
Perfect is the Enemy of Good: Best-Effort
Program Synthesis
Hila Peleg
University of California, San Diego, USA
hpeleg@eng.ucsd.edu

Nadia Polikarpova
University of California, San Diego, USA
npolikarpova@eng.ucsd.edu

Abstract
Program synthesis promises to help software developers with everyday tasks by generating code
snippets automatically from input-output examples and other high-level specifications. The conven-
tional wisdom is that a synthesizer must always satisfy the specification exactly. We conjecture that
this all-or-nothing paradigm stands in the way of adopting program synthesis as a developer tool: in
practice, the user-written specification often contains errors or is simply too hard for the synthesizer
to solve within a reasonable time; in these cases, the user is left with a single over-fitted result or,
more often than not, no result at all. In this paper we propose a new program synthesis paradigm
we call best-effort program synthesis, where the synthesizer returns a ranked list of partially-valid
results, i.e. programs that satisfy some part of the specification.

To support this paradigm, we develop best-effort enumeration, a new synthesis algorithm that
extends a popular program enumeration technique with the ability to accumulate and return multiple
partially-valid results with minimal overhead. We implement this algorithm in a tool called Bester,
and evaluate it on 79 synthesis benchmarks from the literature. Contrary to the conventional wisdom,
our evaluation shows that Bester returns useful results even when the specification is flawed or too
hard: i) for all benchmarks with an error in the specification, the top three Bester results contain
the correct solution, and ii) for most hard benchmarks, the top three results contain non-trivial
fragments of the correct solution. We also performed an exploratory user study, which confirms our
intuition that partially-valid results are useful: the study shows that programmers use the output of
the synthesizer for comprehension and often incorporate it into their solutions.

2012 ACM Subject Classification Theory of computation → Program specifications; Software and
its engineering → Automatic programming

Keywords and phrases Program Synthesis, Programming by Example

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2020.2

Funding This work has been supported by the National Science Foundation under Grant 1911149.

1 Introduction

Program synthesis has emerged as a promising technology for automating low-level program-
ming tasks [24, 50, 54, 3]. For software developers, program synthesis can be an attractive
alternative to online help forums when it comes to “opportunistic programming” [11], or
hunting for code that will perform a small subtask needed in a larger development task.
Using a Programming by Example (PBE) synthesizer [36, 21, 20, 19, 46, 25, 56], developers
can specify the desired behavior with a set of input-output examples (or unit tests), and the
synthesizer would generate a code snippet that satisfies each of the examples.

Although PBE techniques have made great strides in recent years and have been used
successfully in end-user tools [23, 31, 29], they have not seen wide adoption in mainstream
software development. We conjecture that one important reason is that existing synthesizers
follow an “all-or-nothing” paradigm: they either return a program that is correct on all

© Hila Peleg and Nadia Polikarpova;
licensed under Creative Commons License CC-BY

34th European Conference on Object-Oriented Programming (ECOOP 2020).
Editors: Robert Hirschfeld and Tobias Pape; Article No. 2; pp. 2:1–2:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-0107-5659
mailto:hpeleg@eng.ucsd.edu
https://orcid.org/0000-0001-5571-173X
mailto:npolikarpova@eng.ucsd.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2020.2
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Perfect is the Enemy of Good: Best-Effort Program Synthesis

examples, or fail. In practice, however, humans make mistakes, so examples might contains
errors. Even if all the examples are correct, the program might just be too complex for the
synthesizer to generate: no matter how much we improve the synthesizer, there will always
be problems it fails to solve within the amount of time that the user is willing to wait. In
these cases, all-or-nothing synthesis is utterly useless to the programmer: it either returns a
single over-fitted result (that satisfies the erroneous specification) or, more often than not,
no result at all. Iterative synthesizers [32, 39, 7] offer a partial remedy by allowing the user
to refine a problematic specification, but they still waste user’s time in the unsuccessful
iterations.

We believe that turning PBE synthesizers into useful mainstream programming tools
requires addressing two core challenges:

1) Erroneous specifications: How can we make the synthesizer robust to small errors in
the specification?

2) Hard problems: How can we make the synthesizer helpful even if it cannot solve a
problem completely?

Switching paradigms

To address the two core challenges, we need to abandon the all-or-nothing view of synthesis
and instead take the approach of successful code completion tools: an imperfect result is
better than no result, as long as it is indicated as such. To this end, we propose a new PBE
paradigm we dub best-effort program synthesis, in which the user provides examples, and the
synthesizer returns a shortlist of partially-valid results, i.e. programs that satisfy at least
some of the examples. Previous work has shown that a) partially-valid programs often share
non-trivial fragments with the correct solution [46], and b) users prefer editing incorrect
code to writing code from scratch [13]. Hence it is reasonable to assume that partially-valid
results help the user move forward both when the specification contains errors (by generating
a solution for the error-free subset of the examples) and when the problem is too hard (by
generating a spacial-case program that can be used as a building block in the final solution).

Efficient best-effort synthesis

A naive way to implement best-effort synthesis would be to use an existing synthesizer as a
black box and re-run it again and again with different subsets of the specification, displaying
any generated programs to the user. This is highly inefficient, however, especially when the
original synthesis problem takes too long to solve: in this case, some specification subsets may
still take too long. Ideally, we would like to deliver partially-valid results without requiring
the synthesizer to do more work.

Our core technical insight is that a popular program search algorithm—bottom-up
enumeration with observational equivalence reduction [55, 2]—can be extended to accumulate
partially-valid results during search with minimal overhead. The extension is possible because
this search algorithm is monotonic in the set of examples: the set of programs explored with
the full specification includes all programs that would be explored with a partial specification.
We formalize this monotonicity property and our extended best-effort enumeration algorithm
in Section 3.

H. Peleg and N. Polikarpova 2:3

Ranking partially-valid results

In general, there can be too many partially-valid results to display them all to the user, so a
best-effort synthesizer needs a way to automatically select a manageable number of results
(3–5) that are most likely to be useful to the programmer. It is common in program synthesis
to introduce a ranking function for the generated programs and present top N ≥ 1 ranked
results to the user [23, 28, 43]. For the best-effort setting, we design a ranking function that
incorporates both syntactic and semantic features of programs, such as simplicity and the
number of examples satisfied. The details of the ranking are described in Section 4.

Evaluating best-effort solutions

We implement our approach in a tool called Bester (Best-Effort Synthesis TERminal), which
gives users access to a best-effort synthesizer from a Read-Evaluate-Print-Loop (REPL). We
evaluate Bester on 79 benchmarks we collected from the 2017 SyGuS competition [4] and
the Euphony benchmark suite [33]. Our evaluation shows that i) Bester can overcome errors
in the specification and still return the correct solution in the top three results, ii) when a
synthesis problem is hard and times out, Bester still returns useful fragments of the solution,
and iii) Bester’s ability to solve correct specifications is not impacted (Section 5). Moreover,
Bester compares favorably to the naive approach of using a state-of-the-art synthesizer1as a
black box and eliminating examples from the specification one by one.

We also performed a small exploratory user study of Bester, in which programmers used
Bester to solve tasks in an unfamiliar programming language; the tasks were too hard for
the synthesizer to solve completely within 40 seconds (Section 6). Our study shows that
programmers make use of synthesis results for comprehension, both of the task and of the
language, and that programmers often incorporate synthesis results into their solutions either
by copy-pasting or by editing a partially-valid solution until it fully satisfies the examples.

Main contributions

To summarize, this paper makes the following contributions:
1. Best-effort program synthesis: a new user interaction paradigm for PBE that is likely to

yield helpful results even when the problem is ill-specified or too hard to solve completely.
2. Best-effort enumeration: an algorithm for efficiently collecting partially-valid solutions

during enumerative synthesis.
3. A ranking function for partially-valid solutions that incorporates both syntactic and

semantic properties of programs, and performs well in our experiments.
4. Bester: a prototype implementation of best-effort synthesis, shown both empirically and

in an exploratory user study to be robust to specification errors and to produce useful
program fragments on hard problems.

2 Overview

In this section, we consider a scenario that requires best-effort synthesis.

1 We used CVC4 [44], the winner of the 2017–2019 SyGuS competitions in the PBE-Strings category.

ECOOP 2020

2:4 Perfect is the Enemy of Good: Best-Effort Program Synthesis

> (- (str.len arg0) (str.len (str.replace arg0 "\n" "")))
+--------------------------------+--------+----------+
| input | result | expected |
+================================+========+==========+
| arg0 -> "one" | 0 | 0 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo" | 1 | 1 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree" | 1 | 2 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree\four" | 1 | 3 |
+--------------------------------+--------+----------+
>

(a) Evaluating user-written program on the
examples.

> :s
Synthesizing... (Press any key to interrupt)
Current best: [3/4]
1: (- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" ""))) [3/4]
2: (str.len (int.to.str (str.len arg0))) [2/4]
3: (str.indexof arg0 (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
4: (str.indexof "" (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
5: (str.indexof "\n" (str.at arg0 -1) (str.indexof arg0 "\n" 1)) [2/4]
> :1
+--------------------------------+--------+----------+
| input | result | expected |
+================================+========+==========+
| arg0 -> "one" | 0 | 0 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo" | 1 | 1 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree" | 2 | 2 |
+--------------------------------+--------+----------+
| arg0 -> "one\ntwo\nthree\four" | 2 | 3 |
+--------------------------------+--------+----------+

(b) Best-effort synthesis results.

Figure 1 The Bester REPL interface.

2.1 A motivating example
Our example is derived from one of the benchmarks in the PBE-Strings track of the SyGuS
(Syntax-Guided Synthesis) competition [5, 4]. In this competition, synthesizers are expected
to generate programs in a simple language of S-expressions with built-in operations on
integers (such as + or -) and strings (such as, str.len and str.replace). A benchmark in the
PBE-Strings track is given by a set of input-output examples and a grammar that defines
the space of candidate programs (i.e. the relevant subset of the SyGuS language). These
benchmarks mimic small tasks performed by programmers, and some are directly derived
from StackOverflow questions.

In this scenario, a programmer is attempting to solve a task that asks them to count the
number of line breaks in a string. They are using a development environment enriched with a
synthesizer: they have the option to invoke the synthesizer at any point during development
and incorporate (fragments of) its output into their own code.

The programmer starts by providing a set of test cases (examples):

e0 = "one"→ 0
e1 = "one\ntwo"→ 1
e2 = "one\ntwo\nthree"→ 2
e3 = "one\ntwo\nthree\four"→ 3

We notice, though the user does not, that e3 contains a typo in the string and would, given
the expected program, only return 2 rather than 3.

The user then attempts to write a program to satisfy their test cases by computing the
difference in length between the input string, arg0, and arg0 with newlines removed:

(- (str.len arg0) (str.len (str.replace arg0 "\n" "")))

The user executes their tests, and only e0 and e1 pass, as shown in Figure 1a. They
might not immediately realize that the reason for this behavior is the unexpected semantics
of str.replace in the SyGuS language, which only replaces the first instance of the substring
rather than all instances. Because e2 fails as well as e3, the typo in e3 goes unnoticed.

At this point, the user decides to delegate solving the task to the synthesizer. Running
the state-of-the-art synthesizer CVC4 [44] on this synthesis query yields the result:

(ite (str.contains (str.replace arg0 "\n" "") "\n")
(ite (str.suffixof (str.at arg0 (str.len "\n")) arg0)

(str.len "\n") (str.indexof arg0 "\n" 1))
(ite (str.prefixof arg0 (str.replace arg0 "\n" arg0)) 0 1))

H. Peleg and N. Polikarpova 2:5

This program satisfies all the test cases provided to the synthesizer, but it is so complex that
the user will most likely discard it without reading and be none the wiser about the typo in
the tests or their misconception about the semantics of str.replace.

Running our tool Bester, on the other hand, produces a ranked list of synthesis results,
as shown in Figure 1b. The first result in this list is:

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

which is relatively simple and in fact similar to the user’s initial solution (except that it
calls str.replace on the input string twice). Contrasting the outputs of the initial program
and this result helps the user realize their misconception about str.replace, while the tool’s
failure to solve e3 is likely to call their attention to the typo.

Best-effort synthesis for hard specifications

Consider a slightly different specification our programmer could have provided, where
examples e0, e1, e2 are as before, but example e3 is replaced with

e′3 = "one\ntwo\nthree\nfour\nfive\nsix\nseven\neight"→ 7

The programmer asks the (traditional) synthesizer for help, but after 30 seconds of waiting,
their patience is exhausted, and they interrupt the synthesizer before it can produce any
results. The reason this problem is taking so long to solve is that the SyGuS language
contains no general solution that works for an arbitrary number of newlines, so the shortest
program that satisfies e′3 contains seven calls to str.replace; programs of this size present a
challenge for state-of-the-art synthesizers. Once again, the user just wasted their time and is
back to square one.

Although this particular example seems contrived, the general scenario where the user is
unaware of the limitations of the synthesis algorithm and gives it more than it can handle,
is very common. If the programmer is using Bester, however, and interrupts it after 30
seconds, they would get exactly the same set of results as in the previous scenario, shown
in Figure 1b. This is because Bester always searches for solutions to all subsets of input
examples simultaneously, and the solution for {e0, e1, e2} is much smaller—and hence will be
discovered much earlier—than the solution for the full set of examples.

2.2 Background: Observational Equivalence Reduction

Before we explain how Bester is able to generate such partially-valid results efficiently, we
must introduce the baseline synthesis technique we build upon: bottom-up enumeration with
observational equivalence reduction [55, 2], or OE-reduction for short. Program synthesizers
work by searching a space of candidate programs until they encounter one that satisfies the
specification. The central challenge of program synthesis is the astronomically large size of
the search space, so different synthesis techniques find different ways to reduce the space, i.e.
exclude large chunks of the space from consideration.

For illustration purposes, in this section we will consider the program space defined by an
artificially small grammar, shown in Figure 2a. This grammar allows using only two integer
literals (0 and 3), one string literal (" "), a single variable (input), and three operations: +,
str.indexof, and str.substr.

ECOOP 2020

2:6 Perfect is the Enemy of Good: Best-Effort Program Synthesis

Bottom-up enumeration

Bottom-up enumeration is a synthesis technique that maintains a bank of enumerated
programs and constructs new programs by applying production rules to programs from the
bank. Recall the grammar in Figure 2a. We begin enumeration with an empty bank, so in
the first iteration we are limited to production rules that require no subexpressions—literals
and variables; this yields the programs 0, 3, " ", and input, which are added to the bank.
In the following iterations, production rules that require subexpressions are applied to the
programs in the bank: for example, the rule Int → (+ Int Int) is applied to all pairs of
Int expressions, creating new programs (+ 0 0), (+ 0 3), (+ 3 0), and (+ 3 3), as seen in
Figure 2b.

The enumeration is generally performed in the order of height: we first construct all
programs of height 0, then height 1 and so on; each iteration constructs all programs of
height n+ 1 using the programs of heights up to n stored in the bank. As a consequence,
discarding even a few programs from the bank can drastically reduce the number of programs
to be enumerated in future iterations.

Equivalence reduction

A natural candidate for discarding from the bank is a redundant program, i.e. , a program
that is functionally equivalent to another program in the bank. In our example, the program
(+ 0 3) is functionally equivalent to the program 3, and hence can be safely discarded.
State-of-the-art bottom-up synthesizers [55, 2, 6] use a more aggressive notion of program
equivalence called observational equivalence, which is also easier to check: two programs are
considered equivalent if they evaluate to the same output for every input in the user-provided
set of examples.

I Example 1. Let us assume two pairs of input-output examples

e0 = "The Demolished Man"→ "Demolished"
e1 = "The Stars My Destination"→ "Stars"

We follow the enumeration of programs with OE-reduction, summarized in Figure 2b.
First, we create an input vector, which in this case contains two inputs:

〈"The Demolished Man", "The Stars My Destination"〉

The algorithm evaluates each constructed program point-wise on the input vector, producing
an output vector. Two programs are deemed observationally equivalent if their output vectors
are equal.

Height 0: First we enumerate programs of height 0 (programs 1–4 in Figure 2b). The pro-
gram 0 is a literal and evaluates to 0 on every input, resulting in the output vector 〈0, 0〉. Like-
wise the programs 3 and " " result in 〈3, 3〉 and 〈" ", " "〉 respectively. The program input (the
input variable) yields the output vector 〈"The Demolished Man", "The Stars My Destination"〉.
Since all four output vectors are different, all four programs are added to the bank.

Height 1: Next, we enumerate programs of height n+ 1 by applying production rules
in the grammar to programs from the bank at heights up to n (in this case, up to 0). The
production rule for str.indexof requires two arguments of type string, and will be applied to
all combinations of string programs of height 0. This will produce, among others, the program
(str.indexof " " " ") with the output vector 〈0, 0〉. Notice that the bank already contains
a program with this vector: the program 0. The algorithm therefore discards (str.indexof

H. Peleg and N. Polikarpova 2:7

Start → String

Int → 0 | 3
| (+ Int Int)
| (str.indexof String String)

String → " " | input
| (str.substr String Int Int)

(a) A small grammar in the SyGuS format. Notice that the language is
limited to the literal constants that appear here.

program output on e0 output on e1 equivalent to
1 0 0 0
2 3 3 3
3 " " " " " "
4 input "The Demolished "The Stars

Man" My Destination"
5 ���

�(+ 0 0) 0 0 #1
6 ���

�(+ 0 3) 3 3 #2
7 (((((+ 3 0) 3 3 #2
8 (+ 3 3) 6 6
9

((((
((((

(((
(str.indexof " " " ") 0 0 #1

10 (str.indexof " " input) −1 −1

11
((((

(((
((((

((
(str.indexof input input) 0 0 #1

12
((((

((((
((((

(str.indexof input " ") 3 3 #2

(b) An enumeration of the grammar by height.

Figure 2 The enumeration in Example 1. Programs are generated from the grammar by height,
first productions requiring only a terminal, and next productions requiring a subtree, taken from
previously seen programs.

" " " ") and does not add it to the bank. In general, the algorithm maintains an invariant
that the bank contains at most one representative of any observational equivalence class.

The same production rule also generates the program (str.indexof input " "). This pro-
gram seems helpful for solving the given examples; however, its output vector is 〈3, 3〉, whose
equivalence class already has a representative, the program 3, so the program (str.indexof
input " ") will be discarded. Unlike in the case of (str.indexof " " " "), this seems an
imprudent decision. However, it is in fact sound to do so for these inputs: so long as we do
not care about differently structured inputs, (str.indexof input " ") and 3 are completely
interchangeable. If the user introduces another example with a new input such as "Virtual
Unrealities", the new extended output vectors will be 〈3, 3, 3〉 and 〈3, 3, 7〉, and the two
programs will no longer be equivalent.

2.3 Our approach
Next we describe how Bester modifies the baseline OE-reduction enumeration technique from
the previous subsection to maintain a ranked list of partially-valid programs. If the search
happens to encounter a program that fully satisfies the specification, it stops; otherwise, if
the search is interrupted before a solution was found, Bester simply returns the current list
of partially-valid results to the user. We refer to this modification of OE-reduction search as

ECOOP 2020

2:8 Perfect is the Enemy of Good: Best-Effort Program Synthesis

best-effort enumeration; Section 3 details the search algorithm and its correctness.

Searching for all example subsets

Recall the task from Section 2.1, where the user is trying to count line breaks in a string,
but has an error in the example e3. We would like to show the programmer the following
partially-valid yet useful program p∗, which satisfies examples {e0, e1, e2}:

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

Since we do not know a-priori which subset of examples would yield a useful result, we would
like the synthesizer to simultaneously search for programs satisfying all non-empty subsets
of {e0, e1, e2, e3} (thus, including {e0, e1, e2}).

Note that many synthesis techniques are not amenable to such simultaneous search: for
example, in constraint-based synthesis [52, 26], a run of the synthesizer with the full set of
examples would never construct p∗, because it does not satisfy e3. We observe that unlike
most synthesis techniques, the OE-reduction algorithm has the ability to maintain solutions
for all example subsets with little to no overhead, thanks to a curious monotonicity property:
adding a new example never excludes programs from the enumeration.

Let us illustrate this property on our running example. Consider a hypothetical run of an
OE-synthesizer on the examples {e0, e1, e2}, and assume that in this run p∗ is added to the
bank. We conclude that p∗ is the first program the synthesizer constructed that produces
the output vector 〈0, 1, 2〉, and hence has been chosen as the representative of the 〈0, 1, 2〉
equivalence class. Now consider the actual run of the synthesizer, on the full set of examples
{e0, e1, e2, e3}; we argue that in this run p∗ must be chosen as the representative of the
〈0, 1, 2, 2〉 equivalence class and cannot be discarded by OE reduction. To see why, assume a
different program p′ is chosen as the representative; then p′ would have been enumerated
before p∗ and would also return 〈0, 1, 2〉 on the first three examples; but this contradicts our
assumption that p∗ is the representative for 〈0, 1, 2〉.

In other words, since each additional example refines the partition of the program space,
the bank in the actual run must be a superset of the bank in the hypothetical run. Moreover,
the output vector of each program in the bank is already computed as part of performing
OE-reduction, and compared to the expected output vector; hence, performing a slightly
more complex check for the purpose of identifying partially-valid results incurs only minimal
overhead.

Ranking best-effort candidates

A best-effort enumeration as described above might accumulate multiple results satisfying
each subset of the examples. However, we cannot simply show them to the user in the
order in which they are discovered: trivial programs such as a literal or variable satisfying
one or two of the examples would be discovered immediately, but would often be a poor
candidate. For instance, in the example from Section 2.1, the program 0 satisfies {e0}, the
program (str.indexof arg0 "\n") satisfies {e4} (the erroneous example), and the program
(ite (str.contains arg0 "\n") 1 0) satisfies {e0, e1}. All of these will be discovered fairly
early on in the enumeration.

Instead, the partially-valid programs in the bank need to be ranked so that a manageable
number (no more than 5) of promising programs can be returned to the user. We have
developed a simple ranking function for Bester that takes into account both syntactic and
semantic properties of programs, and performs well empirically. Section 4 details our ranking

H. Peleg and N. Polikarpova 2:9

function and discusses other possible rankings. Intuitively, our ranking rewards programs
that satisfy more examples, programs that use all of their inputs (the so called relevancy
requirement inspired by other synthesis techniques [20, 27]), smaller programs, and programs
where the incorrect outputs are close to the expected outputs. Among the programs listed
above, (str.indexof arg0 "\n") and 0 both satisfy one example, but the former is preferred
by our ranking because it uses its input.

3 Best-Effort Enumeration With Observational Equivalence

In this section, we detail the way an enumerative search with observational equivalence can
be used to find and rank best-effort results to a synthesis query.

Let us consider the challenge in finding a best-effort solution. Since the set of user-
provided examples E might be unsatisfiable, we wish to return a program that satisfies some
E∗ ⊆ E . However, we do not know in advance whether E is satisfiable, and if it is not, which
E∗ we are searching for a solution to.

We can address this challenge with minimal effort thanks to several properties of equiva-
lence classes.

Refined equivalence classes

Enumerative synthesis with observational equivalence adds only one representative from each
equivalence class to its bank of programs based on an equivalence relation ≡I defined as
follows:

p1 ≡I p2 ⇐⇒ ∀ι ∈ I.Jp1K(ι) = Jp2K(ι)

where the equality of execution results considers outputs, exceptions, and side effects. In
a PBE synthesis query, the inputs in I are derived from the example set E such that
I = {ι | (ι, ω) ∈ E}.

If the enumeration that has already added to the reduced program bank the program
p encounters a program p′ such that p ≡I p′, a decision is made which one will be the
representative of the equivalence class [p] that both p and p′ inhabit. The representative is
then kept in the program bank and the other program is discarded. In most synthesizers that
perform the enumeration in layers (i.e., first programs of height 0, then of height 1, etc.), the
first program encountered from each equivalence class is selected as its representative, as was
shown in Figure 2b.

Now consider E ′ ⊂ E , a non-empty subset of examples, and its input set I ′. It is easy to
see that ≡I is a refinement of ≡I′ , since it is the intersection of ≡I′ and ≡I\I′ . This means
that ≡I refines the partition into equivalence classes made by ≡I′ , or that for a program p

in the candidate program space, [p]≡I
⊆ [p]≡I′ .

We notice that if selection of the representative is deterministic, then if p was the
representative of [p]≡I′ , the less refined (and possibly larger) equivalence class, then p

will also be the representative of [p]≡I
: representative selection has determined p to be

the representative against each of the programs in [p]≡I
when it was decided to be the

representative of [p]≡I′ .
This means that if p was included in the bank of programs in a less refined enumeration

with OE-reduction, p will be in the program bank of a more refined enumeration, one with
more examples.

ECOOP 2020

2:10 Perfect is the Enemy of Good: Best-Effort Program Synthesis

Algorithm 1 A best-effort enumeration

Input: E a user-provided example specification, G a grammar, f a fitness function,
maxResults the maximum number of results to return to the user

Result: Top maxResults synthesized programs
1 programBank ← ∅
2 resultCandidates← PriorityQueue()
3 while timeout has not passed do
4 foreach prodRule ∈ G do
5 k ← arity(prodRule)
6 foreach (arg1, . . . , argk) ∈ programBankk do
7 if (arg1, . . . , argk) is suitable for prodRule then
8 newProg ← prodRule(arg1, . . . , argk)
9 if ∀p ∈ programBank. p 6≡I newProg then

/* Found the representative of a new equivalence class,
add to the bank */

10 programBank ← programBank ∪ {newProg}
11 exec← {(ι, JnewProgK(ι)) | ι ∈ I}
12 if exec ∩ E 6= ∅ then /* newProg partially satisfies E */
13 resultCandidates.insertWithPriority(newProg, f(newProg, E))
14 end
15 if exec = E then /* newProg fully satisfies E */
16 break all loops
17 end
18 end
19 end
20 end
21 end

/* Either timeout has passed and or a fully satisfying program was
found. We now return a list of options by rank. */

22 results← List()
23 for i = 1 to min(maxResults, resultCandidates.size()) do
24 results.append(resultCandidates.getFront())
25 end
26 return results

Notice that, despite the use of an inputs vector in Section 2.2 (and in practical imple-
mentations), the operations are unordered. This means that it does not matter which of the
examples are missing from E− for the property to hold.

3.1 Finding best-effort solutions
Fortunately, since performing observational equivalence with E is a refinement of any strict,
nonempty subset of E , we can essentially test all nonempty subsets of E simultaneously.
Representative selection ensures we will see all programs we would see enumerating a subset
of the examples, so we can simply collect programs that satisfy any of the examples, instead
of ones that satisfy all of them.

Lines 4− 8 of Algorithm 1 are a simple bottom-up enumeration of the space, applying

H. Peleg and N. Polikarpova 2:11

each of the production rules to each of the programs previously added to the program bank,
generating additional programs. Lines 9− 10 are the implementation of the OE-reduction,
adding to the program bank only programs that are the first of their equivalence class to be
encountered. Line 15 is the stopping condition for any PBE synthesizer: whether executing
each input leads to its expected output. It is simply lines 12 − 14 that “piggyback” on
the enumeration with observational equivalence, collecting programs that satisfy any of the
examples and create the best-effort search.

This means that when enumerating the example in Section 2.1, the program

(- (str.len arg0) (str.len (str.replace (str.replace arg0 "\n" "") "\n" "")))

is produced by the algorithm on line 8. In a regular observational equivalence reduction, the
program will be added to the reduced program bank on line 10 for use in enumerating larger
programs, and the next step would be to perform the check on line 15, testing whether it
fully satisfies the specification. Since it satisfies 3 of the 4 examples, a simple enumeration
would not return it and enumeration would continue searching for a single fully-satisfying
program to show the user.

In a best-effort enumeration, the condition on line 12 admits programs that satisfy any
nonempty subset of E . The program is added to the list of best-effort results, of which the
best results will be returned to the user.

The correctness proposition of observational equivalence [2] guarantees that if a program
that satisfies E exists in the space, we will encounter exactly one such program, as other
programs satisfying E are in its equivalence class and are not part of the reduced program space.
However, if we consider any strict subset, this guarantee no longer holds: when partitioning
the space of programs possible in the grammar based on observational equivalence for E , any
E ′ ⊂ E is now represented by a number of equivalence classes in the program space instead
of just one. In other words, more than one program satisfying E ′ may be encountered in the
course of the enumeration.

This means there are two dimensions in which our goal is no longer unique: along an
enumeration, we are looking for a program that satisfies one of exponentially many E ′ ⊆ E ,
and there can be many such programs for each E ′. However, since the results of a best-effort
enumeration are intended for consumption by a user, we must limit ourselves to a small
number of returned results. This means that in the course of an enumeration based on E
programs that satisfy any nonempty subset of E are collected, and the best few are returned
to the user. This is determined by a fitness function used to rank the programs in line 13 of
Algorithm 1.

We will introduce our fitness function in the next section.

4 Fitness Function

As we have shown in Sections 2 and 3, more than one program can satisfy the same number
of specifications. In this section, we discuss the considerations in constructing the fitness
function used in our implementation of Bester, and suggest additional parameters that
could be added for other synthesizers.

The composition of the function is:

f(p, E) = 3 · satisfied(p, E) + 2 · relevancy(p) + distance(p, E) + size(p)

We now break down each of these elements.

ECOOP 2020

2:12 Perfect is the Enemy of Good: Best-Effort Program Synthesis

Examples satisfied

Since a program satisfying one example and a program satisfying all examples but one are
not equally good, we use the portion of examples satisfied in our ranking of the program.

satisfied(p, E) = |{(ι, ω) ∈ E | JpK(ι) = ω}|
|E|

This portion of the fitness function is the most strongly weighted, as we still give the
most importance to the best effort, i.e. solving the largest portion of the specification.

Relevancy

Given two programs that solve the same number of examples, we prefer one that uses more
of its input. For example, let us assume a grammar with two input variables, arg0 and arg1,
and three programs that satisfy 2 of 3 examples in E :

p1 = true
p2 = (str.contains arg0 " ")
p3 = (str.prefixof arg1 arg0)

Intuitively, we are certain we want f(p1) to be the lowest of the three, but in all likelihood,
we also want to reward p3 for using all available input from the user. This is a tactic employed
by other synthesis tools such as [20, 27].

We define for all variables V available in the grammar:

relevancy(p) = |{var ∈ V | var ∈ p}|
|V|

Distance from output

While we strongly reward a program for each satisfied example, we also wish to reward
programs that do “better” with regard to the remaining examples.

Currently we include this element only for synthesis tasks that search for a string program.
For strings, being closer to the expected output can be seen as returning a subset or superset
of it, or constructing a close string. This is easily rewarded by using Levenshtein Distance [34]
to measure the distance of the unsatisfied example results from the intended output. While
this component may not be suitable for numeric types, for other structured types such as
lists or trees, other such structured distance metrics can be employed in place of LD.

We denote E− = {(ι, ω) ∈ E | JpK(ι) 6= ω} to be the unsatisfied examples, and define:

distance(p, E) =

 avg
(ι,ω)∈E−

({1− LD(JpK(ι),ω)
max(|ω|,|JpK(ι)|)}) p is a string program and |E−| > 0

0 o.w.

While we include this in the fitness function, we do not weight it as high as some of the
other components as we do still want to allow other logic that may help the user toward the
correct answer, e.g., constructing a complement of the result in order to remove it, to rank
well and be displayed.

H. Peleg and N. Polikarpova 2:13

Program size

Finally, we incorporate the size of the program into the function. In a regular enumerative
synthesizer, ranking by size is implicit, as programs of a lower height will be reached first.
Since programs of a lower height are simpler programs, this tactic is employed in many
synthesizers. In best-effort synthesis we may encounter programs of very different sizes that
satisfy the same examples before we reach the timeout. We therefore add the height of the
program into the ranking to prefer shorter ASTs.

Additionally, we would like to distinguish between programs of the same height. To do
this, we use terms(p), the nubmer of nodes in the AST of p. For example, p1 =(str.at arg0
(+ 1 1)) and p2 =(str.++ (str.++ " " " ") (str.substr arg0 1 1)) are both programs of
height 2, but terms(p1) = 5 whereas terms(p2) = 8.

Since programs are eventually displayed to a user, given two programs of the same height
that are indistinguishable by other parameters, we would like to show the user first the one
that is easier to read, or the overall-smaller one.

Together, we define:

size(p) = 1
height(p) + 1 + 1

terms(p)

Including other data

In a domain where not all specifications are created equal, some may be ranked as more
important than others. For instance, examples that detail an error scenario may be deemed
more or less important than examples that specify a simple output value. Likewise, if not all
specifications are examples [40], an importance ranking between different specification types
can be used to decide which are more likely to be dropped.

Finally, we address the fact that our fitness function is not learned. In theory, a model
could be trained to compute a fitness function according to desired program rankings, or to
provide features for a fitness function (e.g., [8, 33] compute the probability of a program,
which in their tool is used to speed up the search but could also be used for simple numerical
ranking). However, the pool of programs is small, and creating a dataset of ranked best-effort
programs large enough to train from, either manually or automatically, would be unreliable
at best. In addition, our fitness function, both in selected features and in their weights,
encodes in it what we consider to be the important aspects of a best-effort program, rather
than numbers overfitted to a small dataset.

5 Empirical Evaluation

In this section we detail the empirical evaluation performed to validate our approach. Our
experiments are based on the benchmarks of the SyGuS competition [4] and Euphony [33].

Implementation

We implemented an enumerating, observational equivalence synthesizer for the SyGuS
language in Scala, then augmented it for best-effort enumeration2. Best-effort solutions
are accumulated as the enumeration progresses, and the top 5 results are returned. The

2 https://github.com/peleghila/bester

ECOOP 2020

https://github.com/peleghila/bester

2:14 Perfect is the Enemy of Good: Best-Effort Program Synthesis

enumeration loop of our synthesizer has a 40s timeout, selected since it is a manageable
length of task interruption for a human user [37].

Benchmarks

We used a set of 79 synthesis queries from the 2017 SyGuS competition and the Euphony
benchmarks. These benchmarks contain a selection of data wrangling and string transforma-
tion tasks: the SyGuS benchmarks are entirely string to string transformations but 19 of the
Euphony benchmarks either have a non-string parameter or synthesize a numeric or boolean
expression. Duplicate tasks between SyGuS and Euphony were removed from the original
benchmark set, as well as benchmarks requiring recursion.

We initially divided them into two sets using a simple OE-based enumerating synthesizer
(that does not collect best-effort results): 63 that can be solved within 40s, denoted “easy”,
and 16 that cannot, denoted “hard”.

We then created a modified version of the benchmarks in the “easy” set by adding
erroneous examples such as typos, off-by-one errors, etc. This was done manually and
required great care in order to make sure that the additions are i) not consistent with
the original target program, and ii) do not always create a new example set that is easily
generalized. Of 37 modified benchmarks, two contain more than one erroneous example.

We note that while we introduced errors, it is near impossible to introduce contradictions,
short of pairing the same input with two different outputs. Since most of the SyGuS and
Euphony benchmarks include the conditional ite in their grammar, given enough time the
inconsistency in the examples in many of the modified benchmarks can be overcome with
case-splitting. The exception to this is a result that requires string constants not included in
the grammar and that cannot be generated from the input.

For convenience, we use the simple OE synthesizer to make a distinction between the
modified benchmarks:
1. “no-solution”: benchmarks in which the synthesizer does not find a program that satisfies

all examples within the 40s timeout, and
2. “overfitted”: benchmarks in which the synthesizer is able to find a solution to the given

examples (this solution will usually be long and overfitted via multiple case splits).

Since the origin of many of our benchmarks is the PBE-Strings track of the SyGuS
competition, we take as state-of-the-art the synthesizer/solver CVC4 [44], winner of the
PBE-Strings track of the competition since 2017. We use CVC4 1.7, the most recent version
available.

Experimental setup

We generated gold-standard solutions for each of the original, unmodified 79 benchmarks. Our
gold standard is more forgiving than the SyGuS competition, including both hand-written
solutions for the task in the benchmark, as understood by the authors, and solutions from
CVC4 that cover all examples, despite taking a different approach. Solutions by CVC4 were
accepted as-is, in order to use it as a baseline, despite the fact that, as seen in Section 2.1,
those solutions are at times overfitted and full of case-splits, but for every such case a
hand-crafted gold-standard solution was also added.

All benchmarks were run on a Lenovo laptop with a i7 quad-core CPU @ 2.60GHz with
16GB of RAM.

H. Peleg and N. Polikarpova 2:15

Research questions

RQ1: Can Bester discard contradicting examples better than a naive search using
a state-of-the-art tool? To test this, we examine the result of running Bester
on the “no-solution” portion of the modified benchmark set. We run Bester with
a 40s timeout, which is not enough for a simple enumerating synthesizer to find a
satisfying program for these tasks. We then test whether a gold-standard program for
the original benchmark was returned as the top-ranked result, and compare to the
ability of CVC4 to find the gold-standard result when run first with the full example
set and then with reduced example sets.

RQ2: Can Bester rank a gold-standard result high when there is an overfitted,
uninteded result for the example set? To test this, we examine the “overfitted”
portion of the modified benchmark set. We still ran Bester with a 40s timeout, but
since a fully satisfying result exists, these benchmarks terminate before the timeout.
Though Bester will find a fully-satifying result to the examples, it will also return
other best-effort results. We search for a gold-standard solution in the top 3 results
for each task.

RQ3: Can Bester find pieces of a gold-standard solution when the task is too hard
for it to synthesize? To test this, we search for pieces of gold-standard solutions in
the top results when enumerating the “hard” benchmark set. This question is further
examined in the user study in Section 6.

RQ4: Does the best-effort enumeration in Bester interfere with its ability to solve
a simple synthesis task? In other words, can Bester solve the “easy” benchmark
set, returning the gold-standard solution as the top-rated result?

5.1 Erroneous examples
In RQ1 and RQ2, we wish to empirically quantify the effort of a user looking at a list of
results. That the gold-standard solution appear somewhere on the list of programs shown
as a result to a synthesis call is necessary but insufficient. Ideally, the user would have to
look through as few programs as possible until they find the one they are looking for–and for
confidence in the tool to be high, this should also be consistent.

Since CVC4 only returns one result that satisfies all examples, it will successfully synthesize
none of the modified benchmarks by construction of the benchmark set. To test RQ1 and
RQ2, we implemented a naive best-effort search using CVC4:

CVC4-subsets runs on E , and then on all subsets of size |E| − 1 in a random order. Each
such run is done with a 20s timeout (a longer timeout would give Bester an unfair
advantage in the measurements, and as can be seen in Figure 4b, 20s is sufficient for
CVC4 for most of the unmodified benchmarks), and results are accumulated in the order
that they are discovered and deduplicated in-order.
CVC4-timeout runs as CVC4-subsets, but with an additional overall timeout of 45s, in
order to be comparable to Bester.

We ran the 37 modified benchmarks with Bester, CVC4-subsets, and CVC4-timeout.
Since CVC4-subsets and CVC4-timeout depend on the random order of the dropped
examples, we ran each 5 times and indicate the median and variance. The results are shown
in Figure 3.

RQ1: Can Bester discard contradictions in the example set? Out of 31 benchmarks in
the “no-solution” subset of the modified benchmarks, Bester returned the gold-standard
solution first for 26, and the remaining 5 as the second solution. CVC4-subsets returned

ECOOP 2020

2:16 Perfect is the Enemy of Good: Best-Effort Program Synthesis

(a) Number of benchmarks in which the gold-standard solution was returned for a given length of result
list. More benchmarks in which a gold-standard solution was found in a shorter list is better. CVC4 runs
include a random component, so indicated is the median over 5 runs, with the shaded area indicating the
variance.

(b) Number of benchmarks that terminate within a given length of time. This is irrespective of correctness,
as the tool must first terminate for its results to be judged by the user. CVC4 runs include a random
component, so indicated is the median over 5 runs, with the shaded area indicating the variance. The
first plateau for Bester indicates the “overfitted” benchmark set, where a fully-satisfying but overfitted
program is found within the timeout.

Figure 3 Correctness and termination times on benchmarks containing at least one erroneous
example.

the gold-standard solution within the top 3 for only 25 of the 31 “no-solution” benchmarks
(over 5 runs, min 23, max 28), notably failing completely to synthesize a specification with
more than one erroneous example, of which “no-solution” contains two. In addition, it only
returned the gold-standard solution first for 17 of the benchmarks (min 16, max 18), with
some gold-standard solutions being as low as fifth. Finally, CVC-timeout fails to return a
gold-standard solution in the top 5 for 15 of the 31 benchmarks (min 13, max 18), and only
returns the gold-standard solution first for 7 of them (min 2, max 9).

We therefore conclude that Bester is effective at discarding contradictions from the
specification and returning a desirable program to the user. Additionally, we conclude
that our efficient best-effort implementation is more efficient than a naive approach
using a state of the art synthesizer.
RQ2: Can Bester return a useful solution despite an overfitted program matching the

examples? Out of the remaining 6 “overfitted” modified benchmarks, Bester shows 5 in the
top three results and 4 in the top 2, exactly the same as CVC4-subsets (min 4, max 6 and
min 3, max 4, respectively). CVC4-timeout had 4 in the top three results (min 3, max 5)

H. Peleg and N. Polikarpova 2:17

and 3 in the top two (min 2, max 4).
We can also see the “overfitted” benchmarks in Figure 3b, as the first plateau between 3

and 40 seconds: overfitted programs are found quickly, and other program options collected
along the way are also shown to the user, as opposed to enumerating a benchmark from
“no-solution”, which will continue until the timeout.

We conclude that Bester performs as well as CVC4-subsets and CVC4-timeout at
ranking the gold-standard solution in the top 3 when an overfitted solution exists. This
is done more efficiently than a naive solution implemented with CVC4, which still pays
the overhead of having to perform multiple runs.

5.2 Partially solving hard benchmarks
In RQ3, we examine the results of Bester on the “hard” set of benchmarks, which are
benchmarks that a simple enumerating OE-reduction synthesizer cannot complete within 40s.
Bester also runs with a timeout of 40s, but returns any best-effort results it finds. None
of the results returned will be a gold-standard solution, but they may be part of a path to
a solution. Therefore, to answer RQ3, we try to quanitify how much of each of the results
returned by Bester can be used to construct a solution.

In order to do that, we must first define the way we measure this similarity.

Tree similarity

In order to judge how much of a result returned by Bester is relevant to the user, we use
a similarity metric between trees on the ASTs of the Bester result and the gold-standard
solution. This metric essentially counts what non-trivial parts of the code can be copied out
verbatim.

When computing s(p1, p2), we look for maximal sub-expressions (or subtrees) x within
p1 (denotes x ∈ p1) that are also included in p2. For each such x, if height(x) > 0 (i.e., x
is not a leaf node) we count terms(x). Additionally, we reward the same term for using
some identical children even if not all children are identical. For example, if there exist
two trees, t(x, y) ∈ p1 and t(x, z) ∈ p2 (notice that t is the same node type and x is in the
same location) we count the root t in addition to terms(x), i.e., add 1 to the accumulated
similarity.

Equivalent programs that result in structurally different trees (e.g., (str.++ "be seeing"
(str.++ " " "you")) vs. (str.++ (str.++ "be seeing" " ") "you")) were handled manually
by first performing equivalence-preserving tree transformations on the gold standard and
then computing the similarity.

Other similarity metrics were originally considered. Program repair projects often employ
distance metrics between programs to choose between several possible repairs. Distance
metrics for structured objects such as DiffX [1] for XMLs were applied to ASTs, and
application-specific ones were crafted [15, 57]. However, the fragment mapping employed by
such distances is more useful for describing insertion and deletion of code (e.g., wrapping a
part of the tree in a conditional, removing a statement), whereas we are interested in pieces
of code that can be used without modification.

Usable parts of best-effort solutions

We ran Bester on the 16 benchmarks in the “hard” set. The results are shown in Table 1.
RQ3: Can Bester return a useful best-effort solution for tasks that it cannot solve within

the timeout? On average, Bester results discover over 40% of the gold-standard solution to a

ECOOP 2020

2:18 Perfect is the Enemy of Good: Best-Effort Program Synthesis

gold standard top Bester solution closest solution to GS

avg avg % best % best
benchmark # GS h t h t sim GS rank h t sim GS
11604909 3 3.7 15.0 2 12 8 62% 1 2 12 8 62%
30732554 1 3.0 12.0 0 1 0 0% 1 0 1 0 0%
38871714 2 6.0 19.0 2 7 7 37% 1 2 7 7 37%
39060015 2 11.0 72.0 2 6 0 0% 2 2 7 15 45%
41503046 3 8.0 64.7 2 7 11 7% 1 2 7 11 7%
43606446 2 5.5 24.5 3 16 12 38% 1 3 16 12 38%
44789427 3 5.7 40.3 2 7 15 21% 2 2 11 16 73%
bikes 2 4.0 16.5 3 14 13 50% 3 3 14 20 77%
count-total-words 1 5.0 35.0 3 14 22 63% 3 3 20 23 66%
exceljet2 1 7.0 43.0 2 11 14 33% 1 2 11 14 33%
stackoverflow1 1 3.0 16.0 2 9 9 56% 1 2 9 9 56%
stackoverflow2 1 6.0 28.0 3 20 24 86% 1 3 20 24 86%
stackoverflow3 1 4.0 12.0 2 6 0 0% 1 2 6 0 0%
strip-html 1 4.0 15.0 - - - - - - - - -
univ_2_short 1 4.0 20.0 2 7 7 35% 1 2 7 7 35%
univ_3_short 1 4.0 14.0 0 1 0 0% 1 0 1 0 0%
Table 1 Portions of the gold-standard solutions discovered by Bester for the tasks in the “hard”

set. The first set of columns is information on the gold standard solutions available for a task:
number and average size. The second set shows the program Bester ranked first: size, its similarity
to the most similar gold-standard solution, and what percentage of the terms in the gold-standard
solution is covered (sim(p, gs)/terms(gs)). For the closest solution to a gold-standard solution, the
rank of the program in Bester’s list is also indicated. t denotes terms, h denotes height (this is
zero-based), sim denotes the similarity to most similar gold-standard solution.

task (or the most similar one, if there is more than one), or over 11 terms. When considering
only the programs ranked first by Bester, 32% of the gold-standard solution is discovered
with an average of almost 9.5 terms. In 3 of the benchmarks, the entire top-ranking Bester
result was a sub-expression of the solution to the task.

Notice that in some of the tasks (e.g., stackoverflow2) the similarity between the
Bester result and its nearest gold-standard solution is greater than the number of terms in
the Bester result. This is because an expression in the Bester result can repeat multiple
times in the gold-standard solution.

In one of the 16 benchmarks, Bester did not find any program that satisfies at least one
example, and so returned no programs. In 3 additional benchmarks, none of the programs
returned had any non-trivial subtree in common with a gold-standard solution.

Overall, we conclude that Bester generates results that can advance the uesr toward
a solution even when they do not fully satisfy the specification. This will be further
demonstrated in Section 6. Even though in some of the benchmarks none of the
results had any usable components, these are still a minority (overall a quarter of the
benchmarks) and the high similarity of those that did succeed indicates the approach
can be of great use to a user.

5.3 Solving the original easy benchmarks
Since Bester ranks its results, taking into account but not relying solely on the number of
examples satisfied (see Section 4), we must verify that the solutions to the original, unmodified
benchmarks that can be solved by the simple OE synthesizer are still found.

H. Peleg and N. Polikarpova 2:19

(a) Number of benchmarks in which the gold-standard solution was returned for a given length of result
list. CVC4 only returns a single result.

(b) Number of benchmarks that terminate within a given length of time, graph is logscale.

Figure 4 Correctness and time to solution on “easy” benchmarks. CVC4, which was part of the
baseline for correct results, is correct every task that terminates within the 40s timeout. CVC4 is
faster, but the difference is not extreme.

To test RQ4, we ran Bester and CVC4 with a 40s timeout on the unmodified “easy” set
of benchmarks. The results are in Figure 4.

RQ4: Can Bester return the correct result for unmodified “easy” benchmarks? Bester
succeeds in returning a correct solution that is ranked first for 61 out of 63 of the benchmarks
in the “easy” set, on par with the performance of CVC4. (Since CVC4 was used in the
creation of the gold standard, it succeeds on every benchmark it terminates on within the
40s timeout.)

In the remaining two benchmarks, the gold standard solution is ranked second. In both
of these benchmarks, the desired outputs are a substring of arg0, the input variable. Both
also contain multiple examples where the input is unchanged. For both of these benchmarks,
Bester ranks the program arg0 before the target program, since it satisfies some of the
examples and is very close to the correct output in the others, uses all the variables, and is
very simple. This is rare, and when presented to a user, as in Figure 1a, the program would
be accompanied by the number of benchmarks it solves, and we belive it will be easy for
users to discard.

Additionally, Bester is not considerably slower than CVC4 on the benchmarks in “easy”.

ECOOP 2020

2:20 Perfect is the Enemy of Good: Best-Effort Program Synthesis

We conclude that implementing the best-effort enumeration in Bester does not harm its
correctness on benchmarks that contain no error or contradition, and that its efficiency
in such cases is not much worse than a state of the art synthesizer optimized for
competitions.

6 An Exploratory User Study

In this section we detail the results of a small exploratory study in which 8 users were asked
to use Bester to perform two tasks each. Tasks were selected from the benchmark suite
presented in Section 5, from the “hard” set of benchmarks, i.e., benchmarks that could not
be solved within the timeout by a simple enumerating synthesizer. Notice that these are not
modified tasks, i.e., they are identical to their version in the Euphony benchmark set from
which they both originated. After completing the tasks, we asked each user to answer a set
of questions in a brief interview.

Experiment setup

8 graduate students participated in the study. Users were presented with a brief task
description (as it appears in a comment in the benchmark file), the examples in the benchmark,
and the grammar at their disposal. As shown in Section 2.1, the semantics of some grammar
elements can be misleading, particularly in edge cases.

Participants used a REPL for the target SyGuS language that is initialized with the
limited grammar and the example set for the task. For each program entered, the REPL
prints the output for every input in the example set. Satisfied examples (matching the
example’s expected output) are indicated in green. Screenshots of the REPL are shown
in Figure 1. Participants could edit the program on their own or, at any point, call the
synthesizer to find a program that would satisfy the examples. The Bester synthesizer runs
either until a timeout of 40s or until interrupted by the user (“press any key” in Figure 1b).
While synthesis ran, a number showing the maximum number of examples satisfied was
shown and updated when new programs were found. The top 5 programs found by the
synthesizer are presented to the user, and can be executed or copied. Participants could call
the synthesizer multiple times in the course of one task, as a longer wait could possibly yield
more results.

A task was concluded when a participant said they solved the task, when they gave up
on the task, or when 20 minutes had elapsed.

Users were told that the tasks are underspecified, and they may resolve any ambiguity as
they see fit. Correctness was judged according to semantic equivalence to one of the gold
standard solutions for Section 5.

After performing the tasks, users were given a brief structured interview with questions
about their use of the synthesizer and the helpfulness of the results. Each participant was
paid $10.

Study tasks

The two tasks given to the participants shared a SyGuS grammar, differing only in the
available string literals.

Task 1: “stackoverflow1” in Table 1. Its comment in the benchmark file, provided to
participants, was “function to replace substring”.

H. Peleg and N. Polikarpova 2:21

Examples:

arg0 expected result
"Trucking Inc." "Trucking"
"New Truck Inc" "New Truck"
"ABV Trucking Inc, LLC" "ABV Trucking"

The available string literals were: "", " ", "Inc", ".", ",", and "LLC".
Task 2: “41503046” in Table 1. Its comment in the task file was “find string in substring

with lookup”.

Examples:

arg0 expected result
"Polygonum amphibium" "Polygonum"
"Hippuris vulgaris" "Hippuris"
"Lysimachia vulgaris" "Lysimachia"
"Juncus bulbosus ssp. bulbosus" "Juncus bulbosus"
"Lycopus europaeus ssp. europaeus" "Lycopus europaeus"
"Nymphaea alba" "Nymphaea"

The available string literals were: "", " ", and "ssp.".

Research questions

In order to find out whether the best-effort paradigm can be useful to programmers, we
attempt to answer the following questions:

RQ1: Did users apply any part of the results from Bester to their solution?
RQ2: Did users find the results from Bester helpful even though they do not satisfy every

example?

6.1 Observed behavior
Participants completed task 1 in an average of 9.56 minutes and task 2 in an average of 11.35
minutes. The fastest solution was programmed in just under 5 minutes.

Of 8 users performing two tasks each, 7 successfully completed both tasks. One user
failed to finish the first task within the 20 minute bound and successfully finished the second
task. In addition, one user finished the second task with an incorrect result, and, as they
were not satisfied with it and had time left, continued to rewrite it until they reached a
correct result.

In 15 of the 16 task sessions, the users called the synthesizer at some point during the
session. In task 1, 3 of the users ran the synthesizer a second time in the course of the session.
In task 2, 2 of the users did so, and one ran the synthesizer a third time. One user performed
task 1 without running the synthesizer at all.

Users waited for the synthesizer an average of 17.5s per session while working on task 1
and 27.6s per session while working on task 2, or an average of 14s per individual run of the
synthesizer for task 1 and an average of 18.4s for task 2. Only twice did users allow their
synthesis request to run until the 40s timeout, both in the course of solving task 2.

7 of the 8 participants executed the top synthesis result once the synthesizer terminated.
Only one user executed any result other than the top result—and they executed all results.
6 users later returned to an executed synthesis result using the REPL history and continued
to edit it from there.

6 of the users used the mouse to highlight and copy a synthesized expression and paste it
into their code. Two users also copied parts of a synthesized expression, but for the most
part, the synthesis results that were copied by users were used in their entirety and placed
within larger expressions.

ECOOP 2020

2:22 Perfect is the Enemy of Good: Best-Effort Program Synthesis

Task 1 has two possible modes of solution: one using str.substr to slice the string up
to the occurrence of "Inc" and using str.replace to replace undesirable substrings with "".
Four users followed the synthesizer’s lead in solving the task with str.replace, and another
user attempted this and abandoned the direction.

Of the 8 users, 5 ran the synthesizer immediately upon being given task 1 (of the 3 who
did not, one did not run the synthesizer at all), and 7 ran it immediately upon being given
task 2.

Many of the participants struggled with the behavior of the str.indexof function which
returns the index of a substring within a string. Unlike the simplified version included in the
grammar in Figure 2a, the function takes an integer parameter which indicates at what index
the search for the substring should begin. Many of the users assumed the index parameter to
indicate which occurrence of the string should be returned. In the solution of task 2, users
spent some time trying to get the second occurrence of " " under this assumption.

6.2 Interviews
In the interview conducted after the tasks were concluded, participants were asked about
their decision to call the synthesizer (and to call it again in the course of the session, if
they did so), about how they decided how long to wait for the synthesizer, and about the
helpfulness of the results.

Calling the synthesizer

Several users explained their call to synthesis as a way to search for a solution they were not
seeing, or in hopes it will simply solve the task for them (or, in the case of one user, “just to
see what it can do”). Some also recognized, particularly for task 2, that there may be at
least a subproblem that can be solved by the synthesizer, providing them with “a start on
the solution” or “a piece that can be reused”.

However, many of the users explained their call to synthesis as a way to help them
understand the problem: either by seeing if there was a generalization of the examples they
were not considering, or to get a confirmation of their understanding, “make sure the model
in [their] head was correct”.

The user who performed task 1 without synthesis said they did not think there exists a
simpler way to perform the task than the one they had in mind, so there was no need for
synthesis.

Finally, many of the users explained that synthesized code was, to them, a good source of
example programs on the inputs. Synthesized code gave them examples of a) the language
syntax and useful available functions, b) the semantics of the functions, and the order of
the arguments, c) function composition, and how different functions interact, and d) help
dealing with what one of the users called “an unnatural collection of primitives”.

Waiting for the synthesizer

Most users who ran the synthesizer immediately at the start of the task attested that it
seemed to them a good use of time to let it run as they were reading the task — it might
find something and save them the effort. One user ran the synthesizer again (and to timeout)
while they were thinking through a problem they had encountered, just in case.

Users could stop the synthesizer at any time. Three of the users said they used the
printout of how many examples were solved by the best discovered program as an indication of

H. Peleg and N. Polikarpova 2:23

when to stop: “[as long as] it made some progress, it was fine”. When the number plateaued,
they “figured it solved part of the problem, but the rest isn’t easy.”

Frustration was also a deciding factor in willingness to wait. Users who were not having
a hard time with the tasks and simply wanted some reference, terminated the synthesizer
very quickly, and they just wanted to see the first results rather than be slowed down by
waiting. Users who were more frustrated, especially those who entered task 2 frustrated from
task 1, expressed being more willing to wait. The user who failed to finish task 1 and ran
the synthesizer to timeout (40s) in task 2 said, “I really struggled, so even if the timeout
was 10 minutes, it’s worth it.”

Only two of the 8 users explicitly named impatience as the criterion for deciding how
long to wait for the synthesizer.

Half (4) the users re-ran the synthesizer within the course of the same task for one of
the two tasks. All said it was in hopes that waiting longer would produce more or better
results. One did so because they lost their train of thought and wanted to start over from a
synthesized solution in order to remember what they were trying to do, and had forgotten
they can call up the solutions from the last run of the synthesizer. This user also stated
that, as they were struggling a bit, they were now more willing to wait for a result. Two
users stated wanting to utilize time when they had stopped to think about what to do next,
in case better solutions would be found. (One user who did not run it a second time said
that “in hindsight, letting it run while I was thinking would have been good.”) One user said
they were curious as to whether there was a random component that would lead to different
results.

Helpfulness of the results

All participants stated the synthesized results were helpful to them in some way.
Getting to a solution: In each of the tasks, the synthesizer returned a different kind

of a sub-solution. In task 1, it needed to be wrapped in more function applications to solve
more cases, whereas task 2 required a case-split and the synthesizer returned a solution to
one of the two cases. Some users viewed one as far more helpful than the other, though which
one was not a constant. Some treated the solution to task 1 as “nearly solved the problem”,
whereas others saw the solution to task 1 as less helpful but the solution to task 2 as giving
them the subprogram that they wanted, where “I could just steal that as a subcomponent”.

Comprehension of the language: Participants who used the synthesizer to understand
the language said synthesized results gave them “phrases” for later use and what constants
were available; “here is some code, here’s what it does.” (In task 2, when they got used to
the language, it was less helpful). Those who did not trust themselves with the language
trusted synthesized code.

Comprehension of the task: Users also attested that synthesized results helped them
better understand the task itself and in what way the examples generalized. This was
particularly true in the second task which contained a case-split. Users said the result of the
synthesizer classified the examples for them into the two cases of the split, or as one user said,
“once I saw the response from the synthesizer, I knew exactly what the correct answer was.”

6.3 Discussion
We return to our research questions:

RQ1: Did users use Bester results in their code? Participants of our study used both
entire Bester results and subprograms of them in their solution code. In addition, in task 1,

ECOOP 2020

2:24 Perfect is the Enemy of Good: Best-Effort Program Synthesis

several participants let the synthesizer direct the algorithm of their solution. We therefore
answer this question in the affirmative.

RQ2: Did users find the results of Bester helpful? Participants of our study listed
different ways in which the results of Bester were helpful to them, including (but not limited
to) finding code that solves a subproblem. Synthesizer results were also widely used as a
comprehension tool by the users. We therefore answer this question in the affirmative.

6.4 Threats to validity

Finally, we briefly discuss the threats to the validity of our conclusions from the study.
Number of participants and number of tasks: The study was conducted on 8

participants, performing only two tasks each, which is not enough to make any statistically
significant claims. We therefore try to steer away from such conclusions, and instead observe
and report usage patterns that occurred throughout user sessions.

Selection of programming language: While using the SyGuS language can be seen as
an advantage of the study, mimicking a situation where users are not the most familiar with
the language or API they are using, and therefore need the help of a synthesizer, it is also
not the easiest programming language to read or write, and includes nontrivial semantics for
some of its functions (as demonstrated both in Section 2.1 and in this section). This may lead
to different results than a synthesizer for a programming language users are more comfortable
reading and writing. All the participants in the study were familiar with the S-expression
syntax and had some experience in using it, mitigating some of the comprehension difficulty
if not the problematic semantics.

Homogeneous participants: Since students were recruited from a single department
in a single institution, there is great similarity in their knowledge and ability. This may have
resulted in similar behaviors in the course of the study.

Inability to specify the synthesizer: The Bester implementation used in the study
was not fully-equipped for an iterative and interactive workflow, and users could not control
the specifications the synthesizer attempted to solve. This also means users did not spend
time on (or have a learning curve in) entering specifications or deciding what they should be.
Within such a larger workflow, the observed behaviors may be different. However, we have
tried to only draw conclusions about the usefulness of the results of a synthesizer iteration,
rather than on the interactive incorporation of synthesis in the development workflow.

7 Related work

Syntax-guided synthesis [3] is the domain of program synthesis where the target program
is derived from a set of syntax rules. [30, 55, 18, 56] all fall within this scope. FlashFill
and FlashMeta [23, 42] are tools for automating string transformations and data wrangling
tasks, whose DSL design centers the delicate balance between an expressive grammar, which
is needed to find a solution, and a tractable enumeration. Padhi et al. [38] raise the issue of
the overfitting of an over-expressive grammar, leading to programs such as the one shown in
Section 2.1.

The SyGuS competition [5, 4] is held every year and allows solvers and synthesizers
to compete for both performance and correctness on a large selection of benchmarks. The
competition introduced a PBE track in 2016, and now has two PBE tacks, one for string tasks
and one for bit-vector tasks. Both CVC4 [45] and EUSolver [6] have won the competition in
the past.

H. Peleg and N. Polikarpova 2:25

Programming by Example is a popular technique in program synthesis that leverages
either user-provided input-outputs [56, 36, 21, 25, 23, 24, 42, 58] or tests [20]. Most PBE
techniques target exact specifications and do not handle noise in user input. Some notable
exceptions are FlashFill [23] and RuleSynth [48], as well as Bayesian and neural program
induction techniques [16, 17, 53]. None of these approaches, however, compute results for all
subsets of examples, or deal with timeouts.

Ranking and returning multiple results are two common approach to handing ambiguous
specifications in program synthesis; the two often—but not always—go hand-in-hand. The
FlashX tool family [23, 42] uses a ranking function to select a single, most likely program
among all the programs that satisfy all user-provided examples. This line of work has
explored both hand-crafted [23] and learned [47] ranking functions. Recent work on guiding
synthesis using learned probabilistic models [33] can also be seen as applying a learned
ranking, but during synthesis rather than at the end. Our ranking function for Bester is
hand-crafted, but is different from existing work in that it incorporates semantic features of
programs in addition to syntactic ones, such as the number of examples satisfied, and the
distance between the expected and actual outputs. Recent work on synthesizing lenses [35]
proposed a novel approach to semantic ranking based on information theory. In the future
we would like to explore whether best-effort synthesis can benefit from a more sophisticated
ranking function along these lines. Unlike PBE tools, which use ranking to select a single
result, code completion tools [28, 43] typically present a ranked list of results to the user,
and most commonly rely on learned statistical models and syntactic features.

Observational equivalence Many enumerating synthesizers apply equivalence reduc-
tions as a form of pruning the program space [28, 36, 22, 21, 49]. Observational equiva-
lence [2, 55], as a more agressive and therefore more optimizing form of equivalence, is used
in many bottom-up synthesizers [56, 6, 51, 41].

EUSolver [6] specializes in solving benchmarks that require case-splitting by performing
an OE-reduced enumeration searching for two subprograms that together cover the examples
and a condition to decide between them. The enumeration performed by EUSolver is similar
to that of Bester in that it is an enumeration over all the examples that also considers
subsets of the examples, but only the first program covering a specific subset of the examples
is used within the (single) result program, whereas Bester ranks all such programs and
returns the highest ranking ones even if several of them cover the same subset of the examples.

Interaction models for program synthesis are a recent field of research, which has
taken two main directions: Modifying specification mechanisms and output formats [40, 13]
to make synthesis easier to use and better targeted to specific populations of users. Iterative
program synthesis [32, 39, 7] focuses on allowing the user to refine the specification while
running the synthesizer after each such refinement, essentially making explicit and improving
upon what has been the implicit assumption of all synthesis tools. Bester is currently
situated well within the first direction, but we believe it will also aid the users greatly in an
iterative setting.

MaxSAT [10] and MaxSMT [9] are the formulation of the satisfiability problem in which
certain clauses are marked as hard constraints and others as soft constraints, and the solver
attempts to find an assignment that satisfies all hard constraints while maximizing the
number of soft constraints satisfied. Viewing the world through this terminology, we see
that previous work has viewed user-provided inputs as hard constraints, and even in work
where other soft constraints are available to the user [14], examples are still considered hard
constraints. In Bester, all examples are soft constraints and a ranking function is being
maximized likening our paradigm to weighted MaxSAT. In Section 4 we suggest a case where

ECOOP 2020

2:26 Perfect is the Enemy of Good: Best-Effort Program Synthesis

there could be additional weights between the specifications.
Opportunistic programming [12, 11] is the programming paradigm in which composite

programming tasks are solved by hunting for and joining pieces of existing code from other
sources. Projects such as ExampleStack [59] are intended to make the process of importing
found code easier. The Bester user study in Section 6 demonstrates synthesis as another
method that can provide pieces of the solution to the programmer.

8 Conclusion

We proposed a new program synthesis paradigm we call best-effort program synthesis, where
the synthesizer returns a ranked list of programs that satisfy some part of the specification,
rather than just one program that satisfies all of it or no program at all.

This paradigm is implemented in a best-effort enumeration, a new synthesis algorithm that
extends a bottom-up enumeration with observational equivalence, and is able to accumulate
multiple partially-valid results with minimal overhead. We implemented this algorithm in a
tool called Bester, and evaluated it on 79 synthesis benchmarks from the SyGuS competition
and the Euphony benchmark suite.

Our empirical evaluation showed that best-effort enumeration is more efficient and returns
better results than a naive approach to best-effort program synthesis, and that Bester
returned useful results even when the specification is flawed or too hard: i) for specifications
containing an erroneous example, the top three Bester results contained the correct solution,
and ii) for most hard benchmarks, the top three results contained non-trivial fragments of
the correct solution. Our user study showed that users apply partially-valid results and parts
of those results to their code. Additionally, we observed that programmers use the output of
the synthesizer for comprehension and not only as a possible part of their solution.

References
1 Raihan Al-Ekram, Archana Adma, and Olga Baysal. diffx: an algorithm to detect changes in

multi-version xml documents. In Proceedings of the 2005 conference of the Centre for Advanced
Studies on Collaborative research, pages 1–11. IBM Press, 2005.

2 Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive program synthesis. In
International Conference on Computer Aided Verification, pages 934–950. Springer, 2013.

3 Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman,
Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa.
Syntax-guided synthesis. Dependable Software Systems Engineering, 40:1–25, 2015.

4 Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2017:
Results and analysis.

5 Rajeev Alur, Dana Fisman, Rishabh Singh, and Armando Solar-Lezama. Sygus-comp 2016:
Results and analysis. arXiv preprint arXiv:1611.07627, 2016.

6 Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program
synthesis via divide and conquer. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 319–336. Springer, 2017.

7 Shengwei An, Rishabh Singh, Sasa Misailovic, and Roopsha Samanta. Augmented example-
based synthesis using relational perturbation properties. Proceedings of the ACM on Program-
ming Languages, 4(POPL):56, 2019.

8 Pavol Bielik, Veselin Raychev, and Martin Vechev. Phog: Probabilistic model for code. In
Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The 33rd International
Conference on Machine Learning, volume 48 of Proceedings of Machine Learning Research,
pages 2933–2942, New York, New York, USA, 20–22 Jun 2016. PMLR. URL: http://
proceedings.mlr.press/v48/bielik16.html.

http://proceedings.mlr.press/v48/bielik16.html
http://proceedings.mlr.press/v48/bielik16.html

H. Peleg and N. Polikarpova 2:27

9 Nikolaj Bjørner, Anh-Dung Phan, and Lars Fleckenstein. νz-an optimizing smt solver. In
International Conference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 194–199. Springer, 2015.

10 Brian Borchers and Judith Furman. A two-phase exact algorithm for max-sat and weighted
max-sat problems. Journal of Combinatorial Optimization, 2(4):299–306, 1998.

11 Joel Brandt, Philip J Guo, Joel Lewenstein, Mira Dontcheva, and Scott R Klemmer. Two
studies of opportunistic programming: interleaving web foraging, learning, and writing code.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages
1589–1598. ACM, 2009.

12 Joel Brandt, Philip J Guo, Joel Lewenstein, and Scott R Klemmer. Opportunistic programming:
How rapid ideation and prototyping occur in practice. In Proceedings of the 4th international
workshop on End-user software engineering, pages 1–5. ACM, 2008.

13 Sarah Chasins. Democratizing Web Automation: Programming for Social Scientists and Other
Domain Experts. PhD thesis, EECS Department, University of California, Berkeley, Oct 2019.
URL: http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-139.html.

14 Yanju Chen, Ruben Martins, and Yu Feng. Maximal multi-layer specification synthesis. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 602–612, 2019.

15 Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. Qlose: Program repair with quantitative
objectives. In Computer Aided Verification - 28th International Conference, CAV 2016,
Toronto, ON, Canada, July 17-23, 2016, Proceedings, Part II, pages 383–401, 2016. doi:
10.1007/978-3-319-41540-6_21.

16 Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed,
and Pushmeet Kohli. Robustfill: Neural program learning under noisy I/O. In Proceedings of
the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, pages 990–998, 2017.

17 Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum. Learning to infer
graphics programs from hand-drawn images. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-
man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing
Systems 31, pages 6059–6068. Curran Associates, Inc., 2018. URL: http://papers.nips.cc/
paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf.

18 Azadeh Farzan and Victor Nicolet. Modular divide-and-conquer parallelization of nested loops.
In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2019, pages 610–624, New York, NY, USA, 2019. ACM. URL:
http://doi.acm.org/10.1145/3314221.3314612, doi:10.1145/3314221.3314612.

19 Yu Feng, Ruben Martins, Jacob Van Geffen, Isil Dillig, and Swarat Chaudhuri. Component-
based synthesis of table consolidation and transformation tasks from examples. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages 422–436, 2017.

20 Yu Feng, Ruben Martins, Yuepeng Wang, Isil Dillig, and Thomas W Reps. Component-based
synthesis for complex apis. ACM SIGPLAN Notices, 52(1):599–612, 2017.

21 John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. In ACM SIGPLAN Notices, volume 50, pages 229–239. ACM,
2015.

22 Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-directed
synthesis: A type-theoretic interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages 802–815,
New York, NY, USA, 2016. ACM. URL: http://doi.acm.org/10.1145/2837614.2837629,
doi:10.1145/2837614.2837629.

23 Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of

ECOOP 2020

http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-139.html
https://doi.org/10.1007/978-3-319-41540-6_21
https://doi.org/10.1007/978-3-319-41540-6_21
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf
http://papers.nips.cc/paper/7845-learning-to-infer-graphics-programs-from-hand-drawn-images.pdf
http://doi.acm.org/10.1145/3314221.3314612
https://doi.org/10.1145/3314221.3314612
http://doi.acm.org/10.1145/2837614.2837629
https://doi.org/10.1145/2837614.2837629

2:28 Perfect is the Enemy of Good: Best-Effort Program Synthesis

Programming Languages, POPL ’11, pages 317–330, New York, NY, USA, 2011. ACM. URL:
http://doi.acm.org/10.1145/1926385.1926423, doi:10.1145/1926385.1926423.

24 Sumit Gulwani. Synthesis from examples: Interaction models and algorithms. In Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), 2012 14th International Symposium
on, pages 8–14. IEEE, 2012.

25 Sumit Gulwani. Programming by examples (and its applications in data wrangling). In Javier
Esparza, Orna Grumberg, and Salomon Sickert, editors, Verification and Synthesis of Correct
and Secure Systems. IOS Press, 2016.

26 Sumit Gulwani, Susmit Jha, Ashish Tiwari, and Ramarathnam Venkatesan. Synthesis of
loop-free programs. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, pages
62–73, 2011. URL: http://doi.acm.org/10.1145/1993498.1993506, doi:10.1145/1993498.
1993506.

27 Zheng Guo, Michael James, David Justo, Jiaxiao Zhou, Ziteng Wang, Ranjit Jhala, and
Nadia Polikarpova. Program synthesis by type-guided abstraction refinement. In Principles
of programming languages, page to appear, 2020.

28 Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using
types and weights. In ACM SIGPLAN Notices, volume 48, pages 27–38. ACM, 2013.

29 Jeevana Priya Inala and Rishabh Singh. Webrelate: integrating web data with spreadsheets
using examples. PACMPL, 2(POPL):2:1–2:28, 2018. doi:10.1145/3158090.

30 Shachar Itzhaky, Rohit Singh, Armando Solar-Lezama, Kuat Yessenov, Yongquan Lu, Charles
Leiserson, and Rezaul Chowdhury. Deriving divide-and-conquer dynamic programming al-
gorithms using solver-aided transformations. In Proceedings of the 2016 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, pages 145–164. ACM, 2016.

31 Vu Le and Sumit Gulwani. FlashExtract: a framework for data extraction by examples. In
Michael F. P. O’Boyle and Keshav Pingali, editors, Proceedings of the 35th Conference on
Programming Language Design and Implementation, page 55. ACM, 2014. doi:10.1145/
2594291.2594333.

32 Vu Le, Daniel Perelman, Oleksandr Polozov, Mohammad Raza, Abhishek Udupa, and Sumit
Gulwani. Interactive program synthesis. CoRR, abs/1703.03539, 2017. URL: http://arxiv.
org/abs/1703.03539, arXiv:1703.03539.

33 Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating search-based program
synthesis using learned probabilistic models. In ACM SIGPLAN Notices, volume 53, pages
436–449. ACM, 2018.

34 Vladimir I Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals.
In Soviet physics doklady, volume 10, pages 707–710, 1966.

35 Anders Miltner, Solomon Maina, Kathleen Fisher, Benjamin C. Pierce, David Walker, and
Steve Zdancewic. Synthesizing symmetric lenses. Proc. ACM Program. Lang., 3(ICFP), July
2019. doi:10.1145/3341699.

36 Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis. In
ACM SIGPLAN Notices, volume 50, pages 619–630. ACM, 2015.

37 Antti Oulasvirta and Pertti Saariluoma. Surviving task interruptions: Investigating the
implications of long-term working memory theory. International Journal of Human-Computer
Studies, 64(10):941–961, 2006.

38 Saswat Padhi, Todd D. Millstein, Aditya V. Nori, and Rahul Sharma. Overfitting in synthesis:
Theory and practice. In Computer Aided Verification - 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I, pages 315–334, 2019.
doi:10.1007/978-3-030-25540-4_17.

39 Hila Peleg, Shachar Itzhaky, and Sharon Shoham. Abstraction-based interaction model for
synthesis. In Isil Dillig and Jens Palsberg, editors, Verification, Model Checking, and Abstract
Interpretation, pages 382–405, Cham, 2018. Springer International Publishing.

http://doi.acm.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
http://doi.acm.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/1993498.1993506
https://doi.org/10.1145/3158090
https://doi.org/10.1145/2594291.2594333
https://doi.org/10.1145/2594291.2594333
http://arxiv.org/abs/1703.03539
http://arxiv.org/abs/1703.03539
http://arxiv.org/abs/1703.03539
https://doi.org/10.1145/3341699
https://doi.org/10.1007/978-3-030-25540-4_17

H. Peleg and N. Polikarpova 2:29

40 Hila Peleg, Sharon Shoham, and Eran Yahav. Programming not only by example. In
Proceedings of the 40th International Conference on Software Engineering, pages 1114–1124.
ACM, 2018.

41 Phitchaya Mangpo Phothilimthana, Aditya Thakur, Rastislav Bodik, and Dinakar Dhurjati.
Scaling up superoptimization. In ACM SIGARCH Computer Architecture News, volume 44,
pages 297–310. ACM, 2016.

42 Oleksandr Polozov and Sumit Gulwani. Flashmeta: A framework for inductive program
synthesis. ACM SIGPLAN Notices, 50(10):107–126, 2015.

43 Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical language
models. In ACM SIGPLAN Notices, volume 49, pages 419–428. ACM, 2014.

44 Andrew Reynolds, Haniel Barbosa, Andres Nötzli, Clark W. Barrett, and Cesare Tinelli.
cvc4sy: Smart and fast term enumeration for syntax-guided synthesis. In Computer Aided
Verification - 31st International Conference, CAV 2019, New York City, NY, USA, July 15-18,
2019, Proceedings, Part II, pages 74–83, 2019.

45 Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett.
Counterexample-guided quantifier instantiation for synthesis in smt. In International Confer-
ence on Computer Aided Verification, pages 198–216. Springer, 2015.

46 Kensen Shi, Jacob Steinhardt, and Percy Liang. Frangel: Component-based synthesis with
control structures. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/
3290386.

47 Rishabh Singh and Sumit Gulwani. Predicting a correct program in programming by
example. In Computer Aided Verification - 27th International Conference, CAV 2015,
San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part I, pages 398–414, 2015.
doi:10.1007/978-3-319-21690-4_23.

48 Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden, Paolo
Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. Synthesizing
entity matching rules by examples. PVLDB, 11(2):189–202, 2017. URL: http://www.vldb.
org/pvldb/vol11/p189-singh.pdf.

49 Calvin Smith and Aws Albarghouthi. Program synthesis with equivalence reduction. In
Verification, Model Checking, and Abstract Interpretation - 20th International Conference,
VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings, pages 24–47, 2019. doi:
10.1007/978-3-030-11245-5_2.

50 Armando Solar-Lezama. Program sketching. STTT, 15(5-6):475–495, 2013. URL: http:
//dx.doi.org/10.1007/s10009-012-0249-7, doi:10.1007/s10009-012-0249-7.

51 Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent
data structures. In ACM SIGPLAN Notices, volume 43, pages 136–148. ACM, 2008.

52 Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik, Sanjit Seshia, and Vijay Saraswat.
Combinatorial sketching for finite programs. ACM SIGOPS Operating Systems Review,
40(5):404–415, 2006.

53 Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. Learning to infer and execute 3d shape programs. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019, 2019.

54 Emina Torlak and Rastislav Bodík. A lightweight symbolic virtual machine for solver-aided
host languages. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’14, Edinburgh, United Kingdom - June 09 - 11, 2014, page 54, 2014.
URL: http://doi.acm.org/10.1145/2594291.2594340, doi:10.1145/2594291.2594340.

55 Abhishek Udupa, Arun Raghavan, Jyotirmoy V Deshmukh, Sela Mador-Haim, Milo MKMartin,
and Rajeev Alur. Transit: specifying protocols with concolic snippets. ACM SIGPLAN Notices,
48(6):287–296, 2013.

ECOOP 2020

https://doi.org/10.1145/3290386
https://doi.org/10.1145/3290386
https://doi.org/10.1007/978-3-319-21690-4_23
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
http://www.vldb.org/pvldb/vol11/p189-singh.pdf
https://doi.org/10.1007/978-3-030-11245-5_2
https://doi.org/10.1007/978-3-030-11245-5_2
http://dx.doi.org/10.1007/s10009-012-0249-7
http://dx.doi.org/10.1007/s10009-012-0249-7
https://doi.org/10.1007/s10009-012-0249-7
http://doi.acm.org/10.1145/2594291.2594340
https://doi.org/10.1145/2594291.2594340

2:30 Perfect is the Enemy of Good: Best-Effort Program Synthesis

56 Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql
queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 452–466. ACM, 2017.

57 Ke Wang, Rishabh Singh, and Zhendong Su. Search, align, and repair: data-driven feedback
generation for introductory programming exercises. In ACM SIGPLAN Notices, volume 53,
pages 481–495. ACM, 2018.

58 Navid Yaghmazadeh, Xinyu Wang, and Isil Dillig. Automated migration of hierarchical data
to relational tables using programming-by-example. Proc. VLDB Endow., 11(5):580–593,
January 2018. doi:10.1145/3187009.3177735.

59 Tianyi Zhang, Di Yang, Crista Lopes, and Miryung Kirnt. Analyzing and supporting adaptation
of online code examples. In Proceedings of the 41st International Conference on Software
Engineering, pages 316–327. IEEE Press, 2019.

https://doi.org/10.1145/3187009.3177735

	Introduction
	Overview
	A motivating example
	Background: Observational Equivalence Reduction
	Our approach

	Best-Effort Enumeration With Observational Equivalence
	Finding best-effort solutions

	Fitness Function
	Empirical Evaluation
	Erroneous examples
	Partially solving hard benchmarks
	Solving the original easy benchmarks

	An Exploratory User Study
	Observed behavior
	Interviews
	Discussion
	Threats to validity

	Related work
	Conclusion

