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Abstract

Motivation: Biclustering has emerged as a powerful approach to identifying functional patterns in complex biologic-
al data. However, existing tools are limited by their accuracy and efficiency to recognize various kinds of complex
biclusters submerged in ever large datasets. We introduce a novel fast and highly accurate algorithm RecBic to iden-
tify various forms of complex biclusters in gene expression datasets.

Results: We designed RecBic to identify various trend-preserving biclusters, particularly, those with narrow shapes,
i.e. clusters where the number of genes is larger than the number of conditions/samples. Given a gene expression
matrix, RecBic starts with a column seed, and grows it into a full-sized bicluster by simply repetitively comparing
real numbers. When tested on simulated datasets in which the elements of implanted trend-preserving biclusters
and those of the background matrix have the same distribution, RecBic was able to identify the implanted biclusters
in a nearly perfect manner, outperforming all the compared salient tools in terms of accuracy and robustness to
noise and overlaps between the clusters. Moreover, RecBic also showed superiority in identifying functionally
related genes in real gene expression datasets.

Availability and implementation: Code, sample input data and usage instructions are available at the following web-
sites. Code: https://github.com/holyzews/RecBic/tree/master/RecBic/. Data: http://doi.org/10.5281/zenodo.3842717.

Contact: guojunsdu@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biclustering that identifies related entities (rows) under certain con-
ditions (columns) in a data matrix is often desired in many fields of
data analysis. For example, biologists would like to bicluster a gene
expression matrix to identify functionally related genes (rows) under
certain conditions (columns), measured using high-throughput
methods such as DNA microarrays and more recently RNA-seq
(Tanay et al., 2002; Xie et al., 2019). The goal of biclustering a gene
expression matrix therefore is to find groups of genes with similar
expression patterns under certain conditions (Cheng and Church,
2000). For instance, biclustering genes measured in cancerous tissues
at different pathological stages may reveal genes in certain biochem-
ical pathways dysregulated during the development of cancer (Dao
et al., 2010; Kluger, 2003). The biclustering problem can be traced
back to Morgan and Sonquist (1963) and Hartigan (1972) who
attempted to partition a numerical matrix into submatrices with
entries being as similar as possible. Since Cheng and Church (2000)
first introduced a biclustering algorithm for gene expression matri-
ces in which the mean squared residue was used as a metric for

approximately constant bicluster patterns, many biclustering algo-
rithms (Bryan and Cunningham, 2008; Bryan et al., 2006;
Carmonasaez et al., 2006; Kung et al., 2006; Li et al., 2006; Reiss
et al., 2006) have been developed based on the metric. However, it
was soon recognized that the constant bicluster pattern metric is not
sufficient to identify transcriptionally coregulated genes (Bendor
et al., 2003; Prelic et al., 2006). Aguilar-Ruiz (2005) proposed more
general bicluster metrics, including shifting, scaling and combina-
tions, to characterize coregulated genes. However, identifying these
types of biclusters are highly challenging. One of us has previously
introduced QUBIC (Li et al., 2009), a qualitative biclustering algo-
rithm that solved the more general problem to some extent, but limi-
tations still remain (see the counterexample to QUBIC in the
Supplementary Materials).

More recently, it has been realized that most biologically rele-
vant gene expression patterns tend to be trend-preserving. The ex-
pression patterns of two genes are said to be trend-preserving under
certain conditions if and only if their expression vectors in the ma-
trix are either order-preserving or order-reversing. Two vectors x
and y are said to be order-preserving if and only if the corresponding
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elements in their respective vectors have the same rank (with respect
to the numerical value), and order-reversing if and only if x and -y
are order-preserving. A bicluster is said to be trend-preserving if and
only if any pair of rows in the bicluster are trend-preserving. In gen-
eral, the elements in a trend-preserving bicluster (even in the same
row) can be the same. Genes in a trend-preserving bicluster are likely
to be coregulated but may have quite different expression levels
under the same conditions. Obviously, the widely studied biclusters
with values being constant (Madeira and Oliveira, 2004), shifting
(Aguilar-Ruiz, 2005), scaling (Aguilar-Ruiz (2005)) , shifting-scaling
(Aguilar-Ruiz, 2005), or order-preserving (Bendor et al., 2003) are
all trend-preserving (see Supplementary Materials for details).
Unfortunately, the problem of discovering trend-preserving biclus-
ters is computationally intractable, as even the simplest case with
binary values is NP-hard (Madeira and Oliveira, 2004). Wang et al.
(2016) developed UniBic based on the longest common subsequence
(LCS) algorithm (Cormen et al., 2009) to identify trend-preserving
biclusters using an index matrix derived from the original data ma-
trix. Although UniBic outperforms QUBIC to some extent, it fails
when the biclusters are relatively narrow (with very few columns
but many rows), because its seed-locating procedure cannot guaran-
tee a global optimum solution (see Supplementary Materials for a
counterexample). Many other existing biclustering algorithms based
on maximal row-sequential patterns also fail to identify narrow
biclusters. Recently, Orzechowski et al.( 2018) proposed a new
biclustering algorithm EBIC using evolutionary computing to find
narrow trend-preserving biclusters, but its performance degrades on
broader ones.

To overcome the shortcomings of the existing methods, we
developed RecBic aimed to identify trend-preserving biclusters, espe-
cially those with narrow shapes, based on the observation that there
is a column permutation in a trend-preserving bicluster such that
each permuted row is monotonic, i.e. either increasing or decreasing
(not necessarily strictly). RecBic works by simply comparing the val-
ues in columns in a selected subdomain (see Section 2). When tested
on real datasets as well as simulated ones in which both narrow and
broad trend-preserving patterns were implanted, and values in back-
ground data and in implanted trend-preserving biclusters have the
same distribution, RecBic outperformed all the salient tools com-
pared in terms of accuracy and robustness. RecBic is very robust to
noise and is only slightly affected by overlaps of clusters. In add-
ition, RecBic is more parsimonious in memory usage and faster than
EBIC (Orzechowski et al., 2018). To our knowledge, RecBic is the
first tool capable of finding various kinds of trend-preserving biclus-
ters, especially, those with narrow shapes.

2 Materials and methods

To identify trend-preserving biclusters, RecBic first locates in col-
umns potential seeds of biclusters, and then grows each of them into
a full bicluster. Given a data matrix Am � n, obviously, each pair of
its columns forms a trivial m�2 trend-preserving bicluster, thus a
non-trivial seed should anchor at least three columns. Based this ob-
servation, RecBic first finds out all the most significant h�3 trend-
preserving biclusters as the seeds, where h is called the height of the
seeds. Clearly, the higher the height of a seed, the higher the prob-
ability of the seed being genuine. To grow a seed, RecBic iteratively
finds the most significant biclusters of t columns by adding a new
column to the current bicluster of t - 1 columns via repeatedly decid-
ing if an element of the new column falls into a given interval of
type [a, b], (-1, b] or [a, þ1), where a and b are the elements of
two adjacent columns of the current bicluster (see Fig. 1 and
Supplementary Fig. S6 for an overview of RecBic).

2.1 The RecBic algorithm
2.1.1 The subroutine of growing the current biclusters

Suppose A(I, J) is a current bicluster, where I is a vector of row indi-
ces, and J ¼ fj1; j2; . . . ; jt�1g is an ordered vector of column indices
such that each row in A(I, J) is monotonic (not necessarily strict).
We find the most significant trend-preserving bicluster of t columns

by adding a new column to A(I, J) as follows. For a new column j
not in J, we form t-ordered vectors of column indices: J0 ¼ (j, j1,. . .,
jt-1), J1 ¼(j1, j, j2, . . ., jt-1), . . ., Jt-1 ¼ (j1, . . ., jt-1, j). Let A(Ii, Ji), i¼0,
1, . . ., t-1, be the submatrix obtained from A(I, Ji) by deleting the
rows violating monotonicity, where Ii is the remaining row indices.
Let l ¼ argmaxi Ii : i ¼ 0; 1; . . . ; t � 1f g, then A(Il, Jl) is the most
significant trend-preserving bicluster of t columns determined by Jl.
Greedily enumerating all j, we obtain the most significant trend-
preserving bicluster of t columns based on A(I, J).

2.1.2 The pseudocodes of the algorithm

Step 1 Data preprocessing: The input data is an expression matrix
from microarray or RNA-seq experiments or a preprocessed integer
matrix. We convert the typical expression matrix to an integer ma-
trix by qualitative representation (Li et al., 2009) (Fig.1a and see
Supplementary Materials for details of qualitative representation).

Step 2.1 Partition of the columns: We partition the data matrix
into k - 1 subsets by equally dividing the columns into k - 1 subsets.
The integer k is determined using a previously described method
(Wang et al., (2016)) (see Supplementary Materials for details).

Step 2.2 Generation of seeds: For each of the subsets of columns,
we identify all the significant (highest) trend-preserving h�3 biclus-
ters as the seeds based on each pair of columns in the subset using
the subroutine described above. We sort the seeds in the descending
order of their heights in a list L (Fig. 1b, Supplementary Fig. S6).

Step 3.1 Growth without noise: We start with the first seed in L
as the current trend-preserving bicluster, and repeatedly grow it
using the subroutine described above to obtain a core bicluster until
the significance (size) of the next trend-preserving bicluster goes
down (Fig. 1c).

Step 3.2 Growth with noise: We extend the core bicluster by
adding as many rows as possible with a preset error rate a (Fig. 1c).

Step 4 Output: We output the resulting submatrix as a bicluster,
and then remove from the list L, the seeds with their root column
pairs in the discovered bicluster. Repeat step 3 until either L is
empty or the prespecified number of biclusters has been obtained
(Fig. 1d).

2.2 Performance comparison with existing algorithms
2.2.1 Collection of the existing algorithms with their running

environments

We downloaded the R packages of ISA (Bergmann et al., 2003) and
FABIA (Hochreiter et al., 2010), and the source code of EBIC
(Orzechowski et al., 2018), QUBIC2 (Xie et al., 2019), UniBic
(Wang et al., 2016), QUBIC (Li et al., 2009), CPB (Bozda�g et al.,
2009) and OPSM (Bendor et al., 2003) from their respective web-
sites. We ran ISA and FABIA in R version 3.4.1, and compiled CPB,
EBIC, OPSM, QUBIC, QUBIC2 and UniBic on a Linux workstation.
We choose these programs for the performance comparison with
RecBic, as they represent the state-of-the-art of biclustering

Fig. 1. Overview of RecBic algorithm
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algorithms. We ran the programs with the default settings, the
parameters suggested in their publications (see Supplementary
Materials), and ‘number of biclusters’ set to the number of
implanted biclusters in the simulated datasets. We also tested EBIC
with optimized parameter n¼20 000 (see Supplementary
Materials). BicPAMS (Henriques et al., 2017) was not included in
the comparison as it was outperformed by EBIC (Orzechowski
et al., 2018) and UniBic (Wang et al., 2016).

We evaluated RecBic by comparing it with the eight state-of-the-
art tools mentioned above on various artificial datasets as well as
real datasets. First, we compared RecBic with these tools on the
simulated datasets for their capability of identifying both narrow
and broad trend-preserving biclusters as well as six bicluster pat-
terns. Second, we compared their capability of identifying overlap-
ping biclusters on the simulated datasets. Third, we compared their
robustness on datasets with different noise levels. Finally, we com-
pared their capability of discovering functionally related genes using
real gene expression datasets.

2.2.2 Evaluation criterion

Since there is no golden benchmark real dataset to validate the ac-
curacy of a biclustering algorithm, it is a common practice to test it
on simulated datasets using two measures, recovery score and rele-
vance score, introduced by Preli�c et al. (2006), based on the match
scores between the predicted and actual biclusters. Concretely, the
match score between two biclusters b1 and b2, is defined as the ratio
between the number of genes in their intersection and the number of
genes in their union (Jaccard coefficient), i.e. ms(b1, b2) ¼ jb1\b2 j/
jb1[b2 j, which measures the similarity between the two biclusters.
For two sets of biclusters M1 and M2, the match score between them
is defined as (Prelic et al., 2006)

ms M1;M2ð Þ ¼ 1

jM1j
X

b12M1

max
b22M2

msðb1; b2Þ;

which measures the average similarity between biclusters in M1 and
M2. Let G and D be the sets of genuine and detected biclusters, re-
spectively, then we call ms(G, D) and ms(D, G) the recovery and
relevance scores, respectively. Clustering Error (CE) (Horta and
Campello, 2014; Orzechowski et al., 2019; Padilha and Campello,
2017; Patrikainen and Meila, 2006) is used in Supplement
Materials, as it offers more heavy punishments to incorrect assign-
ments, which is more suitable for the task of simultaneous detection
of multiple patterns.

2.2.3 Generation of simulated datasets

To generate simulated datasets, we first produced background
matrices with the standard Gaussian distribution N(0,1) with ex-
pectation 0 and standard deviation 1, and then implanted various
trend-preserving biclusters in the background matrices. Specifically,
to implant an s� t trend-preserving bicluster in a background matrix
A, we randomly selected an s� t submatrix in A and a row in the
submatrix, and then permutated other rows in the submatrix such
that the permutated rows are all trend-preserving with the selected
row, resulting in a trend-preserving bicluster. Clearly, the elements
in the implanted bicluster have the same distribution as those in the
background matrix. To test the robustness of the algorithm, we ran-
domly perturbated a portion a (set to 0, 0.1, 0.2, 0.3) of elements of
each implanted bicluster. We also generated datasets in which the
implanted biclusters overlapped with one another at different levels.
In addition, we downloaded from (Wang et al., (2016)) the datasets
implanted with six different bicluster patterns (trend-preserving,
column-constant, row-constant, shift, scale and shift-scale). Notice
that the implanted trend-preserving biclusters except those down-
loaded from (Wang et al., (2016)) have the same distribution with
the background matrix. We compared RecBic to all the salient algo-
rithms on simulated datasets with the background matrix of 1000
rows and 200 columns. To mimic the size of real gene expression
data, we also tested them on simulated datasets with background
matrix of 20 000 rows and 250 columns as well as on datasets with

biclusters differing from the background (see Supplementary
Materials).

3 Results

3.1 Test of the algorithm on artificial datasets
3.1.1 RecBic outperformed the existing tools for finding trend-

preserving biclusters of different widths

We implanted in a 1000�200 background matrix three trend-
preserving biclusters with six different widths of 100�5, 100�10,
100�20, 100�30, 100�40 and 100�120 (Section 2). We ran
each tool four times on each of the six datasets and calculated the
average recovery and relevance scores of the four runs on each data-
set. As shown in Figure 2 a–f, RecBic almost reached the ceiling val-
ues for both relevance and recovery scores in all the six datasets,
outperforming the other eight tools compared. EBIC, the runner-up,
a genetic algorithm-based tool performed as well as RecBic on the
first three datasets but its performance deteriorated as biclusters be-
came broader, i.e. its relevance and recovery scores went down from
(1.000, 1.000) to (0.994, 0.994), (0.880,0.875), (0.726,0.723),
(0.770,0.770) and (0.710,0.710) as the number of columns of the
implanted biclusters increased from 5 to 10, 20, 30, 40 and 120, re-
spectively. When EBIC was tested using parameter n¼20 000 as
used in the study by Orzechowski et al. (2018), its performance

Fig. 2. Comparisons of the tools on the six simulated datasets implanted with trend-

preserving biclusters of different widths. (a) Results on the dataset with three

100� 5 implanted biclusters. (b) Results on the dataset with three 100� 10

implanted biclusters. (c) Results on the dataset with three 100�20 implanted

biclusters. (d) Results on the dataset with three 100�30 implanted biclusters. (e)

Results on the dataset with three 100�40 implanted biclusters. (f) Results on the

dataset with three 100�120 implanted biclusters
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improved, but still was slightly worse than RecBic in terms of rele-
vance and recovery scores, and substantially worse in terms of
resources usage (see Supplementary Materials). All the other tools
compared here favored broader biclusters because their recovery
and relevance scores generally increased with the increase of the
width of the implanted biclusters. There are two possible reasons
why the other tools behaved so poorly compared with RecBic: (i)
they were all developed based on row sequential pattern and thus
unable to find narrow biclusters, which is also coincident with the
fact that the broader biclusters are easier to be identified than the
narrower ones; and (ii) they were designed to find biclusters with
elements distributed differently from the background, but this is not
the case for the simulated datasets. In this sense, RecBic is extraor-
dinary for identifying both narrow and broader biclusters equally
well. We also tested the tools on datasets in which implanted biclus-
ters have their elements distributed differently from those in the
background. It has been observed that most biclustering algorithms
are only capable of working in the cases where prominent difference
exists between the distributions of the elements of to-be-identified
biclusters and those in the background matrix. It is worth stressing
that RecBic performs equally well for identifying biclusters whose
elements have the same distribution as those in the background ma-
trix (see Supplementary Fig. S12).

3.1.2 RecBic outperformed the existing tools for finding biclusters

with different patterns

We next compared the algorithms on 90 well-regarded earlier data-
sets (Wang et al., 2016) implanted with six different bicluster pat-
terns including trend-preserving, column-constant, row-constant,
shift, scale and shift-scale. The datasets for each pattern have three
different sizes and were implanted with different numbers of square
biclusters: (i) three biclusters with a size of 15�15 were implanted
in a matrix of size 150�100; (ii) four biclusters with a size of
20�20 were implanted in a matrix of size 200�150; and (iii) five
biclusters with a size of 25�25 were implanted in a matrix of size
250�250. Each size comes with five datasets, so there are 90 data-
sets in total.

As shown in Figure 3a–f, RecBic substantially outperformed all
the compared tools for both the relevance and recovery scores.
Although EBIC, the runner-up, performed relatively well in identify-
ing trend-preserving (Fig. 3a) and row-constant (Fig. 3c) biclusters,
its performance decreased in finding biclusters with other patterns.
In particular, the fitness function of EBIC is not suitable for scale
biclusters (Fig. 3f). When tested with the parameter n¼20 000,
EBIC’s performance improved, but still was worse than RecBic, par-
ticularly, on the shift-scale and scale datasets (see Supplementary
Materials). To mimic the size of human gene expression data, we
also compared the tools on the background matrix of 20 000 rows
and 250 columns. RecBic remained its superiority, although
QUBIC2, a new version of QUBIC, and ISA showed some degree of
improved performance (Supplementary Fig. S13).

3.1.3 RecBic outperformed the existing tools for finding

overlapping biclusters

To compare the tools for identifying overlapping biclusters, we gen-
erated four datasets, each containing three 100�20 biclusters in a
1000�200 background matrix with different overlapping levels:
0�0 (no overlap), 30�3, 40�4 and 50�5 overlaps. We then ran
all the tools four times on each of the datasets and calculated the
average recovery and relevance scores for each tool on each dataset.
As shown in Figure 4a–d, RecBic consistently outperformed the
other tools by almost reaching the ceiling value 1 for both relevance
and recovery scores. The performance of EBIC, QUBIC and OPSM
deteriorated greatly, while that of RecBic, UniBic and CPB only
decreased slightly as the overlapping level went up. However, ISA
performed even better compared to itself for overlapping biclusters
than no-overlapping ones, because it was designed especially for
identifying overlapping biclusters (Bergmann et al., 2003). We also
compared the tools on simulated datasets of sizes mimicking real
gene expression data. The performance of RecBic and FABIA only

decreased slightly as the overlapping level went up, while that of
EBIC and OPSM substantially deteriorated (Supplementary Fig.
S16). We also tested EBIC with the parameter n¼20 000, slightly
improving the performance, which still was worse than that of
RecBic (see Supplementary Materials), since overlapping biclusters
may lead EBIC to prematurely converge to a local optimum.

3.1.4 RecBic outperformed the existing tools for identifying noisy

biclusters

The noise level is defined as the maximum of row noise levels in a
bicluster, where a row noise level is the ratio between the number of
elements whose removal will make the row monotonic and the num-
ber of all elements in the row. We tested the impact of noises on the
performance of the tools on datasets containing three biclusters of
size 100�20 with different noise levels (0, 0.1, 0.2 and 0.3) in a
background matrix of size 1000�200 (see Section 2). As shown in
Figure 5a–d, RecBic consistently achieved the highest relevance and
recovery scores on all the datasets. EBIC, the runner-up, showed
improved performance when tested with n¼20 000, but still under-
performed RecBic as the noise level increased (see Supplementary
Materials). Moreover, RecBic also outperformed the other tools on
the datasets of size mimicking real gene expression data
(Supplementary Fig. S15). Taken together, these results suggest that
RecBic is more noise-tolerant than the other tools. Notice that, we
compared RecBic with the competitors all under their default noise
tolerant parameters.

Fig. 3. Comparisons of the tools on the six datasets containing various bicluster pat-

terns. (a) Results on the dataset implanted with trend-preserving biclusters. (b)

Results on the dataset implanted with column constant biclusters. (c) Results on the

dataset implanted with row constant biclusters. (d) Results on the dataset implanted

with shift-scale biclusters. (e) Results on the dataset implanted with shift biclusters.

(f) Results on the dataset implanted with scale biclusters
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3.2 RecBic outperformed the existing tools for

identifying functionally related genes in real datasets
We further compared RecBic with the other tools on eight real gene
expression datasets from the GEO database that had been used in a
previous study (Eren et al., 2013): GDS181, GDS589, GDS1406,
GDS1451, GDS 1490, GDS2520, GDS3715 and GDS3716. Each
dataset contains more than 12 000 genes and dozens of conditions/

samples (Table 1). As some datasets have missing values for some
genes, we used the PCA method (Stacklies et al., 2007) to estimate
them. Since the genuine biclusters in the datasets are unknown, we
evaluated each identified bicluster by each tool using the GO terms
enrichment method (Eren et al., 2013), with a significant P-value <
0.05 (multiple hypotheses-corrected). Since the tools may output dif-
ferent numbers of biclusters, we assessed their performances by the
proportion of GO terms enriched biclusters (Eren et al., 2013). We
ran RecBic with a¼0.1 or 0.2, and set the maximal number of out-
put biclusters to be 100 in each dataset. Results of other algorithms
were quoted from Orzechowski et al. (2018). As summarized in
Table 2, RecBic founds 558 (69.8%) GO term-enriched biclusters
out of 800 output biclusters with the noise level a¼0.2, substantial-
ly outperforming the other tools. We also ran all the algorithms with
their parameters described in Supplementary Table S1, and showed
their respective biclusters identified on GDS datasets as well as their
enriched GO terms identified on GDS datasets (see Supplementary
Materials for details).

3.3 Complexity estimation
Biclustering has been proved to be NP-hard even for the special case
where the background matrix is binary (Madeira and Oliveira,
2004). A brute force algorithm to locate a trend-preserving bicluster
of size s� t in a data matrix Am;n would have to evaluate the signifi-
cance for each of Cs

mC
t
n submatrices for all s 2 ð1; m� and

t 2 1; nð �; this is of course computationally forbidden. Therefore, a
heuristic approach has been widely adopted to identify biclusters in
a data matrix in an accurate and efficient way. Having demon-
strated the superior accuracy of RecBic relative to the existing state-
of-the-art tools, we now estimate its computational complexity.
Given an Am�n data matrix, where n is the number of columns and
m the number of rows, let t be the largest number of columns of the
biclusters to be identified, o the number of biclusters to be output (a
parameter prespecified by the user), and k the smallest number of
columns of the biclusters to be identified. RecBic takes O(n3m/k)
comparisons to identify all the seeds with three columns from k sub-
matrices, and O(t2m) comparisons to grow a seed into a bicluster.
Therefore, it takes O(n3m/k) þ O(ot2m) ¼ O(max(n3/k, ot2)m)
comparisons in total. It is worth emphasizing that RecBic can be eas-
ily parallelized as identifying seeds in each submatrices is independ-
ent. Figure 6 shows the running times of the tools on a laptop (with
a CPU core-i7 6700hq, GTX970M and RAM 16 GB) on five data-
sets with background matrices of 100 columns and varying number
(5000–25 000) of rows, and each was implanted with a 100�10
bicluster. Clearly, RecBic is faster than EBIC and UniBic, two most
accurate algorithms so far, when the number of rows was more than
10 000. Consistent with the above analysis of time complexity, the
running time of RecBic scaled linearly to the number of rows of the
data matrix, indicating that RecBic is more favored to identify
trend-preserving biclusters in data matrix with a great number of
rows and a relatively small number of columns. Therefore, RecBic is
a practical algorithm as gene expression data matrices usually con-
sist of a large number of rows (genes) and only a few of columns
(conditions/samples). Despite this, we further tested the tools on
simulated datasets of with a large number of columns, found that
RecBic still substantially outperform the other tools with an accept-
able running time until the number of columns reaches 2000
(Supplementary Fig. S18).

4 Discussion

Since Cheng and Church’s seminal work (Cheng and Church, 2000),
biclustering has been widely used in analyses of gene expression
data, as it provides flexibility to identify co-expressed genes under
some but not necessarily all conditions/samples, which the tradition-
al clustering methods lack. However, most of the existing bicluster-
ing algorithms were designed to identify a special kind of biclusters.
In this study, we developed a novel bicluster algorithm RecBic to
discover trend-preserving biclusters, be it narrow or broad, in any
type of data matrices. RecBic first identifies globally optimized

Fig. 4. Comparisons of the tools on four datasets implanted with three biclusters of

size 100� 20 with different overlapping levels in a 1000�200 background matrix

with error bars. (a) Results on the dataset with non-overlapped biclusters. (b)

Results on the dataset with the biclusters overlapping by 30�3. (c) Results on the

dataset with the biclusters overlapping by 40� 4. (d) Results on the dataset with the

biclusters overlapping by 50�5

Fig. 5. Comparisons of the tools on datasets with different noise levels. (a) Results

on the dataset without noise. (b) Results on the dataset with a noise level of 0.1. (c)

Results on the dataset with a noise level of 0.2. (d) Results on the dataset with a

noise level of 0.3
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seeds, and then grows them into full-sized biclusters using a greedy

strategy. It grows an optimum seed by greedily adding a new column
to the current bicluster by repeatedly deciding if a given numerical

element belongs to a given closed interval. Mathematically, RecBic
globally optimizes the solutions in each iteration. To our best know-
ledge, RecBic is the first to identify a bicluster with a global opti-

mum in each iteration. Comparing RecBic with eight existing state-
of-the-art biclustering algorithms, we demonstrated that RecBic sub-

stantially and consistently outperformed all of them in identifying
various kinds of biclusters in simulated datasets as well as function-
ally enriched biclusters in real gene expression datasets. RecBic can

be a useful tool for analyzing gene expression data and elucidating
transcriptional regulation networks.
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