
 

Three-body interactions from the finite-volume QCD spectrum
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We perform a fit of the finite-volume QCD spectrum of three pions at maximal isospin to constrain the
three-body force. We use the unitarity-based relativistic three-particle quantization condition, with the
GWUQCD spectrum obtained at 315 MeV and 220 MeV pion mass in two-flavor QCD. For the heavier
pion mass we find that the data is consistent with a constant contact term close to zero, whereas for the
lighter mass we see a statistically significant energy dependence in tension with the prediction of leading
order ChPT. Our results also suggest that with enough three-body energy levels, the two-body amplitude
could be constrained.
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I. INTRODUCTION

It is a long-term quest of nuclear physics to understand
hadron interactions as they emerge from quark and gluon
dynamics. The main challenge lies in the fact that pertur-
bation theory fails at low energies, because the interactions
are strong. Lattice QCD (LQCD) offers a nonperturbative
method which has quarks and gluons as fundamental
degrees of freedom while keeping all systematics under
control. LQCD calculations are performed in a finite
volume and in Euclidean time, leaving only indirect
methods to study real-time infinite-volume scattering.
The relation between finite-volume spectrum and infin-
ite-volume scattering amplitudes is called quantization
condition, which has been known for two-hadron systems
since the pioneering work of Lüscher [1]. The last decade
has witnessed significant progress using this approach for a
variety of interacting two-particle systems. Only recently
has the quantization condition been extended to the three-
hadron sector.
Recent theoretical advances [2–34] of the three-body

formalism as well as related numerical studies [35–49] (see
Refs. [50,51] for reviews) open a possibility for studying

hadronic processes that involve three-body interactions
from first principles. Many scattering channels of interest
receive contributions from three-particle states. For exam-
ple in the meson sector the a1ð1260Þ resonance, seen
experimentally in τ decays, couples first to ρπ and σπ, and
then due to the instability of the ρ and σ mesons to a final
state with three pions. In the baryonic sector an example
where three-body states are relevant is the Roper resonance
Nð1440Þ1=2þ which has both two- and three-particle final
states, as it decays to πN and ππN.
So far most of the effort in lattice QCD calculations of

three-hadron state energies has been concentrated on pure
three-meson systems with maximal isospin (three pions or
three kaons) where relatively precise finite-volume spectra
have been calculated [45,52–57] and the formalism con-
necting it to infinite-volume amplitudes is better under-
stood [9,16,18,19,21,40,42–47,58]. In the pioneering work
by the NPLQCD collaboration in the 3π and 3K sectors
[52,53] threshold energy eigenvalues at different pion
masses were determined and a threshold expansion [59–
61] was performed allowing for the first determination of a
three-body force.
Finite-volume formalisms for excited states were devel-

oped later. In Ref. [62] different approaches are reviewed in
more detail, including a timeline and a comparison of the
methods. In the following we provide a very brief overview.
Among other recent developments [28,47], there are two
relativistic formalisms available for three-particle scattering
usually referred to as relativistic finite-volume unitarity
(FVU) [16] and relativistic effective field theory (RFT) [9]
approaches. The former uses unitarity of the S-matrix as a
guiding principle, while the latter relies on the re-summa-
tion of diagrams. A key ingredient to these formalisms is
the parametrization of two and three-body scattering
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amplitudes. The two-body input can be determined from
experiment in combination with chiral extrapolations, but
lattice QCD data, together with the quantization conditions,
can also be used.
The first determination of the three-body force from the

NPLQCD data [52] using such a formalism was achieved in
Ref. [40] with the FVU framework. There, within the
uncertainties of the lattice data, the three-body force was
found to be zero. This study contains also the first
predictions for excited levels at different pion masses.
Later, in Ref. [54] excited levels for different boosts and
irreducible representations (irreps) were calculated that led
to a refined determination of the three-body force with the
RFT formalism [43]. In particular, the three-body force was
found to be nonzero, and even attempts to determine its
energy dependence could be made. Within the FVU
formalism [44] the data of Ref. [54] were predicted using
only chiral extrapolations of two-body input up to next-to-
leading order (NLO) and assuming a vanishing three-
body force.
The GWUQCD collaboration calculated the three-πþ

spectrum for different quark masses, box geometries, and
boosts, mapping out a plethora of states and comparing also
to FVU predictions that were made under the assumption of
vanishing three-body forces [55]. The agreement found was
fair. Subsequently, the ETMC collaboration calculated the
three-πþ spectrum at three different pion masses, including
the physical point for the first time [56]. The extraction of
the three-body force with the RFT formalism was com-
pared with the leading order (LO) chiral perturbation theory
(ChPT) prediction for the three-to-three process. Similar to
Ref. [43], the three-body term was found to be nonzero, its
energy-independent part being in qualitative agreement
with LO ChPT, but its energy-dependent part not.
The evaluation of the infinite-volume three-body ampli-

tude is a challenge by itself. For example, the FVU
framework was recently extended to the infinite volume
(albeit without lattice input), in order to study the decay
a1ð1260Þ → πρ in coupled S- and D-waves [63]. For three
positive pions, the infinite-volume scattering amplitude was
solved in Ref. [45] in the RFT framework, for the first time
with actual lattice input. The input was calculated by the
Hadron Spectrum collaboration and the analysis included
an extraction of the three-body force. Within uncertainties
and different fit strategies/parametrizations tried, the three-
body term K3;iso was found to be compatible with zero.
Obviously, the role of three-body forces is not settled. In

this paper, we continue the investigation of the three-body
force with the FVU formalism. In particular, the mentioned
discrepancy of FVU predictions with GWUQCD data
(χ2dof ≈ 2.68) [55] could be the result of a finite three-body
term. Therefore, we perform here a fit to the lattice data of
Ref. [55] using the FVU formalism with special focus on
the three-body contact term. In Sec. II we review the
extraction of the three-pion finite-volume spectrum from

the GWUQCD collaboration. Then in Sec. III, we review
the three-body quantization condition. We include technical
implementation details such as parametrizations of the two-
and three-body scattering amplitudes, and establish a
connection to a three-to-three contact term. In Sec. IV
we present the results of various fit scenarios. Finally in
Sec. V we discuss the impact of the results.

II. FINITE-VOLUME QCD SPECTRUM

Here we review briefly the details of the calculation of
the finite-volume spectrum performed by our collaboration,
referring the reader to Ref. [55] for additional material. The
ensembles employed use Nf ¼ 2 dynamical fermions, with
two sets of quark masses tuned so that the pions have
masses of 315 MeVor 220 MeV. These data sets were used
to compute the two-pion spectrum in all three isospin
channels [64–67], the three-pion I ¼ 3 channel [55] and the
K−K−K− channel [57]. The quark propagators are esti-
mated using LapH smearing [68] and an optimized code is
employed to compute the required matrix inversions [69].
The parameters describing the ensembles in this study are
listed in Table I. The lattice spacing was tuned using the
Wilson flow parameter t0. For details about tuning the
lattice spacing and other parameters we refer the reader
to Ref. [70].
For each pion mass, we calculated the I ¼ 3 three-pion

finite-volume spectrum on three different ensembles, which
feature two different geometries. There is one cubic volume
and two volumes which are elongated in the z-direction,
which is also the direction of the boost when calculating the
energies of moving states. The advantage of using elon-
gated ensembles is an increase in energy resolution, since
the momenta are quantized in units of 2π=L. For ensemble
E3, we are able to extract 16 energy levels below the
inelastic threshold, compared to 3 in the cubic volume at
the same pion mass. The numerical cost of generating these
ensembles is reduced since the volume increases linearly
with the elongation, as opposed to a cubic increase for
symmetric boxes. In total we have 30 energy levels below
5mπ across the six ensembles listed in Table I. They form

TABLE I. Details of the Nf ¼ 2 ensembles used in this study.
Here η is elongation in the z-direction, a the lattice spacing, Ncfg

the number of Monte Carlo configurations. Ensembles E1, E2, E3

have a pion mass mπ ≈ 315 MeV, while E4, E5, E6 have a pion
mass mπ ≈ 220 MeV.

Label Nt × N2
x;y × Nz η a[fm] Ncfg amπ

E1 48 × 242 × 24 1.00 0.1210(2)(24) 300 0.1931(4)
E2 48 × 242 × 30 1.25 … … 0.1944(3)
E3 48 × 242 × 48 2.00 … … 0.1932(3)
E4 64 × 242 × 24 1.00 0.1215(3)(24) 400 0.1378(6)
E5 64 × 242 × 28 1.17 … … 0.1374(5)
E6 64 × 242 × 32 1.33 … … 0.1380(5)
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the basis for our quantitative analysis of the three-body
interaction in this work. Precise values for the levels can be
found in Appendix B of Ref. [55].
Regardless of geometry, the finite volume introduces a

critical change to the angular momentum quantum number
of the system of interest. In the infinite volume, the
symmetry group of rotations is SOð3Þ, and the quantum
number of the states are labeled by the angular momentum
l, the irreducible representations (irreps) of the group. For a
finite volume the symmetry group is reduced from SOð3Þ to
Oh in the case of cubic volumes, and D4h in the case of
elongated volumes. If the system is at nonzero total
momentum the relevant symmetry group is C4v, provided
the boost is along the direction of any spatial elongation. In
this study we only consider a boost of P ¼ ½001�, which is
aligned with the elongation. The rotation quantum number
of states in a finite volume are thus labeled by the irreps of
the respective symmetry groups. Here we focus only on
states that overlap with l ¼ 0, which will be labeled by A1u
for symmetry groups Oh and D4h, or labeled by A2 for the
C4v symmetry group. For a full discussion on the relation
between angular momentum l and irreps of the finite-
volume symmetry groups in elongated boxes we refer the
reader to Ref. [71].

III. QUANTIZATION CONDITION

The dynamics of a (multi-)hadron system is accessed in
lattice QCD by calculating correlation functions on a
discretized Euclidean space-time in a finite volume. The
so-called discretization effects are related to the finite
lattice spacing a. In principle, a continuum limit a → 0
needs to be taken to relate the lattice QCD results to the
physical (real-world) quantities. Since only a finite number
of lattice sites can be considered in any practical calcu-
lation, the system of interest is necessarily evaluated in a
finite volume. Imposing boundary conditions restricts the
allowed momenta in this system. For example, in a cubic
volume of side length L, the frequently applied (also here)
periodic boundary conditions yield an infinitely large dis-
crete set of allowed momenta SL ¼ fð2π=LÞnjn ∈ Z3g.
Unavoidably, using three-momenta from such a set changes
the infinite-volume spectrum fundamentally, making it a
discrete set of energy eigenvalues. This holds for any finite
L, such that a simple extrapolation (limL→∞) is not useful,
calling for a nontrivial mapping between infinite- and
finite-volume. Such mappings are referred to as quantiza-
tion conditions. An alternative possibility to use ordered
double limit [72] techniques to extract (complex-valued)
amplitudes was explored in Ref. [11], with related tech-
niques in Refs. [48,73–75]. The goal of this section is to
reiterate the form of the relativistic three-body quantization
condition derived in Refs. [16,40,44,55], unifying and
simplifying the nomenclature.
As one of the currently available relativistic formulations

of the three-body quantization condition (see Refs. [50,51]

for reviews) the FVU approach derives from the relativistic
unitary three-body formalism [76] in infinite volume. The
formalism differs from the diagrammatic approach fol-
lowed in Ref. [9], but yields an equivalent finite-volume
spectrum given the same input, as shown using time
ordered perturbation theory in Ref. [34]. Also in the infinite
volume both formalisms yield a unitary three-body ampli-
tude [77,78]. Both formulations are currently being applied
to a variety of calculations of simpler three-hadron systems
such as 3πþ [40,43–45,55,79] or 3K− [57]. However, the
practical implementation of each differs. See also Ref. [47]
for a calculation based on combination of a variational
approach and the Faddeev method, including relativistic
effects for the pions and lattice spacing effects. In the
following, we will demonstrate and discuss an example of
contrasting representations of the three-body contact term.

A. Design and implementation

We avoid discussing the derivation of the FVU formal-
ism here [16,40,44,55], but review the results and unify the
notation. At its core, the condition derives from a relativ-
istic unitary three-body scattering amplitude, which
resolves the three-body dynamics as a cluster of a two-
body (also related to “isobar” or “dimer” notation) state and
a third particle—a “spectator” [76] (see also Refs. [80–82]
for recent progress in this direction). The kinematic
notation of such a configuration is depicted schematically
in Fig. 1. Unitarity constrains the correct interplay between
the two- and three-body interactions accounting for on-
shell configurations, which are the source of singularities in
the finite-volume correlator. The net result is that in a finite
volume

ffiffiffi
s

p
is the energy corresponding to an interacting

three-body state when

0 ¼ detQLηP̃ðsÞ ≔ det½B0ðsÞ þ C0ðsÞ
− ELηðK−1ðsÞ=ð32πÞ þ ΣLηP̃ðsÞÞ�: ð1Þ

The determinant is taken over the SLη × SLη space, refer-
ring to the momentum of the in- and outgoing spectator
(third particle). Here, SLη ¼ f2π=Lðn1; n2; n3=ηÞjðn1; n2;
n3Þ ∈ Z3g refers to the momentum configuration from

p

P-p P-q

q

s
σσp q isobar/dimer

spectator

in out

FIG. 1. Schematic representation of a two-plus-one decom-
position of the three-body system. P, p=q denote three-momenta
of the three-body system and that of the in/outgoing spectators,
respectively. Total three-body energy squared and the invariant
mass of the two-body systems are denoted by s and σp=q,
respectively.
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elongated boxes used by GWUQCD and P̃ is the total
three-momentum of the system. The remaining building
blocks of this condition (∈ MatSLη×SLη) are

(i) ½ELη�pq ¼ δ3pq2L3η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

π

p
.

(ii) ½B0ðsÞ�−1pq ¼ −2Epþqð
ffiffiffi
s

p
− Ep − Eq − EpþqÞ. This

singular and nondiagonal matrix originates from
the one-particle exchange contribution, and is a
direct consequence of three-body unitarity in the
infinite volume. Here and in the following Ex ≔ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þm2

π

p
denotes the on-shell energy of a pion

with a momentum x.
(iii) ½ΣLηP̃ðsÞ�pq ¼ δ3pq

σp
L3η

P
k̃∈SLη

JJ̃
8E3

k� ðσp−4E2
k� Þ
. This sin-

gular, diagonal matrix accounts for the on-shell
configurations in the two-body subsystem with total
energy squared σpðsÞ ¼ ð ffiffiffi

s
p

− EpÞ2 − p2. The equa-
tion above is derived in the Appendix with the final
form given in Eq. (A29). Note that the summation is
performed over k̃ in the lattice frame, while the
summands are expressed in terms of the k� momenta
in the two-body rest frame. The corresponding two-
step boost reads

lattice
frame

⟶
three-body
rest frame

⟶
two-body
rest frame

k̃ ⟼ kðk̃; P̃; sÞ ⟼ k�ðk; p; sÞ:
The explicit formulas for the boosts and correspond-
ing Jacobians J and J̃ are collected in Appendix.

(iv) ½C0ðsÞ�pq.
This regular and in general nondiagonal matrix

parametrizes the isobar-spectator interaction and,
thus, also the three-body contact interaction via a
nontrivial mapping discussed in the Sec. III C. In
both cases, this contribution is not fixed and needs to
be obtained from a fit to the lattice results as will be
discussed in Sec. III C and IV. Note that the
normalization used here differs slightly from pre-
vious work [16,76].

(v) ½K−1ðsÞ�pq ¼ δ3pqK−1ðσpÞ.
This regular, diagonal matrix parametrizes the

dynamics of the two-body subsystem. In that, it
corresponds to the usual K-matrix as explained in
detail in Appendix A 2. Similarly to the three-body
term C0, this contribution needs to be determined
from a fit to the lattice eigenvalues. Such a fit can
take two-body, three-body, or both data types into
account as will be discussed in Sec. IV.

Before proceeding with the discussion of the two- and
three-body interaction terms K−1 and C0, we note a generic
feature of the three-body quantization condition. In contrast
to the well-established Lüscher’s method in the two-body
case, the three-body quantization condition in Eq. (1)
emerges as a full-fledged determinant equation, even in

the simplest case of identical particles in S-wave. Thus, it
prevents any one-to-one mapping between infinite- and
finite-volume quantities. Instead, even for the simplest
three-body systems, one must fix the volume-independent
quantities (C0 and K−1) from a fit to lattice data and then
use those to evaluate the infinite-volume scattering ampli-
tude. Note that this three-to-three amplitude provides only
the three-body unitary final state interaction of production
processes; to actually obtain mass-spectra or Dalitz plots as,
e.g., in Ref. [63], one needs additional information.

B. Parametrization of the two-body input

Depending on the system at hand and the research
objectives, various techniques in parametrizing the two-
body dynamics (K−1) may be more or less advantageous.
For example, a model based on ChPTwas used in Ref. [40]
to bridge the lattice results obtained at different pion mass.
Another approach, related to an effective range expansion
was employed in Ref. [43] allowing for a systematic
extraction of threshold quantities.
With the lattice data spanning over large energy ranges

and two different pion masses we proceed here with the
path traced out in Ref. [40], and implement the modified
inverse amplitude method [83–85,85,86] (mIAM) into the
three-body formalism. This is also motivated by our
previous applications to the isoscalar channel [66,87]
and more recently cross-channel (I ¼ 0, 1, 2ππ scattering)
analysis [88] of GWUQCD lattice results [65–67] which is
based on this approach.
A practical implementation of this requires equating the

two-body scattering amplitude used in the infinite volume
analog of Eq. (1) to the mIAM amplitude [86]. This
procedure has been developed in Ref. [40], but is improved
in the current study. In particular, the matching procedure is
now exact and without the need of a redundant regulator.
Details can be found in Appendices A 2 and A 3 leading to

K−1ðσÞ ¼ T0
2ðσÞ − T̄0

4ðσÞ þ AðσÞ
ðT0

2ðσÞÞ2
ð2Þ

(see Eq. (A17) there). Here, Tl
n denotes the chiral ππ

amplitude of order n projected to the isospin I ¼ 2, angular
momentum l ¼ 0 partial wave. The barred symbol denotes
a reduced amplitude, where the s-channel one-loop dia-
gram is subtracted. This algebraic reshuffling ensures that
the above expression indeed contains only quantities which
do not go on-shell in the physical region. Similarly, AðσÞ is
a function of the chiral amplitudes, introduced in Ref. [86]
to improve the analytic behavior of the (infinite volume)
scattering amplitude below threshold 0 <

ffiffiffi
σ

p
< 2mπ. In

particular, adding AðσÞ prevents the two-body scattering
amplitude (∼1=ðT2 − T4Þ) from diverging around the Adler
zero (σ ⇔ T22;∞ðσÞ ¼ 0, where T22;∞ is the S-wave scat-
tering amplitude). Recall that the presence of the Adler zero
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itself is demanded by chiral symmetry. The diagrammatic
representation of the leading contributions is given in
Fig. 2, while formulas are provided for convenience in
Appendix A 2.
Note that the two-body subthreshold amplitude enters

the three-body quantization condition Eq. (1) since for
some p̃, σpðp̃;P̃;sÞ < 4m2

π for p̃ ∈ SLη. The mIAM approx-
imates the left-hand cut by the next-to leading chiral order.
Thus, it is expected that at too low invariant masses the
latter model is a poor approximation of reality. To account
for this, we have explored various possibilities, such as
employing smooth form-factors, etc. We found that fixing
K−1ðσÞ ↦ K−1ðσ0Þ for σ < σ0 ¼ 3m2

π is sufficient.
Variating the matching point in a reasonable range leads
to uncertainties orders of magnitude smaller than other
effects, see Ref. [57]. Also, changes in subthreshold
behavior are supposed to be absorbed in three-body contact
terms.
Overall, the expression in Eq. (2) is a regular, volume-

independent function of two-body energy σ, ensuring
in infinite volume an exact matching of the two-body
dynamics of the mIAM approach. In that, Eq. (2) depends
on four renormalized low-energy constants flr1; lr2; lr3; lr4g,
see Ref. [89] for explicit formulas relating those to
Lagrangian constants. As it has been shown in previous
studies of two-body lattice results [87,90], lr3 and lr4 con-
tribute weakly to the two-body ππ dynamics. This is simply
due to the fact that their appearance is solely rooted in the
procedure of replacing the Lagrangian quantities—pion
decay constant in the chiral limit and leading order pion
mass—by their physical/lattice values. Thus, we simply fix
the symmetry breaking LECs flr3 ¼ 8.94 × 10−6; lr4 ¼
9.05 × 10−3g to their typical values [88,91] at the regulari-
zation scale of μ¼ 770 MeV. Another possibility is to
directly use both quantities as fit parameters as introduced
in Ref. [92]. This has an advantage of avoiding the scale
setting discussion,which is beyond the current stage of three-
hadron spectroscopy from QCD.

C. Parametrization of the three-body input

The implementation of the three-body input into the
quantization condition Eq. (1) is much less explored than
that of the two-body. One of the goals of this paper is to
improve on this, in exploring various ways of parametrizing

three-body dynamics theoretically and in a practical appli-
cation to the lattice data.
In the three-body finite-volume formalism (FVU) [16],

the three-body dynamics is included via a regular (real-
valued, infinite volume) function—the isobar-spectator
contact term C ∼ C0. This term is not fixed by unitarity
and, other than demanded by data, there are no constrains
on its functional dependence with respect to energies and
masses. The RFT formalism [9] on the other hand, relies on
the diagrammatic counting of the on-shell configurations in
derivation of the three-body quantization condition. Thus, it
includes by construction a regular three-body contact term
(K3;df), which again needs to be determined from a fit to
the data.
Interestingly, in the pioneering application to the lattice 3πþ

finite-volume spectrum [40], a simplistic fit1 to the NPLQCD
data [52] led to c0 ¼ ð0.3� 2.3Þ × 10−6 ½MeV−2�. Later, an
analysis of more recent data at one pion mass [54] was
performed within both RFT [43] and FVU [44]. In that, the
FVU formalism with vanishing three-body term C0 led to a
χ2dof ≈ 0.9 prediction of three-body energies, while a nonzero
m2

πK3;df ¼ 270ð160Þ was obtained in the RFT approach by
fitting two- and three-body lattice energies. The apparent
discrepancy between these results was raised in the commu-
nity, but, so far, not resolved quantitatively.
To find an algebraic connection between the three-to-

three contact term (T̄3) and the isobar-spectator coupling
C0 we utilize the language of Refs. [16,76] in matrix
notation for convenience. There, a fully connected three-
body amplitude takes the form

T3 ¼
1

3!
hvτTISτvi ð3Þ

for TIS, τ and v denoting isobar-spectator amplitude, isobar
propagator and its coupling to asymptotically stable states,
respectively. Explicit definitions of the latter do not matter
for the derivation but can be found in Refs. [16,76] and
Appendix A 3. For simplicity, momentum and energy
labels are omitted. Symmetrization over external momenta
is taken into account by h…i. For three degenerate scalars
in (relative) S-wave this leads to

T3 ¼
3

2
vτ

1
1þ vðB0 þ C0ÞvE−1

Lητ
vðB0 þ C0Þvτv: ð4Þ

Taking now the limit mπ → ∞ for all intermediate pions
provides an expression equivalent to a contact term (T̄3)

K(σ ) = + + + + . . .

FIG. 2. Leading contributions to the K-matrix utilized for the
two-body input of the quantization condition in Eq. (1). Diagrams
represent scattering amplitudes obtained from ChPT with dots
and squares denoting the leading and next-to-leading chiral order
vertices, respectively (tadpole contributions not shown).

1Note that projection to shells (sets of momenta related by
octahedral symmetry transformation), was employed in this work,
which is not part of the more general form of Eq. (1). There
the employed fit form was chosen as C0 ¼ 1 · c0ðmπ=m

phys
π Þ2.
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T̄3 ¼
3

2

�
K−1

32π

�−1 C0

1 − C0E−1
LηðK

−1

32πÞ−1
�
K−1

32π

�−1
; ð5Þ

or equivalently

C0 ¼
�
K−1

32π

��
2

3
T̄3

��
K−1

32π

�
1

1þ E−1
Lηð23 T̄3ÞðK−1

32πÞ
; ð6Þ

where T̄3 denotes a real three-body contact term. This
equation is schematically illustrated in Fig. 3 to the top.
Note again that appearance of factors ð32πÞ is caused by the
fact that we are working in the plane wave basis, see
Appendix A 2 for more details. This relation is of the same
form as the relation between the K3;df and C0 term, which
can be obtained from a matching of FVU and RFT
formalisms, see for example Refs. [50,51]. Also, as noted
there, it implies that in general an isotropic T̄3 leads to
anisotropic C0 and vice versa.
To expand on this further, we consider the following

example. Chiral perturbation theory at leading chiral order
(this was used for the RFT formalism in Ref. [43]) yields
for our formalism a three-to-three contact term of the form

T̄3 ¼
1

27f4π
ð4s − 9m2

πÞ: ð7Þ

Using now Eq. (6) with the K-matrix from Eq. (2) we
obtain a prediction for the isobar-spectator interaction
C0ð

ffiffiffi
s

p
; p; qÞ, for the momenta belonging to the in/outgoing

spectators. The resulting symmetric (in p, q) isobar-spec-
tator contact interaction is depicted for several values of
total three-body energy 3mπ <

ffiffiffi
s

p
< 5mπ in Fig. 3. We

observe that several orders of magnitude difference
between the overall scales of the T̄3 and C0 (e.g.,
C0 ≈ 10−6 MeV−2 ↔ mπT̄3 ≈ 102) occurs naturally, con-
necting the results of Refs. [43,44].

D. Three-body state energies

Given parametrizations of the two- and three-body
interactions, the finite-volume spectrum can be determined
by searching for energies at which Eq. (1) is satisfied. To
find the energies associated with a particular irrep Λ of the
symmetry groupG, we first block-diagonalize the matrixQ

Q ¼ diagðQΛ1
;QΛ2

;…Þ;
⇒ detQ ¼

Y
i

detQΛi
: ð8Þ

The determinant of QΛ block can then be scanned
separately in s for the zeros which determine the energies
finite-volume states for that irrep.
To block-diaganolize the matrix Q we need to change to

an appropriate basis. The change of basis from the plane-
wave basis in Eq. (1) can be done by constructing
projectors for the row λ of the irrep Λ of the group G:

PΛλ ¼
dΛ
jGj

X
g∈G

ΓΛ
λλðRðgÞÞUðRðgÞÞ⊺; ð9Þ

FIG. 3. Top: connection between the contact three-to-three (T̄3) and isobar-spectator interaction (C0). Two-body dynamics is encoded
in the K-matrix, which does not contribute to divergences. Bottom: visualization of C0 (in MeV−2) from Eq. (6) for T̄3 from leading
order ChPT at relevant values of total three-body energy

ffiffiffi
s

p
. In- and outgoing spectator momenta p and q are given by their index in the

set ð2πÞ=ðLÞfð0; 0; 0Þ;…; ð�2;�1; 0Þg, ordered by magnitude.
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where dΛ is the dimension of the irrep Λ, ΓΛ
λλðRÞ is the

representation matrix of the group element g in row λ of the
irrep Λ, RðgÞ is the rotation corresponding to g, and
UðRðgÞÞ is the unitary transformation of R on the plane-
wave space.
We must truncate the plane-wave space SLη to include

only momenta below a sufficiently large threshold,
pmax ≈ 1 GeV. In general the values of the parameters
would need to be adjusted based on the choice of the cutoff
pmax. In our case we found that there is a very mild
dependence on the choice of pmax, for the energy levels
predicted from the quantization condition, well below the
stochastic errors in the lattice data. By construction this
truncated space is invariant under the symmetry trans-
formations, since the momenta magnitudes are invariant
under rotations. For each irrep Λ we project the entire
plane-wave basis using the projector above and the dimen-
sionality of this space represents the number of independent
multiplets associated with Λ that appear in the selected
plane-wave basis. The restriction of Q to this subspace is
QΛ which has zeros corresponding to energies in the
irrep Λ.

IV. RESULTS

In this section we present the results for the three-body
terms as extracted from fitting the finite-volume spectrum.
For sake of clarity we will first discuss the extraction of the
three-body termswhen the two-bodydynamics is fixed by the
mIAM parametrization with LECs determined from fitting
our lattice two-pion spectrum in all isospin channels [44].
This model provides a good description of our two-pion
spectrum across all channels for the two quark masses we
studied. For the three-body termsweparametrize T̄3, usingno
energy dependence: T̄3ðsÞ ¼ t̄0, or T̄3ðsÞ ¼ t̄0 þ t̄1s=m2

π, a
linear function in s. The second parametrization is consistent
with the leading order prediction from ChPT in Eq. (7).
The data points included in these fits are all three-body

energies below the inelastic threshold in the irreducible
representations sensitive to the s-wave three-body terms.
The relevant representations are A1u for the states at rest and
A2 for the moving states. The total number of points is 12
(2, 3, and 7 for ensembles E1, E2, and E3 respectively) for
the heavy quark mass and 7 (2, 2, and 3 for ensembles E4,
E5, and E6 respectively) for the light quark mass. These
energy levels are plotted with errors in Fig. 4.
All fits to the three-body energy levels are performed

separately for the two quark masses since our parametriza-
tion for the three-body term does not constrain the quark
mass dependence. We perform various fits, keeping some
of the fit parameters fixed and varying others as shown in
the Table III. Below we discuss these results.
To get a sense whether these parametrizations are

reasonable, we first extracted T̄3ðsÞ by fitting each indi-
vidual lattice energy level alone. This offers a rough profile
of T̄3 as a function of energy. To stabilize these fits we fix

FIG. 4. Finite-volume center-of-mass πþπþπþ energies for
mπ ¼ 315 MeV (E1;2;3) and mπ ¼ 220 MeV (E4;5;6). For each
pion mass there is one cubic box (E1;4) and two elongated boxes
(E2;3;5;6). Columns distinguish different irreps of the rotational
symmetry group containing energies below the inelastic threshold,
5mπ (solid black line). The data points are the LQCD energy levels
with error bars inside of the circles. The dashed lines are the
noninteracting energy levels. Boosted frames with nonzero total
momentum are denoted by the superscript ½001� indicating a single
unit of momentum in the elongation (z) direction. The solid lines
represent the predicted central values of the spectrum from FVU,
after fitting t̄0, t̄1, lr1, and lr2, for mπ ¼ 315 MeV (red) and mπ ¼
220 MeV (blue) separately.
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the LECs to the values extracted in our cross-channel two-
pion study [44]. In Fig. 5 these results are represented by
the data points, for the heavy and light quark masses. We
note that while the errors are large the results support T̄3ðsÞ
being (weakly) dependent on energy. For the heavier quark
mass the data is consistent with a constant parametrization
for T̄3, close to zero, whereas for the lighter mass we see a
statistically significant fall in the data with energy. Note
that the magnitude of T̄3 in absolute terms is not that
different, but the energy dependence is more pronounced
for the lighter mass. Additionally, for the light mass T̄3 is
well constrained to be nonzero away from threshold. We
also present in these plots the expectation from the leading
order ChPT, plotted with a dashed line. At the light mass
there is some tension with the leading order ChPT
prediction, in particular at higher energies. Also, the energy
dependent term has opposite sign to the ChPT result. This is
similar to the tension in the energy dependence of the RFT
three-body term in Refs. [43,56].
The simultaneous fit to all the energy levels are indicated

with color bands in Fig. 5. For these fits we allowed the
LECs to vary but constrained their variation using priors
based on the probability distribution that was determined in
our cross-channel two-pion data fits. We prefer this strategy
over the simultaneous fit of the two- and three- body
energies, since it makes the results for the three-body fit
easier to analyze by isolating the two-body contribution.
These priors are included by augmenting the χ2-function
that is minimized by the fitter:

χ2aug ¼ χ20 þ δliðΣ−1Þijδlj|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
χ2priors

; ð10Þ

where δli ≔ lri − l̂i, with l̂ being the values of the LECs as
determined in Ref. [44] and Σij their covariance matrix.

Note that since the LECs variations tend to be strongly
correlated, in order to include these priors properly we need
to consider the full correlation matrix Σ, not just the
diagonal terms associated with individual LECs error
estimates. In Ref. [44] we only reported the errors on
the LECs. We include the estimate for the covariance
matrix in Table II.
The constant fit works reasonably well for the heavy

quark mass ensembles and is consistent with the linear fit in
s. For the lighter quark mass the linear and constant fit are
quite different and the linear term is needed to describe the
data well. The values extracted for the fit constants and the
χ2 value for the fit are listed in Table III.
We also indicate in the figures with narrower bands the

fit results for ft̄0; t̄1g when the LECs are not allowed to
vary, corresponding to the second and third rows in
Table III. We see that while the central values are almost
the same, the error bands are almost doubled when we
allow the LECs to vary. This shows that even with small
error bars (few percent level) in the two-body parametriza-
tion, there is a large impact on the error of the three-body
terms in this channel. This is partly due to the smallness of
three-body terms. The smallness is unsurprising since the
three-body effects are suppressed by an additional volume
factor relative to two-body interactions.
In terms of fit quality, we note that for both masses, the

fits for the linear form with varying LECs produce a χ2 per
degree of freedom around 2. This indicates that there is a

FIG. 5. The three-body contact term T̄3 defined via Eq. (6) as a function of three-body energy
ffiffiffi
s

p
for mπ ¼ 315 MeV (left) and

mπ ¼ 220 MeV (right). The data with error bars show the pointwise determination of T̄3. The three lines correspond to constant, linear
and ChPT energy dependence. Dark bands indicate 1σ uncertainties for fits of the three-body data using fixed mIAM LECs from
Ref. [88]. Light bands indicate the 1σ uncertainties from fits to the three-body data including lr1 and l

r
2 as fit parameters and priors from

the cross-channel two-pion fits as described in Sec. IV.

TABLE II. Covariance matrix Σij for the LECs lr1, lr2 as
determined in Ref. [44].

l̂i Σij=ðσiσjÞ
lr1 −0.00407ð12Þ 1 0.744
lr2 0.00514(20) 1
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slight tension between the data and the parametrization
used here. At this point it is not easy to determine whether
this is the result of the quality of the lattice data or due to the
lack of flexibility in the fit form used for the three-body
terms. We note that since the three-body predictions are
sensitive to the two-body inputs, some of this tension might
have as a source small discrepancies in the two-body
amplitudes used in the quantization conditions. We note
that when analyzing two-meson energy levels using mIAM
framework, a similar level of agreement between data and
predictions was found [88].

An interesting question is whether we can extract the
LECs parametrizing the two-body interactions directly
from three-body energy levels. The three-body energy data
set does not provide enough constraints to pin down both
the LECs and the three-body terms. We are however able to
fit the LECs when the three-body terms are set to zero.
Setting t̄0;1 to zero makes sense, since their effect is rather
small. To stabilize the root finding routines used to predict
the three-body energy levels as a function of the LECs, we
constrained the region scanned for the LECs to a reasonable
window, within one order of magnitude of the values

TABLE III. Fit results for T̄3 and LECs including I ¼ 3 πππ energies only formπ ¼ 315 MeV (left) andmπ ¼ 220 MeV (right). Bold
font indicates parameters fixed to values from Ref. [88], others are left as free parameters of the fit. The final row in each table is for a fit
using relaxed priors, as indicated by an asterisk and described in the text.

t̄0 · 103 MeV2 t̄1 · 103 MeV2 lr1 · 10
3 lr2 · 10

3 χ2I¼3 þ χ2priors χ2dof

0.0 0.0 −4.07 þ5.14 27.39 0 2.28
−1.7ð2.3Þ 0.0 −4.07 þ5.14 25.95 0 2.36
−1.7ð2.1Þ þ0.12ð10Þ −4.07 þ5.14 25.76 0 2.58
0.0 0.0 −4.034ð85Þ þ5.21ð12Þ 27.08 0.14 2.27
−4.5ð3.5Þ 0.0 −3.947ð98Þ þ5.39ð15Þ 21.41 1.52 2.08
−4.5ð3.5Þ þ0.24ð18Þ −4.038ð93Þ þ5.20ð14Þ 22.33 0.10 2.24
0.0 0.0 −4.3ð1.5Þ þ5.42ð83Þ 27.11 0.03�

t̄0 · 103 MeV2 t̄1 · 103 MeV2 lr1 · 10
3 lr2 · 10

3 χ2I¼3 þ χ2priors χ2dof

0.0 0.0 −4.07 þ5.14 33.78 0 4.83
−5.3ð1.5Þ 0.0 −4.07 þ5.14 15.10 0 2.52
þ5.8ð4.5Þ −0.92ð38Þ −4.07 þ5.14 10.41 0 2.08
0.0 0.0 −4.27ð12Þ þ4.75ð20Þ 25.80 3.79 4.23
−5.0ð1.6Þ 0.0 −4.12ð12Þ þ5.03ð20Þ 14.50 0.30 2.47
þ6ð12Þ −0.9ð1.1Þ −4.10ð13Þ þ5.09ð22Þ 10.27 0.07 2.07
0.0 0.0 −5.1ð1.8Þ þ3.2ð1.1Þ 7.11 0.11�

FIG. 6. Three-body force versus the I ¼ 2 scattering length. Results from this work for fixed and varied two-body input is shown by
filled red circles and squares, respectively. Expectations from leading order ChPT are shown by the gray line and those of earlier (RFT)
determinations in blue (ETMC [56]) and green (BRS [43]) symbols. The red circles are slightly offset in the horizontal direction for
legibility. The dashed vertical line shows the physical point.
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determined from the two-body fits. Procedurally this was
accomplished using a set of relaxed priors. We used a
correlation matrix Σrelaxed ¼ 302 × Σ, so that the equivalent
error bands on the LECs were at the level of 100%, in effect
constraining only the order of magnitude of the LECs.
The results for these fits are included in the last rows of

Table III. We find that the values of the LECs are close to
the ones generated from the two-body fits, albeit with larger
error bars. This provides a good cross-check for the
formalism and suggests that with enough three-body
energy levels, we should be able to also constrain the
two-body amplitudes.
To put the results on the three-body force in perspective,

we compare our determination of the three-body term with
those obtained in the literature [43,56] in Fig. 6. In doing
so, the matching of corresponding three-body terms can be
made on the level of scattering amplitudes applying the
procedure discussed in Sec. III C. We note that this yields
an approximate identification Kiso;0

df;3 ≃ 6ðt̄0 þ 9t̄1Þ and
Kiso;1

df;3 ≃ 54t̄1. We see reasonable agreement between differ-
ent collaborations, not too different from the leading order
ChPT prediction. This indicates the rapid progress made in
the community in mapping out the three-body force.

V. CONCLUSIONS

The field of three-body physics is rapidly advancing,
fueled by progress on two fronts. On the one hand, precise
energy levels are being produced in LQCD for interacting
systems such as three pions or kaons. On the other hand,
formalisms that connect the finite-volume QCD spectrum
and infinite-volume three-body scattering amplitude, called
quantization conditions, are reaching maturity. Such
progress has allowed the possibility of extracting quanti-
tative information on the three-body force from first
principles.
In this work we apply the FVU formalism to analyze the

spectrum obtained previously in Ref. [55]. We used a
minimal parametrization for the three-body contact term
and constrain the parameters from fits to the spectrum
extracted using lattice QCD. We find that the heavy quark
mass results are compatible with expectations from leading
order ChPT, but our lower mass results are in tension with
the predictions. Note that this is similar to other LQCD
determinations of this term in the RFT framework [43,56].
The effects of the three-body force terms are small, in broad
agreement with other lattice QCD extractions. We also
perform a fit to the three-body spectrum to constrain the
parameters of the two-body amplitude. We find that the
results are in agreement with the values extracted from the
two-body spectrum, indicating that the two-body amplitude
can also be determined consistently from the three-body
data. While this is expected theoretically, it is an important
feasibility check.

This study serves as a benchmark for the fitting strategy
and the tools developed to generate predictions for the
finite-volume three-body spectrum at maximal isospin. In
this channel the effects of the three-body force are small, so
to constrain it better we need more energy levels and/or
better precision for the lattice data. This is likely to be done
in the near future. Another direction that is being explored
is to study other three-body channels where resonant
amplitudes contribute [93]. To this end, both lattice
QCD data needs to be generated and the FVU quantization
condition must be extended.
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APPENDIX A: TWO-BODY SUMMATIONS

To set a baseline, the previous approach to two-body
summations, as used in Refs. [40,44,55], is reviewed. In
Sec. A 2 the matching to ChPT is discussed motivating a
new implementation for evaluating the two-body para-
metrizations in Sec. A 3.

1. Previous two-body summation

In the following, the subscript “∞” is used to distinguish
infinite-volume quantities from their finite-volume counter-
parts; as outlined in the main text, starred ( �) three-
momenta and energies are defined in the two-body rest
frame; likewise, tilde ( )̃ indicates the lattice rest frame, and
momenta/energies without superscript are defined in the
three-body rest frame. Furthermore, p, q, l label incoming,
outgoing, and intermediate spectator momenta, respec-
tively; P̃ is the momentum of the three-body system and
k� labels the momentum of the pions from isobar decay,
that are, of course, back-to-back, i.e., ðEk� ; k�Þ and
ðEk� ;−k�Þ. The zero-components of all momenta are
always taken on-shell, i.e., El ≔ l0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ l2
p

[76].
The infinite-volume propagator τ∞ in Eq. (4) of

Ref. [16], adapted to current notation, reads

τ−1∞
λ2

¼ σ −M2
0

λ2
− Σ∞;

Σ∞ ¼
Z

d3k�

ð2πÞ3
1

2Ek� ðσ − σ0 þ iϵÞ ; ðA1Þ
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where σ0 ≔ 4E2
k� and σ ¼ sþm2

π − 2
ffiffiffi
s

p
El is the invariant

two-body subenergy squared (in the main text, σ is called
σp owing to the fact that p and q are used to name spectator
momenta). We refer to the term Σ as “self-energy” in the
following although this formalism is a-priori not based on
any diagrammatic expansion. Furthermore, M0 and λ in
Eq. (A1) are fit parameters that may be adjusted to two-
body input; indeed, the two-to-two scattering T-matrix is
simply

T22;∞ ¼ vSv ¼ −v
1

D
v ¼ −λτ∞λ ðA2Þ

with S and D from Ref. [76]. We also indicate the
restriction of the general vertex v≡ vðqi; qjÞ, that depends
on the four-momenta of the decay pions qi, qj [76], to the
S-wave case λ≡ λðσÞ that here depends only on σ. The
vertex v depends on invariants formed by the three
available (isobar and decay) four-momenta. This ensures
three-body unitarity is maintained when v is evaluated in
different frames (three-body and two-body rest frames)
[63]. In previous studies [40,44,55] a form factor for
regularization was included in the definition of v which
we can drop in the current formulation as explained in
Sec. A 3; for the time being we assume that the integral in
Eq. (A1) is simply regularized by a cutoff (in Sec. A 3 we
construct convergent expressions).
The finite-volume version of the isobar-spectator propa-

gator is obtained from Eq. (A1) by imposing periodic
boundary conditions in the lattice rest frame leading to
discretized momenta. For elongations η in z-directions, i.e.,
Lx¼Ly¼L, Lz ¼ ηL this implies a discrete set of allowed
three-momenta k̃ ∈ SLη ≔ f2π=Lðn1; n2; n3=ηÞjðn1; n2;
n3Þ ∈ Z3g. The finite-volume propagator is diagonal in
spectator momentum and reads

τ−1
P̃Lη

λ2
¼ σ −M2

0

λ2
− ΣP̃Lη

ΣP̃Lη ¼
1

ηL3

X
k�

J̃J
2Ek�

1

σ − σ0
ðA3Þ

where k� ≡ k�ðkðk̃Þ; lðl̃ÞÞ, with the dependence on spectator
momentum l explicitly denoted. The boost momenta are P̃
from lattice to three-body rest frame, leading to the Jacobian
J̃, and−l from three-body rest frame to two-body rest frame,
leading to the Jacobian J in Eq. (A3).
To further discuss the kinematics, we consider the

incoming and outgoing pion momenta q̃j and p̃j, j ¼ 1,
2, 3. The 3πþ system has then momentum P̃ ¼ q̃1þ
q̃2 þ q̃3 ¼ p̃1 þ p̃2 þ p̃3. Momenta in the three-body rest
frame are [94]

l ¼ l̃ þ
��

EP̃ffiffiffi
s

p − 1

�
l̃ · P̃

P̃2
−

El̃ffiffiffi
s

p
�
P̃; ðA4Þ

and analogously for the other momenta k, p and q. In

Eq. (A4), EP̃ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ P̃2

p
. The boost of Eq. (A4) leads to

the Jacobian

J̃ ¼
���� dldl̃

���� ¼ EP̃ffiffiffi
s

p −
l̃ · P̃ffiffiffi
s

p
El̃

: ðA5Þ

The isobar is not at rest in the three-body rest frame.
Thus, an additional boost (by −l) has to be performed for
the pertinent summation of momenta k� in the self-energy
of the isobar of Eq. (A3). This is detailed in Eqs. (11, 12) of
Ref. [16] and reads in the current notation

k� ¼ kþ l

�
k · l
l2

� ffiffiffi
σ

p
ffiffiffi
s

p
− El

− 1

�
þ

ffiffiffi
σ

p
2ð ffiffiffi

s
p

− ElÞ
�
; ðA6Þ

leading to the Jacobian

J ¼
ffiffiffi
σ

p
ffiffiffi
s

p
− El

: ðA7Þ

2. Matching to ChPT

We use the inverse amplitude method (IAM) [83,84] for
the isospin I ¼ 2 ππ scattering amplitude, with a modifi-
cation for improved subthreshold behavior (mIAM) [85].
For this subsection, we denote the standard Mandelstam
variables by σ, t, u instead of s, t, u to avoid notation clash
with other parts of the paper. The starting point is given by
the ChPT result at leading (LO) and next-to-leading order
(NLO),

TI
2ðσ; t; uÞ and TI

4ðσ; t; uÞ; ðA8Þ

for I ¼ 2 scattering. From now on we drop the index I for
readability. The explicit expressions are given in Ref. [89].
In S-wave (l ¼ 0), the unitary amplitude Tl

mIAM is
written as

T0
mIAM ¼ ðT0

2Þ2
T0
2 − T0

4 þ A
; ðA9Þ

where A is constructed such that the Adler zero is at its
NLO position, i.e.,

AðσÞ ¼ T0
4ðσ2Þ

−
ðσ2 − σAÞðσ − σ2Þ

σ − σA
ðT00

2 ðσ2Þ − T00
4 ðσ2ÞÞ; ðA10Þ

where σ2 and σA are zeroes of T0
2 and T

0
2 − T0

4, respectively,
see Ref. [85] for more details.
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In Eqs. (A9) and (A10), T0
2 (T

0
4) is the LO (NLO) partial-

wave contribution, obtained from the corresponding plane-
wave expressions of Eq. (A8) according to

T0
nðσÞ ¼

1

32Nπ

Z
1

−1
dxP0Tnðσ; t; uÞ; ðA11Þ

for n ¼ 2, 4 and x ¼ cos θ where θ is the scattering angle.
There is also a symmetry factor of N ¼ 2 for identical
particles, and P0 ¼ 1 is the S-wave Legendre polynomial.
In particular, T2 ¼ 32πT0

2 as the LO contribution is angle
independent.
In a next step, we match this to a K-matrix formalism

which is easier to implement into the three-body frame-
work. For this we note that the NLO contribution to the ππ
amplitude can be split as

T4ðσ; t; uÞ ¼ T̄4ðσ; t; uÞ þ
1

2
ðT2ðσÞÞ2J̄ππðσÞ ðA12Þ

or

T0
4ðσÞ ¼ T̄0

4ðσÞ þ 16πðT0
2ðσÞÞ2J̄ππðσÞ; ðA13Þ

where T̄4 and T̄0
4 are real for s > 4m2

π and only the ππ loop
J̄ππ provides an imaginary part in the physical region. It
reads [95]

J̄ππ ¼
1

16π2

�
2þ σ̂ log

σ̂ − 1

σ̂ þ 1

�
; ðA14Þ

where

σ̂ ¼ 2kcmffiffiffi
σ

p ; kcm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ

4
−m2

π

r
: ðA15Þ

We can now determine the (real-valued) K-matrix2 by
equating

T0
mIAM ¼ ðK−1 − ρÞ−1 ðA16Þ

with Eq. (A9). Using Eqs. (A13) this leads to

K−1 ¼ T0
2 − T̄0

4 þ A
ðT0

2Þ2
; ρ ¼ 16πJ̄ππ; ðA17Þ

which, of course, only depends on σ. We obtain the plain-
wave amplitude TmIAM from Eqs. (A16), (A11) and can set
it equal to the two-to-two scattering matrix of Eq. (A2),

−ðλτ∞λÞ−1 ¼ T−1
22;∞ ¼ T−1

mIAM ¼ K−1

32π
−
J̄ππ
2

: ðA18Þ

Indeed, the conventions of both T-matrices are identical as
an explicit evaluation of imaginary parts shows:

ImT−1
22;∞ ¼ ImΣ∞ ¼ −

kcm
16π

ffiffiffi
σ

p ;

ImT−1
mIAM ¼ −

16π

32π
Im J̄ππ ¼ −

kcm
16π

ffiffiffi
σ

p : ðA19Þ

For the quantization condition, we also need the equivalent
of the K-matrix of Eq. (A17) in the plane-wave basis. This
explains the additional factor of 32π in Eq. (1) of the main
text using Eq. (A11).

A final remark on symmetry factors is in order because
we match our dispersive three-body framework to the
Feynman-diagrammatic mIAM approach, and keeping
track of these factors is important. The symmetry normali-
zation of the two-body amplitude happens in the partial-
wave decomposition Eq. (A11) (N ¼ 2) such that the
partial-wave amplitudes are connected to physical observ-
ables in the standard way; for example, the S-wave
scattering length is a0mπ ¼ T0

mIAMðσ ¼ 4m2
πÞ and the

phase shift reads tan δ ¼ ImT0
mIAM

ReT0
mIAM

. When returning from

the partial-wave T0
IAM to the plane-wave TIAM in

Eq. (A18) the corresponding factor 32π contains the N ¼
2 of Eq. (A11), i.e., TIAM is not symmetry normalized. The
same is true for T22;∞: In the notation of Ref. [76], the
matrix element for incoming pions at momenta p1, p2 and
outgoing momenta q1, q2 is given as

hq1; q2jT jp1; p2i ¼
1

2!
vðq1; q2ÞSðσÞvðp1; p2Þ

¼ −
1

2
λðσÞτ∞ðσÞλðσÞ ¼

1

2
T22;∞; ðA20Þ

i.e., the symmetry normalization is not contained in the
definition of T22;∞. Furthermore, note that v ¼ 2ṽ where
the factor of 2 accounts for the possibilities to connect a
decay vertex ṽ to two external pions [76]. In other words, v
contains the same multiplicity as a Feynman vertex would
carry from the two possible contractions with external
fields.

3. Regularization-free, accelerated two-body
summation

It is easy to see that Eq. (A3) diverges logarithmically. In
the past [40,44,55] the same cutoff Λ was chosen for both
integration and summation in Eqs. (A1) and (A3) such that
the real parts approximately match (indicated with “!”),

ReΣ∞ðσÞ≈! −
1

2
Re J̄ππðσÞ −

d
4π2

ðA21Þ
2Strictly speaking, for a K-matrix formalism ReJ̄ππ should be

absorbed in K, as well; somewhat sloppily, we still refer to K as
“K-matrix”.
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which holds well over a large range of σ for the choice
d ¼ 0.86 and Λ ¼ 42mπ [40]. Equation (A21) completed
the matching procedure.
However, one can take a step back and question the form

of the self-energy in Eq. (A1). After all, its specific form
was chosen to be able to match to time-ordered perturbation
theory with explicit isobar fields [76], which is not our goal
here. In Ref. [76], different forms of the isobar-spectator are
derived from its imaginary part given in Eq. (A19). In
particular, n-times subtracted dispersion relations provide
factors of ðσ=σ0Þn in the integrand for the self-energy such
that already with n ¼ 1 one obtains a convergent expres-
sion in the present case. As convergence is drastically
improved, no matching with hard cutoffs is needed any
more and the numerical summation can be cut at much
lower values, greatly improving the speed of fitting that was
previously limited by the two-body summation. With the
improvements discussed in the following, typical speedups
of a factor of 10 are achieved.
Consider the twice-subtracted dispersion relation with

subtraction point arbitrarily chosen at σ0 ¼ 0,

Σð2Þ
∞ ðσÞ ¼ Σð2Þ

∞ ð0Þ þ σΣð2Þ0
∞ ð0Þ þ σ2

π

Z
∞

4m2
π

dσ̄
ImΣ∞ðσ̄Þ

σ̄2ðσ̄ − σ − iϵÞ

¼ −
1

2

σ

96m2
ππ

2
þ σ2

64π2

Z
∞

0

dk�
k�2

E5
k�

1

σ − σ0 þ iϵ
;

ðA22Þ
where σ0 ¼ 4E2

k� and the second equal sign is obtained with
the imaginary part from Eq. (A19), a variable substitution,

and by matching Σð2Þ
∞ and its derivative at σ ¼ 0 to −1=2J̄ππ

from Eq. (A14). It can be easily shown that these two
functions are identical for all σ,

Σð2Þ
∞ ðσÞ ¼ −

1

2
J̄ππðσÞ ≈ Σ∞ðσÞ þ

d
4π2

; ðA23Þ

where we have, for completeness, also quoted the relation
to the original expression according to Eq. (A21). The
advantage of using the dispersion relation for the matching
to J̄ππ is now apparent: the matching is exact, not
approximate, it is independent of matching parameters
(cut-off Λ and d), and the corresponding integration
converges quickly, as Eq. (A22) shows.
By writing

Σð2Þ
∞ ¼ −

σ

192m2
ππ

2
þ
Z

d3k�

ð2πÞ3
1

2Ek�

�
σ

σ0

�
2 1

σ − σ0 þ iϵ
;

ðA24Þ

the formal similarity with Eq. (A1), up to the factor ðσ=σ0Þ2,
becomes apparent. By imposing periodic boundary con-
ditions as in Sec. A 1, the finite-volume self-energy
becomes

Σð2Þ
P̃Lη

¼ −
σ

192m2
ππ

2
þ 1

ηL3

X
k�

J̃J
2Ek�

�
σ

σ0

�
2 1

σ − σ0
: ðA25Þ

This expression may be used instead of Eq. (A3) as it
converges rapidly and provides exact matching to the ChPT
loop J̄ππ .
The difference between Σð2Þ

P̃Lη
and ΣP̃Lη from Eq. (A3) is

exponentially suppressed for all σ. Indeed, whenever a
finite-volume pole arises at σ − σ0 ¼ 0 (remember that σ0 is
discrete in finite volume), we have ðσ=σ0Þ2 ¼ 1, i.e., the
finite-volume poles in both expressions have the same
residues. Furthermore, the difference is of the form

ΣP̃Lη − Σð2Þ
P̃Lη

¼ A0 þ A1σ ðA26Þ

as an inspection of the arguments of the summations shows:

1

σ − σ0
−
�
σ

σ0

�
2 1

σ − σ0
¼ −

σ

σ02
−

1

σ0
: ðA27Þ

The exponentially suppressed difference can be sizable and
becomes, in general, larger for more subtractions in the
dispersion relation; if one aims at regaining a particular
form of the self-energy, one can reduce the difference. To
do this we solve explicitly for A1, with the crucial
advantage that it has to be calculated only once for given
L, η, three-body boost P̃, and two-body boost by −l. The
quantity A1 can then be recycled, e.g., in fitting, where the
entire σ-dependence of Σ needs to be known. In other
words, one can still take advantage of the speedup provided

by Σð2Þ
P̃Lη

at the cost of having to determine A1, or A0 and A1,

once for every L, η, P̃, −l. The quantity A1 is easiest
determined in the limit σ → −∞. Using Eqs. (A22)
and (A25),

A1 ¼
1

4π2

Z
∞

0

dk�
k�2

σ02Ek�
−

1

2ηL3

X
k�

J̃J
σ02Ek�

; ðA28Þ

which is indeed exponentially suppressed.
This concludes the derivation. Still, one can write the

self-energy, modified by the A1-term, in the surprisingly
simple form

Σð1Þ
P̃Lη

≔ Σð2Þ
P̃Lη

þ A1σ ¼ 1

ηL3

X
k�

J̃J
2Ek�

σ

σ0
1

σ − σ0
: ðA29Þ

The factor σ=σ0 appears here linearly. Indeed, a closer
inspection shows that we could have obtained Eq. (A29)
directly by imposing periodic boundary conditions on a
once-subtracted dispersion relation, i.e., by starting the
derivation with
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Σð1Þ
∞ ðσÞ ¼ Σð1Þ

∞ ð0Þ þ σ

π

Z
∞

4m2
π

dσ̄
ImΣ∞ðσ̄Þ

σ̄ðσ̄ − σ − iϵÞ ðA30Þ

instead of Eq. (A22). Of course, by using directly Eq. (A29)
one partially looses the speedup of the twice-subtracted
results. But, at least, Eq. (A29) is still convergent in contrast

to Eq. (A3). For the purpose of this study, we find the
speed-up provided by Eq. (A29) sufficient and trade the
slight loss of speed for not having to calculate A1 separately
for each L, η, P̃, −l. The exponentially suppressed term A0

of Eq. (A26) is tiny and leads to changes of the three-body
finite-volume energies in the sixth significant digit.
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