bar{D}D$ scattering on the lattice. Phys. Rev. D **100**, 074505 (2019). arXiv:1905.03506
- 79. G.S. Bali, S. Collins, A. Cox, A. Schäfer, Masses and decay constants of the $D_{s0}^*(2317)$ and $D_{s1}(2460)$ from $N_f=2$ lattice QCD close to the physical point. Phys. Rev. D **96**, 074501 (2017). arXiv:1706.01247
- 80. C.B. Lang, D. Mohler, S. Prelovsek, $B_s\pi^+$ scattering and search for X(5568) with lattice QCD. Phys. Rev. D **94**, 074509 (2016). arXiv:1607.03185
- 81. M. Albaladejo, P. Fernandez-Soler, F.-K. Guo, J. Nieves, Two-pole structure of the $D_0^*(2400)$. Phys. Lett. B **767**, 465 (2017). arXiv:1610.06727
- C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, Vector and scalar charmonium resonances with lattice QCD. JHEP 09, 089 (2015). arXiv: 1503.05363
- C.B. Lang, L. Leskovec, D. Mohler, S. Prelovsek, R.M. Woloshyn, Ds mesons with DK and D*K scattering near threshold. Phys. Rev. D 90, 034510 (2014). arXiv:1403.8103
- 84. A. Martínez Torres, E. Oset, S. Prelovsek, A. Ramos, Reanalysis of lattice QCD spectra leading to the $D_{s0}^*(2317)$ and $D_{s1}^*(2460)$. JHEP **05**, 153 (2015). arXiv:1412.1706
- 85. D. Mohler, C.B. Lang, L. Leskovec, S. Prelovsek, R.M. Woloshyn, $D_{s0}^*(2317)$ meson and D-meson–kaon scat-

- tering from lattice QCD. Phys. Rev. Lett. **111**, 222001 (2013). arXiv:1308.3175
- Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Towards a precise determination of the scattering amplitudes of the charmed and light-flavor pseudoscalar mesons. Eur. Phys. J. C 79, 13 (2019). arXiv:1811.05585
- C. Alexandrou, J.W. Negele, M. Petschlies, A.V. Pochinsky, S.N. Syritsyn, Study of decuplet baryon resonances from lattice QCD. Phys. Rev. D 93, 114515 (2016). arXiv:1507.02724
- C. Alexandrou, J. Negele, M. Petschlies, A. Strelchenko, A. Tsapalis, Determination of Δ resonance parameters from lattice QCD. Phys. Rev. D 88, 031501 (2013). arXiv:1305.6081
- Shape BGR Collaboration, QCD with two light dynamical chirally improved quarks: baryons. Phys. Rev. D 87, 074504 (2013). arXiv:1301.4318
- J.J. Dudek, R.G. Edwards, Hybrid baryons in QCD. Phys. Rev. D 85, 054016 (2012). arXiv:1201.2349
- Shape Hadron Spectrum Collaboration, Flavor structure of the excited baryon spectra from lattice QCD. Phys. Rev. D 87, 054506 (2013). arXiv:1212.5236
- 92. R.A. Briceño, H.-W. Lin, D.R. Bolton, Charmed-baryon spectroscopy from lattice QCD with $N_f=2+1+1$ flavors. Phys. Rev. D **86**, 094504 (2012). arXiv:1207.3536
- R.G. Edwards, J.J. Dudek, D.G. Richards, S.J. Wallace, Excited state baryon spectroscopy from lattice QCD. Phys. Rev. D 84, 074508 (2011). arXiv:1104.5152
- 94. J. Bulava, R. Edwards, E. Engelson, B. Joo, H.-W. Lin, C. Morningstar et al., Nucleon, Δ and Ω excited states in $N_f=2+1$ lattice QCD. Phys. Rev. D **82**, 014507 (2010). arXiv:1004.5072
- S. Durr et al., Ab-initio determination of light hadron masses. Science 322, 1224 (2008). arXiv:0906.3599
- 96. T. Burch, C. Gattringer, L.Y. Glozman, C. Hagen, D. Hierl, C. Lang et al., Excited hadrons on the lattice: baryons. Phys. Rev. D 74, 014504 (2006). arXiv:hep-lat/0604019
- 97. Shape European Twisted Mass Collaboration, Light baryon masses with dynamical twisted mass fermions. Phys. Rev. D 78, 014509 (2008), arXiv:0803.3190
- 98. B.J. Menadue, W. Kamleh, D.B. Leinweber, M. Mahbub, Isolating the $\Lambda(1405)$ in lattice QCD. Phys. Rev. Lett. 108, 112001 (2012). arXiv:1109.6716
- W. Melnitchouk, S.O. Bilson-Thompson, F. Bonnet, J. Hedditch, F. Lee, D. Leinweber et al., Excited baryons in lattice QCD. Phys. Rev. D 67, 114506 (2003). arXiv:hep-lat/0202022
- 100. G. Silvi et al., P-wave nucleon–pion scattering amplitude in the $\Delta(1232)$ channel from lattice QCD. arXiv:2101.00689
- F.M. Stokes, W. Kamleh, D.B. Leinweber, Elastic form factors of nucleon excitations in lattice QCD. Phys. Rev. D 102, 014507 (2020). arXiv:1907.00177
- 102. C.W. Andersen, J. Bulava, B. Hörz, C. Morningstar, Elastic I=3/2p-wave nucleon-pion scattering amplitude and the $\Delta(1232)$ resonance from N_f=2+1 lattice QCD. Phys. Rev. D **97**, 014506 (2018). arXiv:1710.01557

- 103. C.B. Lang, L. Leskovec, M. Padmanath, S. Prelovsek, Pion–nucleon scattering in the Roper channel from lattice QCD. Phys. Rev. D 95, 014510 (2017). arXiv:1610.01422
- 104. C. Lang, V. Verduci, Scattering in the πN negative parity channel in lattice QCD. Phys. Rev. D **87**, 054502 (2013). arXiv:1212.5055
- 105. M. Döring, M. Mai, U.-G. Meißner, Finite volume effects and quark mass dependence of the N(1535) and N(1650). Phys. Lett. B **722**, 185 (2013). arXiv:1302.4065
- 106. J.M.M. Hall, A.C.P. Hsu, D.B. Leinweber, A.W. Thomas, R.D. Young, Finite-volume matrix Hamiltonian model for a $\Delta \to N\pi$ system. Phys. Rev. D 87, 094510 (2013). arXiv:1303.4157
- 107. J.-J. Wu, H. Kamano, T.-S.H. Lee, D.B. Leinweber, A.W. Thomas, Nucleon resonance structure in the finite volume of lattice QCD. Phys. Rev. D 95, 114507 (2017). arXiv:1611.05970
- 108. Z.-W. Liu, W. Kamleh, D.B. Leinweber, F.M. Stokes, A.W. Thomas, J.-J. Wu, Hamiltonian effective field theory study of the N*(1535) resonance in lattice QCD. Phys. Rev. Lett. 116, 082004 (2016). arXiv:1512.00140
- 109. Z.-W. Liu, J.M.M. Hall, D.B. Leinweber, A.W. Thomas, J.-J. Wu, Structure of the $\Lambda(1405)$ from Hamiltonian effective field theory. Phys. Rev. D 95, 014506 (2017). arXiv:1607.05856
- C. Liu, X. Feng, S. He, Two particle states in a box and the S-matrix in multi-channel scattering. Int. J. Mod. Phys. A 21, 847 (2006). arXiv:hep-lat/0508022
- V. Bernard, M. Lage, U.G. Meißner, A. Rusetsky, Scalar mesons in a finite volume. JHEP 01, 019 (2011). arXiv: 1010.6018
- 112. M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Unitarized chiral perturbation theory in a finite volume: scalar meson sector. Eur. Phys. J. A 47, 139 (2011). arXiv:1107.3988
- 113. M. Döring, J. Haidenbauer, U.-G. Meißner, A. Rusetsky, Dynamical coupled-channel approaches on a momentum lattice. Eur. Phys. J. A 47, 163 (2011). arXiv:1108.0676
- 114. M. Döring, U.-G. Meißner, Finite volume effects in pion-kaon scattering and reconstruction of the $\kappa(800)$ resonance. JHEP **01**, 009 (2012). arXiv:1111.0616
- R.A. Briceño, Two-particle multichannel systems in a finite volume with arbitrary spin. Phys. Rev. D 89, 074507 (2014). arXiv:1401.3312
- 116. C.T. Johnson, J.J. Dudek, Excited J^- meson resonances at the SU(3) flavor point from lattice QCD. arXiv:2012.00518
- 117. G. Moir, M. Peardon, S.M. Ryan, C.E. Thomas, D.J. Wilson, Coupled-channel $D\pi$, $D\eta$ and $D_s\bar{K}$ scattering from lattice QCD. JHEP **10**, 011 (2016). arXiv:1607.07093
- 118. Shape Hadron Spectrum Collaboration, An a_0 resonance in strongly coupled $\pi\eta$, $K\overline{K}$ scattering from lattice QCD. Phys. Rev. D **93**, 094506 (2016). arXiv:1602.05122
- 119. D.J. Wilson, J.J. Dudek, R.G. Edwards, C.E. Thomas, Resonances in coupled $\pi K, \eta K$ scattering from lattice QCD. Phys. Rev. D **91**, 054008 (2015). arXiv:1411.2004

- 120. Shape Hadron Spectrum Collaboration, Resonances in coupled $\pi K \eta K$ scattering from quantum chromodynamics. Phys. Rev. Lett. **113**, 182001 (2014). arXiv:1406.4158
- 121. A.J. Woss, J.J. Dudek, R.G. Edwards, C.E. Thomas, D.J. Wilson, Decays of an exotic 1⁻⁺ hybrid meson resonance in QCD. arXiv:2009.10034
- R.A. Briceno, J.J. Dudek, R.D. Young, Scattering processes and resonances from lattice QCD. Rev. Mod. Phys. 90, 025001 (2018). arXiv:1706.06223
- 123. Shape USQCD Collaboration, Hadrons and nuclei. Eur. Phys. J. A 55, 193 (2019). arXiv:1904.09512
- C.B. Lang, The hadron spectrum from lattice QCD.
 Prog. Part. Nucl. Phys. 61, 35 (2008), arXiv:0711.3091
- 125. M. Döring, Resonances and multi-particle states. PoS LATTICE2013, 006 (2014)
- R.A. Briceño, Z. Davoudi, T.C. Luu, Nuclear reactions from lattice QCD. J. Phys. G42, 023101 (2015). arXiv:1406.5673
- 127. T.D. Lee, K. Huang, C.N. Yang, Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135 (1957)
- K. Huang, C.N. Yang, Quantum-mechanical manybody problem with hard-sphere interaction. Phys. Rev. 105, 767 (1957)
- T.T. Wu, Ground state of a Bose system of hard spheres. Phys. Rev. 115, 1390 (1959)
- S. Tan, Three-boson problem at low energy and implications for dilute Bose–Einstein condensates. Phys. Rev. A 78, 013636 (2008). arXiv:0709.2530
- S.R. Beane, W. Detmold, M.J. Savage, n-Boson energies at finite volume and three-boson interactions. Phys. Rev. D 76, 074507 (2007). arXiv:0707.1670
- 132. W. Detmold, M.J. Savage, The energy of n identical bosons in a finite volume at $O(L^{-7})$. Phys. Rev. D 77, 057502 (2008). arXiv:0801.0763
- 133. S.R. Beane et al., Charged multi-hadron systems in lattice QCD + QED. arXiv:2003.12130
- 134. J.-Y. Pang, J.-J. Wu, H.W. Hammer, U.-G. Meißner, A. Rusetsky, Energy shift of the three-particle system in a finite volume. Phys. Rev. D 99, 074513 (2019). arXiv:1902.01111
- M.T. Hansen, S.R. Sharpe, Threshold expansion of the three-particle quantization condition. Phys. Rev. D 93, 096006 (2016). arXiv:1602.00324
- 136. F. Romero-López, A. Rusetsky, N. Schlage, C. Urbach, Relativistic N-particle energy shift in finite volume. arXiv:2010.11715
- B.S. DeWitt, Transition from discrete to continuous spectra. Phys. Rev. 103, 1565 (1956)
- 138. D. Agadjanov, M. Döring, M. Mai, U.-G. Meißner, A. Rusetsky, The optical potential on the lattice. JHEP 06, 043 (2016). arXiv: 1603.07205
- 139. M.T. Hansen, H.B. Meyer, D. Robaina, From deep inelastic scattering to heavy-flavor semileptonic decays: total rates into multihadron final states from lattice QCD. Phys. Rev. D 96, 094513 (2017). arXiv:1704.08993
- P. Guo, B. Long, Visualizing resonances in finite volume. Phys. Rev. D **102**, 074508 (2020). arXiv:2007.10895

- 141. R.A. Briceño, J.V. Guerrero, M.T. Hansen, A. Sturzu, The role of boundary conditions in quantum computations of scattering observables. arXiv:2007.01155
- F. Müller, A. Rusetsky, On the three-particle analog of the Lellouch-Lüscher formula. arXiv:2012.13957
- M.T. Hansen, F. Romero-López, S.R. Sharpe, Decay amplitudes to three hadrons from finite-volume matrix elements. arXiv:2101.10246
- 144. M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding, C. Urbach, Scattering of two and three physical pions at maximal isospin from lattice QCD. arXiv:2008.03035
- 145. ETM collaboration, The ρ -resonance with physical pion mass from $N_f = 2$ lattice QCD, arXiv:2006.13805
- 146. A. Alexandru, R. Brett, C. Culver, M. Döring, D. Guo, F.X. Lee et al., Finite-volume energy spectrum of the $K^-K^-K^-$ system. Phys. Rev. D **102**, 114523 (2020). arXiv:2009.12358
- J. Gasser, H. Leutwyler, Chiral perturbation theory to one loop. Ann. Phys. 158, 142 (1984)
- S. Weinberg, Phenomenological Lagrangians. Physica A 96, 327 (1979)
- J. Gasser, H. Leutwyler, Chiral perturbation theory: expansions in the mass of the strange quark. Nucl. Phys. B 250, 465 (1985)
- J. Gasser, M.E. Sainio, A. Svarc, Nucleons with chiral loops. Nucl. Phys. B 307, 779 (1988)
- V. Bernard, N. Kaiser, J. Kambor, U.G. Meißner, Chiral structure of the nucleon. Nucl. Phys. B 388, 315 (1992)
- H.-B. Tang, A new approach to chiral perturbation theory for matter fields. arXiv:hep-ph/9607436
- 153. T. Becher, H. Leutwyler, Baryon chiral perturbation theory in manifestly Lorentz invariant form. Eur. Phys. J. C 9, 643 (1999). arXiv: hep-ph/9901384
- 154. P.J. Ellis, H.-B. Tang, Pion nucleon scattering in a new approach to chiral perturbation theory. Phys. Rev. C 57, 3356 (1998). arXiv:hep-ph/9709354
- 155. V. Bernard, U.-G. Meißner, Chiral perturbation theory. Ann. Rev. Nucl. Part. Sci. 57, 33 (2007). arXiv:hep-ph/0611231
- 156. V. Bernard, Chiral perturbation theory and baryon properties. Prog. Part. Nucl. Phys. 60, 82 (2008). arXiv:0706.0312
- S. Scherer, Introduction to chiral perturbation theory. Adv. Nucl. Phys. 27, 277 (2003). arXiv:hep-ph/0210398
- U.G. Meißner, Recent developments in chiral perturbation theory. Rept. Prog. Phys. 56, 903 (1993). arXiv:hep-ph/9302247
- 159. B. Kubis, An introduction to chiral perturbation theory. in Workshop on Physics and Astrophysics of Hadrons and Hadronic Matter, vol. 3 (2007). arXiv:hep-ph/0703274
- V. Bernard, N. Kaiser, U.-G. Meißner, Chiral dynamics in nucleons and nuclei. Int. J. Mod. Phys. E 4, 193 (1995). arXiv:hep-ph/9501384
- V. Bernard, N. Kaiser, U.G. Meißner, Chiral corrections to the S wave pion–nucleon scattering lengths. Phys. Lett. B 309, 421 (1993). arXiv:hep-ph/9304275
- 162. Shape Flavour Lattice Averaging Group Collaboration, FLAG review 2019: Flavour Lattice Averaging

- Group (FLAG). Eur. Phys. J. C 80, 113 (2020). arXiv:1902.08191
- 163. J.R. Pelaez, From controversy to precision on the sigma meson: a review on the status of the non-ordinary $f_0(500)$ resonance. Phys. Rept. **658**, 1 (2016). arXiv:1510.00653
- 164. M. Mai, Review of the $\Lambda(1405)$: a curious case of a strange-ness resonance. arXiv:2010.00056
- 165. C. Hanhart, J.R. Pelaez, G. Rios, Quark mass dependence of the rho and sigma from dispersion relations and chiral perturbation theory. Phys. Rev. Lett. 100, 152001 (2008). arXiv:0801.2871
- 166. J. Nebreda, J.R. Peláez, Strange and non-strange quark mass dependence of elastic light resonances from SU(3) unitarized chiral perturbation theory to one loop. Phys. Rev. D 81, 054035 (2010). arXiv:1001.5237
- 167. D.R. Bolton, R.A. Briceño, D.J. Wilson, Connecting physical resonant amplitudes and lattice QCD. Phys. Lett. B 757, 50 (2016). arXiv:1507.07928
- 168. M. Döring, B. Hu, M. Mai, Chiral extrapolation of the sigma resonance. Phys. Lett. B 782, 785 (2018). arXiv:1610.10070
- 169. M. Niehus, M. Hoferichter, B. Kubis, Quark mass dependence of $\gamma^*\pi \to \pi\pi$. in 9th International Workshop on Chiral Dynamics (CD18) Durham, NC, USA, September 17-21, 2018 (2019). arXiv:1902.10150
- 170. M. Dax, T. Isken, B. Kubis, Quark-mass dependence in $\omega\to 3\pi$ decays. Eur. Phys. J. C **78**, 859 (2018). arXiv:1808.08957
- 171. C. Culver, M. Mai, A. Alexandru, M. Döring, F. Lee, Pion scattering in the isospin I=2 channel from elongated lattices. Phys. Rev. D ${\bf 100},\,034509$ (2019). arXiv:1905.10202
- 172. NA48-2 Collaboration, Precise tests of low energy QCD from K(e4)decay properties. Eur. Phys. J. C **70**, 635 (2010)
- 173. C.D. Froggatt, J.L. Petersen, Phase shift analysis of $\pi^+\pi^-$ scattering between 1.0-GeV and 1.8-GeV based on fixed momentum transfer analyticity. 2. Nucl. Phys. B **129**, 89 (1977)
- 174. B. Hyams et al., $\pi\pi$ phase shift analysis from 600-MeV to 1900-MeV. Nucl. Phys. B **64**, 134 (1973)
- 175. S.D. Protopopescu, M. Alston-Garnjost, A. Barbaro-Galtieri, S.M. Flatte, J.H. Friedman, T.A. Lasinski et al., $\pi\pi$ partial wave analysis from reactions $\pi^+p\to\pi^+\pi^-\Delta^{++}$ and $\pi^+p\to K^+K^-\Delta^{++}$ at 7.1-GeV/c. Phys. Rev. D 7, 1279 (1973)
- 176. G. Grayer et al., High statistics study of the reaction $\pi^- p \to \pi^- \pi^+ n$: apparatus, method of analysis, and general features of results at 17-GeV/c. Nucl. Phys. B **75**, 189 (1974)
- L. Rosselet et al., Experimental study of 30,000 K(e4) decays. Phys. Rev. D 15, 574 (1977)
- 178. G. Janssen, B.C. Pearce, K. Holinde, J. Speth, On the structure of the scalar mesons f0 (975) and a0 (980). Phys. Rev. D 52, 2690 (1995). arXiv:nucl-th/9411021
- 179. P. Estabrooks, A.D. Martin, pi pi Phase shift analysis below the K anti-K threshold. Nucl. Phys. B **79**, 301 (1974)
- J.A. Oller, E. Oset, J.R. Pelaez, Meson meson interaction in a nonperturbative chiral approach. Phys. Rev. D 59, 074001 (1999). arXiv:hep-ph/9804209

- 181. B. Hu, R. Molina, M. Döring, A. Alexandru, Two-flavor simulations of the $\rho(770)$ and the role of the $K\bar{K}$ channel. Phys. Rev. Lett. **117**, 122001 (2016). arXiv:1605.04823
- 182. B. Hu, R. Molina, M. Döring, M. Mai, A. Alexandru, Chiral extrapolations of the $\rho(770)$ meson in $N_f = 2 + 1$ lattice QCD simulations. Phys. Rev. D 96, 034520 (2017). arXiv:1704.06248
- 183. J.A. Oller, E. Oset, Chiral symmetry amplitudes in the S wave isoscalar and isovector channels and the σ , f₀(980), a₀(980) scalar mesons. Nucl. Phys. A **620**, 438 (1997). arXiv:hep-ph/9702314
- 184. M. Albaladejo, J.A. Oller, Identification of a scalar glueball. Phys. Rev. Lett. 101, 252002 (2008). arXiv:0801.4929
- 185. Z.-H. Guo, J.A. Oller, Resonances from meson–meson scattering in U(3) CHPT. Phys. Rev. D **84**, 034005 (2011). arXiv:1104.2849
- Z.-H. Guo, J.A. Oller, J. Ruiz de Elvira, Chiral dynamics in U(3) unitary chiral perturbation theory. Phys. Lett. B 712, 407 (2012). arXiv:1203.4381
- 187. X.-K. Guo, Z.-H. Guo, J.A. Oller, J.J. Sanz-Cillero, Scrutinizing the η - η' mixing, masses and pseudoscalar decay constants in the framework of U(3) chiral effective field theory. JHEP **06**, 175 (2015). arXiv:1503.02248
- 188. Z.-H. Guo, L. Liu, U.-G. Meißner, J.A. Oller, A. Rusetsky, Chiral study of the $a_0(980)$ resonance and $\pi\eta$ scattering phase shifts in light of a recent lattice simulation. Phys. Rev. D **95**, 054004 (2017). arXiv:1609.08096
- T.N. Truong, Chiral perturbation theory and final state theorem. Phys. Rev. Lett. 61, 2526 (1988)
- A. Dobado, J.R. Pelaez, The inverse amplitude method in chiral perturbation theory. Phys. Rev. D 56, 3057 (1997). arXiv: hep-ph/9604416
- A. Gómez Nicola, J.R. Peláez, G. Rios, The inverse amplitude method and adler zeros. Phys. Rev. D 77, 056006 (2008). arXiv:0712.2763
- 192. P.C. Bruns, M. Mai, Chiral symmetry constraints on resonant amplitudes. Phys. Lett. B 778, 43 (2018). arXiv:1707.08983
- 193. J.R. Pelaez, G. Rios, Nature of the f0(600) from its N(c) dependence at two loops in unitarized chiral perturbation theory. Phys. Rev. Lett. **97**, 242002 (2006). arXiv:hep-ph/0610397
- 194. M. Niehus, M. Hoferichter, B. Kubis, J. Ruiz de Elvira, Two-loop analysis of the pion-mass dependence of the ρ meson. arXiv:2009.04479
- 195. J.R. Peláez, A. Rodas, J.R. de Elvira, Precision dispersive approaches versus unitarized chiral perturbation theory for the lightest scalar resonances $\sigma/f_0(980)$ and $\kappa/K_0^*(700)$. arXiv:2101.06506
- D. Fernandez-Fraile, A. Gomez Nicola, E.T. Herruzo, Pion scattering poles and chiral symmetry restoration. Phys. Rev. D 76, 085020 (2007). arXiv:0707.1424
- 197. R. Molina, J. Ruiz de Elvira, Light- and strange-quark mass dependence of the $\rho(770)$ meson revisited. arXiv:2005.13584
- 198. R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring, F.X. Lee, Three-body interactions from the finitevolume QCD spectrum. arXiv:2101.06144]
- M. Lüscher, U. Wolff, How to calculate the elastic scattering matrix in two-dimensional quantum field theo-

- ries by numerical simulation. Nucl. Phys. B **339**, 222 (1990)
- 200. N. Miller et al., F_K/F_{π} from Möbius domain-wall fermions solved on gradient-flowed HISQ ensembles. Phys. Rev. D **102**, 034507 (2020). arXiv:2005.04795
- S.R. Beane, W. Detmold, T.C. Luu, K. Orginos, M.J. Savage, A. Torok, Multi-pion systems in lattice QCD and the three-pion interaction. Phys. Rev. Lett. 100, 082004 (2008). arXiv:0710.1827
- 202. W. Detmold, M.J. Savage, A. Torok, S.R. Beane, T.C. Luu, K. Orginos et al., Multi-pion states in lattice QCD and the charged-pion condensate. Phys. Rev. D 78, 014507 (2008), arXiv:0803.2728
- 203. W. Detmold, K. Orginos, M.J. Savage, A. Walker-Loud, Kaon condensation with lattice QCD. Phys. Rev. D 78, 054514 (2008). arXiv:0807.1856
- 204. T.D. Blanton, F. Romero-López, S.R. Sharpe, I=3 three-pion scattering amplitude from lattice QCD. Phys. Rev. Lett. **124**, 032001 (2020). arXiv:1909.02973
- 205. C. Culver, M. Mai, R. Brett, A. Alexandru, M. Döring, Three pion spectrum in the I=3 channel from lattice QCD. Phys. Rev. D $\bf 101$, 114507 (2020). arXiv:1911.09047
- 206. M.T. Hansen, R.A. Briceño, R.G. Edwards, C.E. Thomas, D.J. Wilson, The energy-dependent $\pi^+\pi^+\pi^+$ scattering amplitude from QCD. Phys. Rev. Lett. **126**, 012001 (2021). arXiv:2009.04931
- 207. F. Romero-López, A. Rusetsky, C. Urbach, Two-and three-body interactions in φ^4 theory from lattice simulations. Eur. Phys. J. C **78**, 846 (2018). arXiv:1806.02367
- K. Polejaeva, A. Rusetsky, Three particles in a finite volume. Eur. Phys. J. A 48, 67 (2012). arXiv:1203.1241
- M.T. Hansen, S.R. Sharpe, Relativistic, modelindependent, three-particle quantization condition. Phys. Rev. D 90, 116003 (2014). arXiv:1408.5933
- M.T. Hansen, S.R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude. Phys. Rev. D 92, 114509 (2015). arXiv:1504.04248
- 211. H.-W. Hammer, J.-Y. Pang, A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force. JHEP 09, 109 (2017). arXiv:1706.07700
- 212. H.W. Hammer, J.Y. Pang, A. Rusetsky, Three particle quantization condition in a finite volume: 2. General formalism and the analysis of data. JHEP 10, 115 (2017). arXiv:1707.02176
- 213. M. Mai, M. Döring, Three-body unitarity in the finite volume. Eur. Phys. J. A 53, 240 (2017). arXiv:1709.08222
- 214. M. Mai, M. Döring, Finite-volume spectrum of $\pi^+\pi^+$ and $\pi^+\pi^+\pi^+$ systems. Phys. Rev. Lett. **122**, 062503 (2019). arXiv:1807.04746
- 215. M.T. Hansen, S.R. Sharpe, Lattice QCD and three-particle decays of resonances. Ann. Rev. Nucl. Part. Sci. 69, 65 (2019). arXiv:1901.00483
- A. Rusetsky, Three particles on the lattice. PoS LAT-TICE2019, 281 (2019). arXiv:1911.01253
- 217. T.D. Blanton, S.R. Sharpe, Alternative derivation of the relativistic three-particle quantization condition. Phys. Rev. D 102, 054520 (2020). arXiv:2007.16188

- T.D. Blanton, S.R. Sharpe, Equivalence of relativistic three-particle quantization conditions. Phys. Rev. D 102, 054515 (2020). arXiv:2007.16190
- 219. R.A. Briceño, Z. Davoudi, Three-particle scattering amplitudes from a finite volume formalism. Phys. Rev. D 87, 094507 (2013). arXiv:1212.3398
- 220. L. Roca, E. Oset, Scattering of unstable particles in a finite volume: the case of $\pi\rho$ scattering and the $a_1(1260)$ resonance. Phys. Rev. D **85**, 054507 (2012). arXiv:1201.0438
- S. Bour, H.-W. Hammer, D. Lee, U.-G. Meißner, Benchmark calculations for elastic fermion-dimer scattering. Phys. Rev. C 86, 034003 (2012). arXiv:1206.1765
- U.-G. Meißner, G. Ríos, A. Rusetsky, Spectrum of three-body bound states in a finite volume. Phys. Rev. Lett. 114, 091602 (2015). arXiv:1412.4969
- 223. M. Jansen, H.W. Hammer, Y. Jia, Finite volume corrections to the binding energy of the X(3872). Phys. Rev. D 92, 114031 (2015). arXiv:1505.04099
- 224. M.T. Hansen, S.R. Sharpe, Perturbative results for two and three particle threshold energies in finite volume. Phys. Rev. D 93, 014506 (2016). arXiv:1509.07929
- 225. P. Guo, One spatial dimensional finite volume three-body interaction for a short-range potential. Phys. Rev. D 95, 054508 (2017). arXiv:1607.03184
- S. König, D. Lee, Volume dependence of N-body bound states. Phys. Lett. B 779, 9 (2018). arXiv:1701.00279
- 227. R.A. Briceño, M.T. Hansen, S.R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles. Phys. Rev. D $\bf 95$, 074510 (2017). arXiv:1701.07465
- 228. S.R. Sharpe, Testing the threshold expansion for three-particle energies at fourth order in ϕ^4 theory. arXiv:1707.04279
- P. Guo, V. Gasparian, Numerical approach for finite volume three-body interaction. Phys. Rev. D 97, 014504 (2018). arXiv:1709.08255
- P. Guo, V. Gasparian, An solvable three-body model in finite volume. Phys. Lett. B 774, 441 (2017). arXiv:1701.00438
- 231. Y. Meng, C. Liu, U.-G. Meißner, A. Rusetsky, Three-particle bound states in a finite volume: unequal masses and higher partial waves. Phys. Rev. D 98, 014508 (2018). arXiv:1712.08464
- 232. P. Guo, M. Döring, A.P. Szczepaniak, Variational approach to N-body interactions in finite volume. Phys. Rev. D 98, 094502 (2018). arXiv:1810.01261
- 233. P. Guo, T. Morris, Multiple-particle interaction in (1+1)-dimensional lattice model. Phys. Rev. D 99, 014501 (2019). arXiv:1808.07397
- 234. P. Klos, S. König, H.W. Hammer, J.E. Lynn, A. Schwenk, Signatures of few-body resonances in finite volume. Phys. Rev. C 98, 034004 (2018). arXiv:1805.02029
- 235. R.A. Briceño, M.T. Hansen, S.R. Sharpe, Numerical study of the relativistic three-body quantization condition in the isotropic approximation. Phys. Rev. D 98, 014506 (2018). arXiv:1803.04169
- 236. R.A. Briceño, M.T. Hansen, S.R. Sharpe, Threeparticle systems with resonant subprocesses in a

- finite volume. Phys. Rev. D **99**, 014516 (2019). arXiv:1810.01429
- 237. M. Döring, H.W. Hammer, M. Mai, J.Y. Pang, A. Rusetsky, J. Wu, Three-body spectrum in a finite volume: the role of cubic symmetry. Phys. Rev. D 97, 114508 (2018). arXiv:1802.03362
- A. Jackura, S. Dawid, C. Fernández-Ramírez, V. Mathieu, M. Mikhasenko, A. Pilloni et al., Equivalence of three-particle scattering formalisms. Phys. Rev. D 100, 034508 (2019). arXiv:1905.12007
- 239. M. Mai, M. Döring, C. Culver, A. Alexandru, Three-body unitarity versus finite-volume $\pi^+\pi^+\pi^+$ spectrum from lattice QCD. Phys. Rev. D **101**, 054510 (2020). arXiv:1909.05749
- 240. P. Guo, Propagation of particles on a torus. Phys. Lett. B 804, 135370 (2020). arXiv:1908.08081
- T.D. Blanton, F. Romero-López, S.R. Sharpe, Implementing the three-particle quantization condition including higher partial waves. JHEP 03, 106 (2019). arXiv: 1901.07095
- 242. R.A. Briceño, M.T. Hansen, S.R. Sharpe, A.P. Szczepaniak, Unitarity of the infinite-volume three-particle scattering amplitude arising from a finite-volume formalism. Phys. Rev. D 100, 054508 (2019). arXiv:1905.11188
- 243. F. Romero-López, S.R. Sharpe, T.D. Blanton, R.A. Briceño, M.T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states. JHEP 10, 007 (2019). arXiv:1908.02411
- 244. P. Guo, M. Döring, Lattice model of heavy-light three-body system. Phys. Rev. D 101, 034501 (2020). arXiv:1910.08624
- 245. S. Zhu, S. Tan, d-dimensional Lüscher's formula and the near-threshold three-body states in a finite volume. arXiv:1905.05117
- 246. J.-Y. Pang, J.-J. Wu, L.-S. Geng, DDK system in finite volume. Phys. Rev. D **102**, 114515 (2020). arXiv:2008.13014
- 247. M.T. Hansen, F. Romero-López, S.R. Sharpe, Generalizing the relativistic quantization condition to include all three-pion isospin channels. JHEP 20, 047 (2020). arXiv:2003.10974
- P. Guo, Modeling few-body resonances in finite volume.
 Phys. Rev. D 102, 054514 (2020). arXiv:2007.12790
- 249. P. Guo, Threshold expansion formula of N bosons in a finite volume from a variational approach. Phys. Rev. D 101, 054512 (2020). arXiv:2002.04111
- 250. S. König, Few-body bound states and resonances in finite volume. Few Body Syst. 61, 20 (2020). arXiv:2005.01478
- 251. T.D. Blanton, S.R. Sharpe, Relativistic three-particle quantization condition for nondegenerate scalars. arXiv:2011.05520
- 252. F. Müller, A. Rusetsky, T. Yu, Finite-volume energy shift of the three-pion ground state. arXiv:2011.14178
- S. Kreuzer, H.W. Hammer, The triton in a finite volume. Phys. Lett. B 694, 424 (2011). arXiv:1008.4499
- 254. S. Kreuzer, H.W. Hammer, On the modification of the Efimov spectrum in a finite cubic box. Eur. Phys. J. A 43, 229 (2010). arXiv:0910.2191

- 255. S. Kreuzer, H.W. Hammer, Efimov physics in a finite volume. Phys. Lett. B 673, 260 (2009). arXiv:0811.0159
- 256. S. Kreuzer, H.W. Grießhammer, Three particles in a finite volume: the breakdown of spherical symmetry. Eur. Phys. J. A 48, 93 (2012). arXiv:1205.0277
- 257. G. Colangelo, J. Gasser, B. Kubis, A. Rusetsky, Cusps in $K\to 3\pi$ decays. Phys. Lett. B **638**, 187 (2006). arXiv:hep-ph/0604084
- 258. J. Gasser, B. Kubis, A. Rusetsky, Cusps in $K\to 3\pi$ decays: a theoretical framework. Nucl. Phys. B **850**, 96 (2011). arXiv:1103.4273
- R. Aaron, R.D. Amado, J.E. Young, Relativistic threebody theory with applications to pi-minus n scattering. Phys. Rev. 174, 2022 (1968)
- 260. M. Mai, B. Hu, M. Döring, A. Pilloni, A. Szczepaniak, Three-body unitarity with isobars revisited. Eur. Phys. J. A 53, 177 (2017). arXiv:1706.06118
- 261. Shape JPAC Collaboration, Phenomenology of Relativistic $\mathbf{3} \to \mathbf{3}$ reaction amplitudes within the isobar approximation. Eur. Phys. J. C $\mathbf{79}$, 56 (2019). arXiv:1809.10523
- A.W. Jackura, R.A. Briceño, S.M. Dawid, M.H.E. Islam, C. McCarty, Solving relativistic three-body integral equations in the presence of bound states. arXiv:2010.09820
- 263. S.M. Dawid, A.P. Szczepaniak, Bound states in the B-matrix formalism for the three-body scattering. Phys. Rev. D 103, 014009 (2021). arXiv:2010.08084
- 264. D. Sadasivan, M. Mai, H. Akdag, M. Döring, Dalitz plots and lineshape of $a_1(1260)$ from a relativistic three-body unitary approach. Phys. Rev. D **101**, 094018 (2020). arXiv:2002.12431
- 265. M.T. Hansen, S.R. Sharpe, Applying the relativistic quantization condition to a three-particle bound state in a periodic box. Phys. Rev. D 95, 034501 (2017). arXiv:1609.04317
- 266. P. Guo, B. Long, Multi- π^+ systems in a finite volume. Phys. Rev. D **101**, 094510 (2020). arXiv:2002.09266
- H.-W. Hammer, A. Nogga, A. Schwenk, Three-body forces: from cold atoms to nuclei. Rev. Mod. Phys. 85, 197 (2013). arXiv:1210.4273
- Shape NPLQCD Collaboration, The K⁺K⁺ scattering length from lattice QCD. Phys. Rev. D 77, 094507 (2008), arXiv:0709.1169
- 269. S. Beane, P. Bedaque, K. Orginos, M. Savage, f_K/f_π in Full QCD with domain wall valence quarks. Phys. Rev. D **75**, 094501 (2007), arXiv:hep-lat/0606023
- 270. G. Rendon, L. Leskovec, S. Meinel, J. Negele, S. Paul, M. Petschlies et al., I=1/2 S-wave and P-wave $K\pi$ scattering and the κ and K^* resonances from lattice QCD. arXiv:2006.14035
- J.R. Pelaez, G. Rios, Chiral extrapolation of light resonances from one and two-loop unitarized chiral perturbation theory versus lattice results. Phys. Rev. D 82, 114002 (2010). arXiv:1010.6008
- J. Nebreda, J. Pelaez, G. Rios, Chiral extrapolation of pion-pion scattering phase shifts within standard and unitarized chiral perturbation theory. Phys. Rev. D 83, 094011 (2011). arXiv:1101.2171
- 273. A. GomezNicola, J.R. Pelaez, Meson meson scattering within one loop chiral perturbation theory and

- its unitarization. Phys. Rev. D **65**, 054009 (2002). arXiv:hep-ph/0109056
- 274. L. Lellouch, M. Lüscher, Weak transition matrix elements from finite volume correlation functions. Commun. Math. Phys. **219**, 31 (2001). arXiv:hep-lat/0003023
- 275. RBC, UKQCD Collaboration, Direct CP violation and the $\Delta I=1/2$ rule in $K\to\pi\pi$ decay from the standard model. Phys. Rev. D **102**, 054509 (2020). arXiv:2004.09440
- 276. N.H. Christ, C. Kim, T. Yamazaki, Finite volume corrections to the two-particle decay of states with non-zero momentum. Phys. Rev. D 72, 114506 (2005). arXiv:hep-lat/0507009
- M.T. Hansen, S.R. Sharpe, Multiple-channel generalization of Lellouch-Lüscher formula. Phys. Rev. D 86, 016007 (2012). arXiv:1204.0826
- 278. V. Bernard, D. Hoja, U.G. Meißner, A. Rusetsky, Matrix elements of unstable states. JHEP 09, 023 (2012). arXiv:1205.4642
- 279. A. Agadjanov, V. Bernard, U.G. Meißner, A. Rusetsky, A framework for the calculation of the $\Delta N \gamma^*$ transition form factors on the lattice. Nucl. Phys. B **886**, 1199 (2014). arXiv:1405.3476
- 280. A. Agadjanov, V. Bernard, U.-G. Meißner, A. Rusetsky, The $B \to K^*$ form factors on the lattice. Nucl. Phys. B **910**, 387 (2016). arXiv:1605.03386
- 281. R.A. Briceño, M.T. Hansen, Multichannel $0 \rightarrow 2$ and $1 \rightarrow 2$ transition amplitudes for arbitrary spin particles in a finite volume. Phys. Rev. D **92**, 074509 (2015). arXiv:1502.04314
- 282. R.A. Briceño, M.T. Hansen, A. Walker-Loud, Multichannel $1 \rightarrow 2$ transition amplitudes in a finite volume. Phys. Rev. D **91**, 034501 (2015). arXiv:1406.5965
- 283. H.B. Meyer, Lattice QCD and the timelike pion form factor. Phys. Rev. Lett. 107, 072002 (2011). arXiv:1105.1892
- 284. M. Padmanath, C.B. Lang, S. Prelovsek, X(3872) and Y(4140) using diquark—antidiquark operators with lattice QCD. Phys. Rev. D 92, 034501 (2015). arXiv:1503.03257
- 285. V. Baru, E. Epelbaum, A.A. Filin, C. Hanhart, U.G. Meißner, A.V. Nefediev, Quark mass dependence of the X(3872) binding energy. Phys. Lett. B $\bf 726$, 537 (2013). arXiv:1306.4108
- E.J. Garzon, R. Molina, A. Hosaka, E. Oset, Strategies for an accurate determination of the X(3872) energy from QCD lattice simulations. Phys. Rev. D 89, 014504 (2014). arXiv:1310.0972
- 287. ALICE Collaboration, One-dimensional pion, kaon, and proton femtoscopy in Pb–Pb collisions at $\sqrt{s_{\mathrm{NN}}}$ =2.76 TeV. Phys. Rev. C **92**, 054908 (2015). arXiv:1506.07884
- D. Kaplan, A. Nelson, Strange goings on in dense nucleonic matter. Phys. Lett. B 175, 57 (1986)
- 289. G.-Q. Li, C. Lee, G. Brown, Kaons in dense matter, kaon production in heavy ion collisions, and kaon condensation in neutron stars. Nucl. Phys. A 625, 372 (1997). arXiv:nucl-th/9706057
- S. Pal, D. Bandyopadhyay, W. Greiner, Anti-K**0 condensation in neutron stars. Nucl. Phys. A 674, 553 (2000). arXiv:astro-ph/0001039

- 291. C. Lee, Kaon condensation in dense stellar matter. Phys. Rept. **275**, 255 (1996)
- D. Lonardoni, A. Lovato, S. Gandolfi, F. Pederiva, Hyperon puzzle: hints from quantum Monte Carlo calculations. Phys. Rev. Lett. 114, 092301 (2015). arXiv:1407.4448
- 293. T. Hell, W. Weise, Dense baryonic matter: constraints from recent neutron star observations. Phys. Rev. C 90, 045801 (2014). arXiv:1402.4098
- 294. A. Gal, E. Hungerford, D. Millener, Strangeness in nuclear physics. Rev. Mod. Phys. 88, 035004 (2016). arXiv:1605.00557
- M.J. Savage, Nuclear physics. PoS LATTICE2016, 021 (2016). arXiv:1611.02078
- 296. C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas et al., Towards grounding nuclear physics in QCD. 10 (2019). arXiv:1910.07961

- 297. B. Hörz et al., Two-nucleon S-wave interactions at the SU(3) flavor-symmetric point with $m_{ud} \simeq m_s^{\rm phys}$: a first lattice QCD calculation with the stochastic Laplacian heaviside method. Phys. Rev. C **103**, 014003 (2021). arXiv:2009.11825
- 298. K. Orginos, A. Parreño, M.J. Savage, S.R. Beane, E. Chang, W. Detmold, Two nucleon systems at $m_{\pi} \sim 450$ MeV from lattice QCD. Phys. Rev. D **92**, 114512 (2015). arXiv:1508.07583
- 299. A. Gade, B.M. Sherrill, NSCL and FRIB at Michigan State University: nuclear science at the limits of stability. Phys. Scripta **91**, 053003 (2016)

