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Abstract 
Motivation: Recent breakthroughs of single-cell RNA sequencing (scRNA-seq) technologies offer an 
exciting opportunity to identify heterogeneous cell types in complex tissues. However, the unavoidable 
biological noise and technical artifacts in scRNA-seq data as well as the high dimensionality of expres-
sion vectors make the problem highly challenging. Consequently, although numerous tools have been 
developed, their accuracy remains to be improved. 
Results: Here, we introduce a novel clustering algorithm and tool RCSL (Rank Constrained Similarity 
Learning) to accurately identify various cell types using scRNA-seq data from a complex tissue. RCSL 
considers both local similarity and global similarity among the cells to discern the subtle differences 
among cells of the same type as well as larger differences among cells of different types. RCSL uses 
Spearman’s rank correlations of a cell’s expression vector with those of other cells to measure its global 
similarity, and adaptively learns neighbour representation of a cell as its local similarity. The overall 
similarity of a cell to other cells is a linear combination of its global similarity and local similarity. RCSL 
automatically estimates the number of cell types defined in the similarity matrix, and identifies them by 
constructing a block-diagonal matrix, such that its distance to the similarity matrix is minimized. Each 
block-diagonal submatrix is a cell cluster/type, corresponding to a connected component in the cognate 
similarity graph. When tested on 16 benchmark scRNA-seq datasets in which the cell types are well-
annotated, RCSL substantially outperformed six state-of-the-art methods in accuracy and robustness 
as measured by three metrics. 
Availability: The RCSL algorithm is implemented in R and can be freely downloaded at 
https://github.com/QinglinMei/RCSL. 
Contact: guojunsdu@gmail.com, zcsu@uncc.edu 
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Recent advances in single-cell RNA sequencing (scRNA-seq) technolo-
gies have revolutionized the study of many important biological processes, 
such as embryogenesis and tumorigenesis, in which an understanding of 
the functions and composition of heterogeneous cell types in the tissues is 
critical. As the transcriptome of a cell largely determines its molecular 
makeup, and thus its functions and cellular type, unsupervised clustering 
of individual cells based on their transcriptomes can be a powerful ap-

proach to identifying all the cell types including rare ones in complex tis-
sues in an unbiased manner (Buettner, et al., 2015; Jiang, et al., 2016; Xu 
and Su, 2015). Despite great progress made in the last few years, the task 
remains highly challenging owing to the unavoidable biological noise and 
technical artifacts in scRNA-seq data as well as the high dimensionality 
of expression vectors.  
The biological noise is related to the inherently stochastic nature of gene 
transcription in individual cells of the same type, due to the small copy 
number of molecules involved, unsynchronized cell cycles and uneven 
cell divisions (Becskei, et al., 2005; Kaern, et al., 2005; Paulsson, 2004; 
Raj and van Oudenaarden, 2008). As a result, even different cells of the 
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same type display a broad range of variation in RNA levels (Bar-Even, et 
al., 2006; Newman, et al., 2006; Raj, et al., 2008; Taniguchi, et al., 2010; 
Xie, et al., 2008; Young, et al., 2012; Zenklusen, et al., 2008). Technical 
artifacts result from dropout events and batch factors in data generation, 
which are different from the conventional bulk RNA-seq data (Kiselev, et 
al., 2019). Intense efforts have been made to address these challenges over 
the past few years. For example, we previously proposed a quasi-clique-
based algorithm with shared nearest neighbor(SNN), SNN-cliq, to identify 
groups of highly similar cells (Xu and Su, 2015). Guo et al. designed a 
top-to-toe pipeline (SINCERA) to distinguish major cell types (Guo, et al., 
2015). Seurat, which has become one of the most popular choices for 
scRNA-seq data analysis, combines SNN graphs with Louvain commu-
nity detection to group cells iteratively (Satija, et al., 2015). SC3 integrates 
the results of multiple clustering methods to obtain a consensus result 
(Kiselev, et al., 2017). Additionally, dimensionality reduction has also 
been integrated into clustering methods, such as pcaReduce (Žurauskienė 
and Yau, 2016) and ZIFA (Pierson and Yau, 2015), to reduce the compu-
tational complexity. Meanwhile, some approaches like CIDR, have been 
proposed to mitigate the impact of dropout events by improving the dis-
similarity matrix (Lin, et al., 2017). 
Another challenge in accurately clustering cells using scRNA-seq data 

is related to their high dimensionality. Although a cell may express tens 
of thousands of genes, only few of them determine its type (Graf and 
Enver, 2009), and we usually have no prior knowledge of which specific 
genes determine cell types. To address this, many new vector similarity 
metrics have been proposed such as SIMLR (Bo, et al., 2017) and MPSSC 
(Park, et al., 2018). SIMLR obtains a similarity matrix and identifies clus-
ters via multikernel learning. MPSSC clusters a learned multiple doubly 
stochastic similarity matrix using sparse spectral clustering. In both the 
algorithms, a similarity matrix was learned from the data to better capture 
global structural relationships between cells. Nevertheless, these similar-
ity metrics do not take into account local structures in quantifying cell 
similarities, which can be critical to discern subtle differences between 
cells of the same type and cells of different types, as indicated by our ear-
lier proposed SNN metric (Xu and Su, 2015). In addition, most graph-
based methods use the k-means algorithm to find clusters in a post-process 
step after constructing the similarity graph. Such two-stage algorithms in-
evitably lose some information from the original data in the post-process 
step. 
In this work, we first propose a new metric that considers both global 

and local similarities between the expression vectors. Specifically, we use 
Spearman’s rank correlation to measure the global similarity and Neigh-
bor Representation (NR) to capture the local similarity between the cells. 
NR has been successfully used in many dimensionality reduction algo-
rithms, such as locally linear embedding (LLE) (Roweis and Saul, 2000), 
to capture local structures. We adaptively learn NR for each cell using an 
optimization procedure. Our metric is an optimized linear combination of 
Spearman’s correlation and the learned NR. Once the similarity matrix 
between cells is computed using this metric, the task of clustering the cells 
according to their types is to identify all block-diagonal submatrices in the 
similarity matrix or to partition the cognate similarity graph into several 
connected components, where each block-diagonal submatrix or con-
nected component corresponds to a cell type. It has been proved that the 
number of block-diagonal submatrices in the similarity matrix is equal to 
the number of zero eigenvalues of its Laplacian matrix (Luxburg, 2007; 
Mohar, 1991; Nie, et al., 2016). Therefore, we posit that if we can reliably 
estimate the number of clusters or cell types C based on the similarity ma-
trix, then we can transform it into a new matrix containing C block-diag-
onal submatrices, or partition the cognate similarity graph into C con-
nected components, by constraining the rank of its Laplacian matrix. More 

specifically, if we can construct a matrix such that the number of zero ei-
genvalues of its Laplacian matrix is exactly equal to the estimated number 
of cell types, then we can divide cells into the same number of 
groups/types. 
Based on this idea, we have developed a novel clustering algorithm 

RCSL (Rank Constrained Similarity Learning) by constructing a block-
diagonal matrix such that the number of zero eigenvalues of its Laplacian 
matrix is equal to the estimated number of cell types in the dataset and its 
distance to the similarity matrix is minimized. When tested on 16 public 
scRNA-seq datasets with verified cell types, RCSL generally outperforms 
the six state-of-the-art methods compared.  

2 Methods 

2.1 The RCSL algorithm 

RCSL takes a single-cell gene expression matrix MG′ÍN as the input, where 
G′ denotes the number of genes, N denotes the number of cells, and an 
element mij in M represents the expression value of gene i in cell j. RCSL 
consists of three steps (Fig. 1) detailed as follows.  

 

Fig. 1. Overview of RCSL. First, given a gene expression matrix MG′ÍN as the input, RCSL 

filters out non-informative genes, resulting in matrix MGÍN. Second, based on MGÍN, RCSL 

computes Spearman’s rank correlation (SRC) matrix SS between the cells, performs PCA 

on the genes, and preserves the top Q-PCs as matrix X. Third, RCSL learns the neighbour 

representation (NR) matrix SNR based on X. Fourth, RCSL computes the similarity matrix 

S using a linear combination SS and SNR. Finally, RCSL estimates the number of clusters C 

in S, and learns the block-diagonal matrix B from S, with the constraint that B has C zero 

eigenvalues. Each block-diagonal submatrix in B is a cluster of cells. RCSL also infers 

trajectories of the identified cell clusters/types. 

 
Step 1. Data preprocessing. To control the quality of scRNA-seq data, 

we filter out rarely expressed genes and ubiquitously expressed genes, 
which contribute little to clustering. Specifically, we discard genes ex-
pressed in less than 2.5% of cells as well as genes expressed in > 97.5% 
of cells with a variance < 90% of the mean variance of these selected ubiq-
uitously expressed genes. These parameters were chosen as we found that 
they could slightly improve the accuracy of clustering results on most of 
the datasets (Fig. S1). Let the resulting matrix be MGÍN.  
Step 2. Construction of similarity matrix. For each pair of cells i and 

j in MGÍN, we calculate the Spearman’s rank correlation (SRC) between 
their expression vectors, defined as: 
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where Ri(g) and Rj(g) are the ranks of the expression level of gene g in 
cells i and j, respectively, and  Ri""" and  Rj""" are the ranks in i and j of the gene 
in the middle ordered by gene IDs, respectively. Let the resulting matrix 
be SS (Fig. 1). As SRC is based on the ranks of values, it is insensitive to 
the difference of cell sizes. We perform principal component analysis 
(PCA) on MGÍN (Wold, et al., 1987), and keep the top Q PCs that explain 
95% of the variance. Let the resulting matrix be XQÍN (Fig. 1). We found 
that such dimensionality reduction has little influence on the accuracy of 
clustering (Fig. S1) but speeds up the algorithm somewhat (Fig. S2). 
Based on XQÍN, we compute the neighbour representation (NR) for each 
pair of cells as their local similarity as follows.  
For each cell i, we find k-nearest-neighbours (k-NNs) using the 

Euclidean or cosine angle distance between their feature vectors in XQÍN. 
We use the Euclidean distance, as it generally performs better than the 
cosine angle distance in these study (see below). By default, k is set to 
0.65N, which is a relatively large value to reduce the risk of information 
loss. Since cells of the same type are not necessarily close neighbours in 
Euclidean space as only few genes determine a cell’s type, in order to 
identify the close neighbours of the cells, we model each cell’s feature 
vector as a linear combination of the vectors of its neighbours; then those 
with higher weights are its closer neighbours. To find the weights, we 
solve a least-squares optimization problem: 

 , (2) 

where xi is the feature vector of cell i in XQÍN, KNN(i) the k-NNs of i in 
Euclidean space, and sijNR the weight of cell j on i (sijNR = 0 if j ∉ KNN(i)). 
Intuitively, the greater the sijNR value, the more similar j is to i. Therefore, 
we call the learned weight vector si∙NR	the NR of i.  Let the resulting matrix 
for all the cells be SNR={s1NR,	s2NR,...,	sNNR}. Then, we define the similarity 
matrix between the cells as a linear combination of SS and SNR (Fig. 1) 
 

 S	=	γ	Ss	+	λ	SNR   s.t. γ	+	λ	=	1, (3) 

where γ ≥ 0 and λ ≥ 0 are scalar parameters that balance the contribution 
of SS and SNR in S. By default, we set γ = 0.8, and λ = 0.2, as they generally 
perform best among other choices tested (see below). 
Step 3. Calculation of block-diagonal matrix. We first estimate the num-
ber of clusters C by hierarchically clustering the cells based on S, and find 
C that yields the largest Krzanowski-Lai index (Krzanowski and Lai, 1988) 
value from a range of C (by default, 4 to 12). However, for small datasets 
(N<3000), we use a two-step strategy to more accurately estimate C. Spe-
cifically, we choose three C values with the largest Krzanowski-Lai 
indexes, and pick the one with the largest sum of intra-class similarities 
based on S among the three clustering results of RCSL. The hierarchical 
clustering is performed using the R package NbClust with default settings.  

To construct the block-diagonal similarity matrix BNÍN between the 
cells, we adopt the Constrained Laplacian Rank (CLR) procedure (Nie, et 
al., 2010; Nie, et al., 2016). Briefly, CLR defines a diagonal matrix DB = 

diag (d11, d22, …, dNN), where dii=∑
bij + bji
2

N
j=1 , and bij is the similarity be-

tween cell i and cell j in B. The Laplacian matrix of B is defined as LB = 

DB − 
BT	+	B
2
. An important property of the  Laplacian matrix is that the num-

ber of its zero eigenvalues equals the number of connected components in 
the graph defined by B (Fan, 1997; Mohar, 1991). Therefore, if a similarity 
matrix B can be found, such that the rank of its Laplacian matrix is exactly 
N − C, then B will have approximately C block-diagonal submatrix with 
proper permutations, and the corresponding similarity graph will contain 
C connected components. Each block-diagonal submatrix and correspond-
ing connected component form a cluster of cells. Ideally, B should be 
highly similar to S, and the rank of LB is exactly N − C. CLR therefore 
finds B by minimizing the difference between B and S, with the constraint 
that the rank of LB is N – C;  

 , (4) 

where the sum of each row in B is constrained to 1 to avoid rows of all 
zeros in B. (see details in Supplementary Note).   

2.2 Time complexity of the algorithm 

Given the expression matrix MG′ÍN, with N cells and G′ genes, Step 1 
needs N*G′ calculations, so it runs at O(N). In Step 2, we sequentially 
compute the SRC matrix SS and PCA matrix XQÍN, find k-NNs of N cells, 
and learn the SNR matrix, each of these procedures has a time complexity 
of O(N2). In Step 3, we perform T iterations (by default, T = 30) on the 
NÍN matrix S to estimate diagonal matrix B, which needs O(TN2) 
calculations. As T is a small constant, Step 3 runs at O(N2). Therefore, the 
time complexity of the RSCL algorithm is O(N) + 5O(N2) = O(N2) (Fig. 
S3). 

2.3 Inference of trajectory and pseudo-time 

Based on the clustering results of RCSL, we infer the developmental tra-
jectories and pseudo-temporal ordering of cells for time-series scRNA-seq 
data. For each identified cluster of cells, we compute its center as the mean 
of the feature vectors from one cluster in XQÍN (Fig.1), and the Kendall 
rank correlation (KRC) among all the centers. We construct a weighted 
similarity graph G, where the vertices represent the centers and the edges 
represent their Kendall rank correlation values. We find the minimum 
spanning tree (MST) using the Prims’ algorithm (Prim, 1957). The MST 
that represents the shortest path connecting all the centers without any cir-
cles is the most parsimonious explanation of the relationships among the 
cell types during cell differentiation, and thus likely reflects their devel-
opmental trajectory. We determine the pseudo-temporal ordering between 
the cell types by using the distance from a cell type to the predefined start-
ing cell type. The distance is defined as the reciprocal of the average sim-
ilarity between the two types of cells in the similarity matrix S.  

Table 1. Summary of the 16 scRNA-seq datasets used in this study to assess the performance of the methods for clustering cells. 

Accession ID Dataset Tissue # Cells # Genes # Cell types Protocol Ref. 

GSE57249 Biase  Mouse Embryos  56 25734 4 SMARTer (Biase, et al., 2014) 

GSE52583 Treutlein Mouse Tissues 80 23271 5 SMARTer (Treutlein, et al., 2014) 

GSE36552 Yan Human Embryos  90 20214 6 Tang (Yan, et al., 2013) 

GSE51372 Ting  Mouse Pancreas 114 14450 5 Tang (Ting, et al., 2014) 

2

1 1( )
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E-MTAB-3321 Goolam  Mouse Embryos  124 41480 5 Smart-Seq2 (Mubeen, et al., 2016) 

GSE45719 Deng Mouse Embryos  268 22431 6 Smart-Seq2 (Deng, et al., 2014) 

GSE98664 Hayashi Mouse Embryos 414 23658 5 RamDA-seq (Hayashi, et al., 2018) 

GSE83139 Wang Human Pancreas 457 19950 7 SMARTer (Wang, et al., 2016) 

GSE67835 Darmanis Human Brain 466 20214 9 SMARTer (Darmanis, et al., 2015) 

E-MTAB-3929 Petropoulos Human Preimplantation Embryos 1289 8772 5 Smart-Seq2 (Petropoulos, et al., 2016) 

GSE81608 Xin Human Pancreas 1492 39851 8 SMARTer (Xin, et al., 2016) 

GSE85241 Muraro Human Pancreas 2122 19140 10 CEL-Seq2 (Muraro, et al., 2016) 

GSE65525 Klein Mouse Embryo Stem Cells 2717 24175 4 inDrop (Klein, et al., 2015) 

GSE74672 Romanov Mouse Brain 2881 24341 7 Drop-seq (Romanov, et al., 2017) 

GSE60361 Zeisel  Mouse Brain 3005 19972 9 STRT-seq UMI (Zeisel, et al., 2015) 

SRP073767 PBMC4K Human 4292 58302 11 10xGenomics Chro-

mium 

(Zheng, et al., 2017) 

2.4 scRNA-seq datasets  

We collected 16 publicly available scRNA-seq datasets (Table 1), in 
which cell types were determined by the original authors using various 
methods, including microscopic inspections for the embryonic cells (oo-
cyte, zygote, 2-cell stage, 4-cell stage, 8-cell stage, …, and blast cells), 
time of post-inductions for artificially induced differentiated cells (day 0, 
day 1, day 2, …), as well as molecular markers and cell purification using 
Fluorescence-Activated Cell Sorting (FACS) for the other datasets (for 
details see Table S1). To further ensure the accuracy of cell type annota-
tions, we excluded cells with ambiguous labels including “dropped” cells 
in the Wang dataset, “contaminated” cells in the Xin dataset and “unclear” 
cells in the Muraro dataset. We normalize raw read counts of genes using 
CPM (counts per million) followed by adding a pseudocount of 1 and log 
(base 2) transformation.  

2.5 Simulation datasets 

We generated 10 simulated datasets containing 300~3,000 cells belonging 
to 4~7 cell types (Table S3) using the Splatter Bioconductor package 
(Zappia, et al., 2017). Each cell expresses 10,000-15,000 genes, whose 
levels are determined by the cell’s type. The script for constructing simu-
lation datasets is available at 
https://github.com/QinglinMei/RCSL/tree/master/R.  

2.6 Evaluation metrics 

To measure the consistency between identified clusters and known cell 
types, we adopt three metrics: Adjusted Rand Index (ARI) (Hubert and 
Arabie, 1985), Normalized Mutual Information (NMI) (Strehl and Ghosh, 
2002) and Fowlkes-Mallows index (FM) (Fowlkes and Mallows, 1983). 
We represent the known cell types as R and the identified clusters as E. 
Let a be the number of pairs of cells that are clustered in the same group 
in both R and E; b the number of pairs of cells that are clustered in the 
same group in R but in different groups in E; c the number of pairs of cells 
that are clustered in different groups in R but in the same group in E, and 
d the number of pairs of cells that are clustered in different groups both in 
both R and E (Kim, et al., 2019). Then, ARI, FM and NMI are defined as,  

,                             (6) 

 and                                        (7) 

,                                              (8) 

where MI(R, E) is the mutual information of R and E, and H an entropy 
function of R and E. 

3 Results 

3.1 Combination of global and local similarities improves the accu-
racy of RCSL 

To find the optimal values of weights γ and λ of global similarity and local 
similarity, respectively, in the similarity metric S (formula (3)), and to see 
how they affect the accuracy of RCSL, we ran RCSL on the 16 datasets 
with varying vales of γ (0.0, 0.1, ..., 1.0) and λ =1− γ (1.0, 0.9, …, 0.0). As 
shown in Fig. 2, with the increase in γ, i.e., decrease in λ, the accuracy of 
RCSL generally increases, and reaches the highest level at γ = 0.8, λ = 0.2, 
then decreases. Thus, it appears that using only global similarity (γ = 1.0, 
λ = 0.0) as seen in most existing methods cannot guarantee the best per-
formance on most datasets (Fig. 2). On the other hand, using local simi-
larity alone (γ = 0.0, λ = 1.0) generally underperforms using global simi-
larity alone (Fig. 2), due probably to information loss in the former. In this 
sense, it is not surprising that global similarity contributes more (80%) to 
the similarity score S than local similarity (20%) for the best performance. 
Nonetheless, this contribution of local similarity is necessary to the best 
accuracy in most datasets (Fig. 2). In addition, we evaluate the perfor-
mance of Euclidean distance and cosine angle distance for defining k-NNs 
of the cells, and an approximate method LSH (Andoni, et al.) for finding 
the k-NNs, and find that Euclidean distance in combination with our 
method for finding k-NNs (Method) outperforms all other combination on 
most of the datasets (Fig. S4).     

 
Fig. 2. Effects of the values of γ and λ=1− γ on the accuracy of RCSL. 

3.2 RCSL outperforms existing methods in clustering cells 

We next compare the performance RCSL on 16 scRNA-seq datasets with 
that of five state-of-the-art tools including SC3 (Kiselev, et al., 2017), 
SIMLR (Bo, et al., 2017),  pcaReduce (Žurauskienė and Yau, 2016), CIDR 
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(Lin, et al., 2017) and Seurat (Satija, et al., 2015) using three metrics 
(Methods). As mentioned before, SC3 is a popular method based on the 
consensus result of multiple methods; SIMLR is a similarity learning al-
gorithm based on multikernel; pcaReduce is an agglomerative clustering 
method based on statistical modeling; CIDR is an ultrafast algorithm that 
imputes dropouts; and Seurat is widely applied to large datasets. Notably, 
both SIMLR and RCSL identify clusters by learning a block-diagonal sim-
ilarity matrix from similarity matrices defined differently, therefore, we 
can compare their learned block-diagonal matrix. Moreover, to show the 
contribution of local similarity metric NR to the performance, we also im-
plement a variant (RCSL2) of RCSL that does not use NR, thus is much 
faster than RCSL, though also runs at O(N2) (Fig. S3).  More specifically, 
versions of the packages we compare with our algorithm are as follows: 
SC3 (package version 1.14.0 from Bioconductor); SIMLR (package ver-
sion 1.12.0 from GitHub) (github.com/BatzoglouLabSU/SIMLR); 
pcaReduce (package version 1.0 from GitHub) 
(github.com/JustinaZ/pcaReduce); k-means (kmeans function built-in R 
version 3.6.0 ; CIDR (package version 0.1.5 from GitHub) 
(github.com/VCCRI/CIDR); and Seurat (package version 3.1.5 from 
CRAN). For PCA-Kmeans, we use our XQÍN as the input matrix. Since 
PCA-Kmeans is a stochastic algorithm, we run it 100 times and present 
the average of the results. In addition, since Kmeans cannot determine the 
number of clusters, we estimate the number of clusters by NbClust for 
Kmeans. For the other methods, we follow its corresponding instructions 
and tutorials provided by the authors and use its default parameters.  
  As shown in Fig. 3, both RCSL and RCSL2 outperforms the six exist-

ing methods on 11 of the 16 datasets (Table 1) based on ARI values (av-
erage 0.73 vs. 0.64). Specifically, on the Biase, Darmanis, Goolam, 
Treutlein Xin and Ting datasets, RCSL achieves significantly higher ARI 
than all the other algorithms. On the Deng and Romanov datasets, both 
RCSL and RCSL2 perform much better than the other algorithms. On the 
Wang and Hayashi datasets, RCSL also gains the highest ARI. Only on 
the Zeisel, Petropoulos, PBMC4K, Muraro and Yan datasets, SIMLR, 
Seurat or pcaRduce outperform RCSL (Fig. 3). However, on average, both 
RCSL and RCSL2 substantially outperform the six other methods (Fig. 3). 
Similar results are seen using NMI and FM (Figs. S5 and S6). These 
results indicate that both the optimized similarity metric (Fig. 2) and the 
clustering algorithm contribute to the outstanding performance of RCSL.  

Fig. 3. Performance of the algorithms (RCSL, RCSL2, SC3, SIMLR, pcaReduce, PCA-

Kmeans, CIDR, Seurat) on the datasets measured by Adjusted Rand Index (ARI). The last 

panel shows the average ARI value for each algorithm over the 16 datasets 

3.3 RCSL outperforms existing methods in learning the similarity 
among cells 

Fig. 4. Heatmap of the Spearman’s rank correlation matrix SS, similarity matrix S in RCSL 

and the block-diagonal similarity matrices B learned by RCSL, RCSL2, SIMLR in the in-

dicted eight datasets. Cells are arranged according to their annotated types indicated by the 

differently colored bar at the top and left of the matrices. 

 

We further seek to see whether the block-diagonal similarity matrices B 
learned by RCSL have the intended block-diagonal structures. To this end, 
we compare the SRC matrix SS, the similarity matrix S in RCSL as well 
as block-diagonal matrices learned by RCSL, RCSL2 and SIMLR. In the 
ideal case, if all cells are correctly clustered, then when cells are sorted by 
their types, the resulting matrix should exhibit clear-cut block-diagonal 
submatrices, in which similarities between cells of different types are zero 
while those between cells of the same types are non-zero. Fig. 4 shows the 
matrices learned by the four methods on eight datasets, in which cells are 
ordered according to their annotated types, and the results of the other 
eight datasets are shown in Fig. S7. Clearly, for most datasets except for 
the Ting, Klein, Wang, Zeisel and Yan datasets, there are no obvious 
block-diagonal submatrices for cells in SS or S (Figs. 4 and S7).  In contrast, 
cells in the similarity matrices B learned by RCSL, RCSL2 and SIMLR 
possess clear-cut block-diagonal structures in all the datasets (Figs. 4 and 
S7). However, there are subtle differences among the results of the three 
algorithms. For the Treutlein and Klein datasets, both RCSL and RCSL2 
correctly cluster the cells according to their annotated types, whereas 
SIMLR incorrectly groups multiple annotated cell types into one cluster. 
For the Biase, Goolam and Darmanis datasets, RCSL and RCSL2 
correctly clustered the cells according to their annotated types, while 
SIMLR divides one type into multiple clusters. For the Goolam, Ting and 
Xin datasets, RCSL2 divides one cell type into multiple clusters, while 
clusters identified by RCSL are in better agreement with their annotated 
types, indicating the importance of including NR in the similarity metric. 
In addition, clusters found by RCSL are cleaner than those identified by 
RCSL2 and SIMLR in the off-diagonal blocks. As expected, the quality 
of the learned block-diagonal similarity matrices is consistent with 
clustering results measured by ARI, NMI and FM (Figs. 3,  S5 and S6). 
Taken together, these results demonstrate that RCSL can better learn the 
block-diagonal similarity matrix of different cell types than the two other 
methods.  

3.4 RCSL learns block-diagonal structures of cell-cell similarities 
in a step-wise manner 

To see how RCSL gradually learns the block-diagonal structures of cell-
cell similarities starting from a data matrix, thereby clustering cells, we 
visualize the data matrix MG′ÍN, global similarity matrix SS, similarity ma-

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 14, 2021. ; https://doi.org/10.1101/2021.04.12.439254doi: bioRxiv preprint 

https://doi.org/10.1101/2021.04.12.439254
http://creativecommons.org/licenses/by-nc-nd/4.0/


Qinglin Mei et al. 

trix S, and block-diagonal matrix B of the 16 datasets using three visuali-
zation tools (PCA(Žurauskienė and Yau, 2016), t-SNE(Maaten and Hinton, 
2008) and UMAP(McInnes, et al., 2018)). Fig. 5 shows the PCA 2D plots 
of the results from six datasets. The PCA plots for the remaining datasets 
as well as t-SNE and UMAP plots for all datasets are shown in Figs. S8, 
S9 and S10. Interestingly, in some datasets such as the Goolam, Ting, 
Klein and Yan datasets, most cells can be well separated according to their 
types simply by the data matrices MG′ÍN and SS in the 2D plots, owing to 
the markedly distinct gene expression patterns of different cell types. In 
other datasets such as the Treutlein and Muraro datasets, cells cannot be 
simply separated by the data matrices MG′ÍN, SS and S.  Particularly, for 
the Muraro and Klein datasets, cells of the same type are dispersed, while 
cells of different types are mixed in MG′ÍN, SS and S. In contrast, different 
cell types in all the 16 datasets display clear-cut clusters in the block-di-
agonal matrix B (Figs. 5, S8, S9 and S10). Therefore, each step in the 
RCSL algorithm contributes to the identification of cell clusters/types in a 
dataset.      

Fig. 5. 2-D PCA display of the expression data matrices and matrices produced by RCSL 

in the indicated datasets. The rows respectively correspond to MG′ÍN, Spearman’s correla-

tion SS, similarity matrix S and block-diagonal matrix B. 

3.5 RCSL outperforms SIMLR in identifying sub-cell types 
Notably, like SIMLR, RCSL also tend to divide one cell type into multiple 
sub-clusters in some datasets, particularly, developmentally related ones 
(Biase, Deng, Goolam, Klein, Hayashi, Petropoulos and Yan) (Figs. 4 and 
S7). This might reflect the hierarchical lineage relationships of cell types 
produced in cell differentiation processes. Three (Biase, Deng and Yan) 
of these datasets record subtypes produced during embryogenesis (Table 
S2). To see if RCSL is able to identify sub-cell types, we take a close look 
at the results from the three datasets (Fig. 6). For the Biase dataset con-
taining four cell types, of which the Blast type is divided into the ICM and 
TE subtypes (Table S2), RCSL clusters the cells in five groups (Zygote, 
2-cell, 4-cell, ICM and TE), and correctly splitting the Blast in the ICM 
and TE subtypes (Fig. 6). In contrast, SIMLR divides the cells into at least 
eight groups, with the 2-cell type incorrectly split in four clusters, the 4-
cell type incorrectly split into three clusters (Fig. 6). Moreover, SIMLR 
fails to divide the Blast type into the ICM and TE subtypes (Fig. 6). For 
the Deng dataset containing six cell types, of which the Zygote type is 
further classified into Zygote and Early 2-cell types, the 2-cell type into 
Middle 2-cell and Late 2-cell types, and the Blast type into Early, Middle 
and Late types (Table S2), RCSL clusters the cells into five clusters, iden-
tifying the Middle and Late 2-cell types, but failing identify subtypes of 
the Zygote and the Blast type (Fig. 6). However, there might be no clear-
cut difference among these subtypes based on their stages (Early, Mid and 
Late). In contrast, SIMLR divides the cells into at least 13 clusters, with 
the 8-cell type incorrectly split into four clusters, and the 16-cell type in-
correctly split into at least two clusters, though it also correctly clusters 

the two subtypes of the 2-cell type (Fig. 6). For the Yan dataset containing 
six cell types, of which the Zygote type is divided into Oocyte and Zygote 
subtypes, RCSL clusters the cells in five groups, correctly identifying the 
8-cell, 16-cell and Blast types, but failing to identify sub-types of the Zy-
gote type. Although SIMLR also is able to correctly divide the Zygote type 
into two clusters, it splits the 16-cell type into two clusters, the Blast type 
into three clusters, and the 8-cell type into at least five clusters.  
On the other hand, it is difficult to justify the subtypes identified by 

RCSL and SIMLR in the other datasets, as subtype information is unavail-
able. However, based on the results from the three datasets where some 
subtypes are classified, it appears that RCSL is more accurate in identify-
ing sub-cell types than SIMLR that tends to over-cluster the cells.  

Fig. 6. Heatmap of block-diagonal matrixes constructed by RCSL, RCSL2 and SIMLR for 

the Bias, Deng and Yang dataset where sub-cell types are recorded. Cells are arranged ac-

cording to their annotated types and subtypes indicated by differently colored bars at the 

top and left of the matrices. 

3.6 RCSL achieves high clustering accuracy on simulated datasets 
We have thus far demonstrated the high accuracy of RCSL for classifying 
cell types using the 16 datasets with well-annotated cell types. However, 
accurate cell type determination is still a challenging task, particularly, in 
larger datasets, it is difficult to guarantee 100% accuracy. To further 
evaluate the accuracy of RCSL, we ran it on 10 simulated datasets, in 
which the cell types are well defined (Table S3 and Method). Although 
RCSL slightly outperforms RCSL2 on the simulated datasets, both 
achieve a very higher average ARI of 0.95 and 0.94 (Fig. S11), 
respectively, suggesting that both are able to identify well-defined cell 
clusters. However,  this almost same performance of RCSL and RCSL2 is 
in stark contrast to the result on the 16 real datasets, where RCSL 
substantially outperforms RCSL with an average ARI of  0.73 and 0.64, 
respectively (Fig. 3). Nevertheless, this is not surprising, as the clusters in 
the simulated datasets are clear-cut though the information is rather weak 
(Fig. S12), while the clusters in the real datasets are often vague with high 
background noise (Figs. 4 and S7). These results indicate that considering 
both local and global similarity is more critical to identify cell types when 
the data is highly noisy. 

3.7 RCSL correctly infers trajectories and pseudo-time orders 

Based on the clustering results, RCSL infers the developmental trajecto-
ries and pseudo-temporal orders of the identified cell types in a dataset, 
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particularly when it is time-series-related.  Fig.7 shows UMAP displays of 
the trajectories and pseudo-temporal orders of the identified cell types in 
four mouse embryo datasets (Goolam, Hayashi, Yan and Deng) and a hu-
man preimplantation embryos dataset (Petropoulos), in which both the cell 
types and developmental order are known. Remarkably, in each dataset, 
the inferred trajectory is the same as the real developmental trajectory, and 
the inferred pseudo-temporal ordering is also consistent with the true de-
velopmental stages. The results for the other datasets are shown in Fig. 
S13, where only an MST is shown if the starting cell type is unknown in 
a dataset, or it the dataset is not time series in nature. 

Fig. 7. Inference of developmental trajectories and pseudo-temporal orders of the identified 

cell types in four mouse embryo datasets (Goolam, Deng, Yan, and Hayashi) and a human 

preimplantation embryos dataset (Petropoulos). The developmental trajectories (top) are 

visualized by UMAP. In the pseudo-temporal ordering of cells (bottom), the horizontal axis 

represents the estimated time of each cell type starting from the known initial cell type, and 

the vertical axis indicates the real cell stages/types.  

4 Discussion 
One of the major challenges for identifying heterogeneous cell types using 
scRNA-seq data lies in how to define the similarity among cells owing to 
inherent biological noise and unavoidable technical artifacts (Kiselev, et 
al., 2019).  Moreover, only a few genes with similar expression patterns 
play a key role in defining a cell’s type (Graf and Enver, 2009). To tackle 
these problems, many similarity metrics have been developed (Kim, et al., 
2018); however, they only consider global similarities (Bo, et al., 2017; 
Park, et al., 2018) even though local similarities can be crucial to 
differentiate the subtle difference between cells of the same type and cells 
of different types (Xu and Su, 2015). In this study, we propose a new 
metric that considers both the global similarity and local similarity 
between the cells. Specifically, we quantify a cell’s similarity to the other 
cells as an optimal linear combination of its global similarity and local 
similarity to other cells. For the global similarity of a cell, we utilize the 
SRC between the expression vector of the cell and those of all other cells 
in the data. For the local similarity of a cell, we adopt the NR that 
represents the cell’s feature vector (PC)  as the optimal linear combination 
of the feature vectors of the cell’s k-NNs in the Euclidean or cosine angle 
distance space. Thus NR in effect adaptively adjusts the weights on the 
edges between the cell and its k-NNs in the corresponding similarity graph. 
The importance of incorporating NR into the similarity metric is 
demonstrated by the better performance of RCSL in almost all the datasets 
compared to RCSL2, which does not use NR, particularly, when the data 
are very noisy.  
Another major challenge for identifying cell types using scRNA data is 

how to cluster cells by their types based on the similarity matrix(Kiselev, 
et al., 2019). Although many clustering algorithms have been proposed to 
identify cell types, the results are far from satisfactory due to the often 
complex structures of similarity matrices (Kiselev, et al., 2019). On the 
other hand, clustering cells in groups by their types is equivalent to 
converting the similarity matrix into a block-diagonal matrix by 

permutation and minimal adjustment of the similarity values. In the 
resulting block-diagonal matrix, each block-diagonal submatrix 
corresponds to a connected component in the corresponding similarity 
graph, i.e. a cluster or a cell type. We therefore adopt a method to compute 
such a block-diagonal matrix based on the similarity matrix. We first 
estimate the number of clusters defined in the similarity matrix and then 
iteratively find the block-diagonal matrix with the rank of its Laplacian 
matrix constrained.  
We develop RCSL by combining the new similarity metric and the 

method for constructing the block-diagonal matrix, aiming to more 
accurately identify cells type in an often noisy scRNA-seq dataset. The 
results on the 16 diverse datasets show that RCSL substantially 
outperforms RCSL2 (a variant of RCSL that does not use local similarity), 
and RCSL2 outperforms the six other tools on many datasets, indicating 
that both the metric and block-diagonal matrix finding method contribute 
to the outstanding performance of RCSL. Although highly accurate, 
RCSL is limited by its O(N2) time complexity for computing SS, SNR and 
B. We are currently developing a strategy to reduce the time complexity 
of RCSL to NlogN, so that it can be applied to very large datasets 
generated from millions of cells.  
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