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ABSTRACT
In this paper, we examine the development of tailored 3D-

structured (engineered) polymer-metal interfaces to create en-
hanced ionic polymer-metal composite (eIPMC) sensors towards
soft, self-powered, high sensitivity strain sensor applications.
First, a physics-based chemoelectromechanical model is devel-
oped to predict the sensor behavior of eIPMCs by incorporating
structure microfeature effects in the mechanical response of the
material. The model incorporates electrode surface properties,
such as microscale feature thickness, size and spacing, to help
define the mechanical response and transport characteristics of
the polymer-electrode interface. Second, two novel approaches
are described to create functional samples of eIPMC sensors us-
ing fused deposition manufacturing and inkjet printing technolo-
gies. Sample eIPMC sensors are fabricated for experimental
characterization. Finally, experimental results are provided to
show superior performance in the sensing capabilities compared
to traditional sensors fabricated from sheet-form material. The
results also validate important predictive aspects of the proposed
minimal model.

INTRODUCTION
Ionic polymer metal composites (IPMCs) are smart elec-

troactive soft composite materials that comprise a thin electri-
cally charged polymer membrane, plated with noble metal elec-
trodes, and infused with a charged solution [1–4]. By combin-
ing self-powered sensor behavior and soft mechanical character-
istics, IPMCs emerge as an ideal candidate for soft strain sen-
sor applications in bioengineering, rehabilitation and medicine,
soft robotics, and human-machine interactions. However, long-
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standing challenges of limited sensitivity, poor property control,
and non-versatile mode of operation have so far dramatically
limited the use of IPMCs in critical engineering applications.
From a fundamental perspective, these challenges can be traced
back to inconsistent and uncontrollable morphology of IPMC
polymer-metal interfaces, resulting from poor controllability of
traditional IPMC fabrication processes. It is therefore hypothe-
sized that the multiphysics sensing properties of IPMCs can be
dramatically enhanced by tailored 3D-structured (“engineered”)
polymer-metal interfaces. To test this hypothesis, in this paper,
we propose to use a recently-developed IPMC 3D-printing fab-
rication process [5] and inkjet printing to create IPMCs with en-
gineered interfaces and then develop a model that captures the
structure-property relationships to demonstrate enhanced strain
sensing performance. Thus, the contribution of this paper is a
new class of engineered IPMCs (eIPMCs) with superior mul-
tiphysics properties towards soft, self-powered, high sensitivity
strain sensor applications.

Recent research efforts have emphasized the critical need
for soft strain sensors for a variety of applications, spanning
from bioengineering, rehabilitation and medicine, soft robotics,
to human-machine interactions [6, 7]. Despite desirable soft me-
chanical characteristics, current soft strain sensors often suffer
from the major drawback of necessitating externally powered
electric circuits, which convert the strain-induced changes of
electrical impedance of the sensor into usable electrical signals.
This severely limits the possibility to make such sensors light
weight, comfortable to wear, and capable of functioning over
long periods of time. On the other hand, existing self-powered
sensors, for example piezoelectric ceramics, are typically very
stiff, non-stretchable, and limited to extremely small deforma-
tions [8]. Thus, there is a clear and urgent need to identify
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novel material systems that combine self-powered behavior with
soft mechanical characteristics for creating next generation strain
sensors.

Ionic polymer metal composites have the strong potential to
address the above mentioned need by qualifying as promising
candidates for self-powered soft strain sensors. In the sensing
mode, when mechanical deformation is imposed on an IPMC
strip, redistribution of the mobile ions within the membrane re-
sults in an electrical signal at the IPMC electrodes [9]. The con-
cept of IPMC sensors is extremely attractive because of their soft
nature (effective Young’s modulus [10] of the order of 100MPa),
their excellent linearity with respect to imposed mechanical de-
formations [9], and their self-powered operation (IPMC sensors
do not require batteries or external energy sources). However,
comparatively fewer studies have focused on the feasibility of
IPMCs as force and displacement sensors [11–14] and energy
harvesting systems [10, 15–17]. In addition, most of the applica-
tions have concentrated on bending mode systems.

The long-standing challenges of limited sensitivity [12],
poor property control, and non-versatile mode of operation have
so far dramatically hampered the use of IPMC sensors. Specifi-
cally, IPMCs exhibit extremely large variability in terms of their
multiphysics properties (in particular, capacitance [18]). This
variability and inconsistency, in turn, demand extensive prop-
erty and performance characterization of each individual IPMC
sample before use in any sensor system. In addition, until very
recently [19–22], the limited understanding of the fundamen-
tal nature of material response to non-bending deformation in
IPMCs has effectively precluded major breakthroughs in the de-
velopment of non-bending mode sensors. In particular, a theo-
retical explanation of the compression sensing mode (electrical
transduction of deformation in the thickness direction due to ap-
plied pressure normal to the electrodes) was only offered in 2017
in [22] and therein attributed to inhomogeneous strain through
the IPMC thickness. Since the inhomogeneous deformation de-
pends on material properties that cannot be controlled by design
during the fabrication process, traditional IPMC sensitivity in
compression mode is typically very low (e.g. 3 µA per 1% strain
deformation [22]). Therefore, this very attractive sensing mode
has not been well explored, and from a fundamental perspec-
tive, all these challenges can be traced back to inconsistent and
uncontrollable morphology of IPMC polymer-metal interfaces,
resulting from poor controllability of traditional fabrication pro-
cesses.

This paper tackles the challenge of dramatically improving
the multiphysics properties of IPMCs by engineering the role of
polymer-metal interface in defining the material response. Novel
eIPMC test samples are fabricated using 3D-printing the inkjet
technology to create sensors, and modeling and experimental re-
sults are presented to demonstrate enhanced performance.

FIGURE 1. Schematic representation and nomenclature of the prob-
lem, with detail of the engineered interface region. In the figure, V is the
electric potential at the movable electrode, p is the applied pressure, h
is the polymer semithickness, x is the through-the-thickness coordinate.
Young’s modulus and Poisson’s ratio are Ep, νp for the polymer and
Em, νm for the metal electrodes. Geometry of the engineered interface
is described by feature size s2, spacing s1 and height d.

MODELING
Problem statement and nomenclature

The problem under consideration is schematically depicted
in Fig. 1, along with the relevant nomenclature. We study the
chemoelectromechanical response via a purely one-dimensional
through-the-thickness problem for an eIPMC of semithickness h
with its grounded engineered electrode at x = 0 and its movable
bare electrode at x = 2h. For generality, the two-dimensional
pattern in the interface of the engineered electrode is assumed
to be fabricated with given dimensions as shown in Fig. 1, and
it could represent ridges in the direction orthogonal to the page
or pillar-like cylindrical structures arranged in the plane x = 0 of
the electrode. As explained later, we will forego a detailed de-
scription of the interface and will assume that the polymer-metal
interface is sharp and located at x = 0. Young’s modulus and
Poisson’s ratio of the material are indicated with E and ν , re-
spectively, with a subscript p or m to indicate polymer or metal,
respectively. The polymer is assumed to be mechanically and
electrochemically homogeneous and isotropic. We will consis-
tently neglect the presence of steric effects [23], composite lay-
ers [24], and electrode surface roughness [18, 25]. We will also
assume that the electrodes are perfectly rigid and conductive.

A minimal mechanical model
We consider a purely one-dimensional plane strain compres-

sion model, upon quasi-static application of a possibly time-
varying uniform pressure p(t) normal to the movable electrode
initially at x = 2h. Far from the engineered electrode at x = 0,
the engineering stress field in the material is uniform and given
by−p while the engineering strain is given by εx =−p/Ep (and,
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FIGURE 2. Representative finite element results on the dilatation ∆

in a section of the eIPMC subject to uniaxial compression in the x-
direction, along with strain profiles for εx and εy.

obviously, εy = 0). In the vicinity of the engineered electrode, the
strain field becomes significantly more complicated due to stress
concentration effects and the complicated geometric pattern on
the engineered electrode. This inhomogeneous strain developed
in the eIPMC is responsible for the sensing behavior.

In order to capture the inhomogeneous deformation that de-
velops in the eIPMC upon application of a mechanical compres-
sion, rather than formalizing an accurate homogenization proce-
dure for the micromechanical properties of the engineered elec-
trode, for example along the lines of [26], we conduct a repre-
sentative finite element simulation on a simplified model to un-
derstand fundamental properties of the strain field, see Fig. 2.
In the representative simulation, we assume linear, homoge-
neous, isotropic elastic behavior for metal and polymer, we set
Em = 50Ep, νm = 0.3, and νp = 0.49, and we design a sim-
ple periodic pattern for the protrusion of the engineered elec-
trode, with s1 = s2 = d. The hypothesis of linear, homogeneous,
isotropic elastic behavior for IPMC material is common in the
literature [10, 22]. We run a linear static plane strain analysis on
a representative section of eIPMC and we determine the dilata-
tion field ∆ = εx + εy (or trace of the strain tensor), that is, the
local relative change in volume of the polymer upon mechani-
cal compression [10]. As expected, simulations show that, far
from the engineered electrode, the dilatation is simply equal to
the bulk value ∆ = εx =−p/Ep. In the vicinity of the engineered
electrode, on the other hand, the strain field becomes two dimen-
sional (εy 6= 0). The absolute value of the dilatation decreases
over a lengthscale d (which can be presumed of the same order of
the height of the protrusions in the electrode pattern) to a value at
the electrode x = 0, whose exact magnitude depends in a compli-
cated way on material and geometric properties of the interface.
We will assume that this peculiar behavior of the dilatation can
be sufficiently well described, in a simplified one-dimensional

analysis, by the following model

∆(x, t) =−
p(t)/Ep

[1+Bexp(−x/d)]
, (1)

where B takes on the role of a tuning parameter, in the absence of
a more detailed micromechanical homogenization which is out-
side the scope of this paper. As explained later, the detailed form
of Eq. (1) has only limited impact on the description of the sens-
ing behavior, so we consider the simple representation offered
above. It is, however, important to note that B represents a mea-
sure of the asymmetry in the mechanical behavior of the regions
in proximity of the engineered electrode and the bare electrode.
Specifically, if both electrodes were bare and nominally identi-
cal, B = 0.

Note that this derivation has been obtained independently
of possible chemoelectromechanical coupling, effectively sepa-
rating the problem at hand in two simpler substeps, the first of
which is determining the mechanical deformation in response to
a pressure input. We will use this local dilatation in the next
substep, where the imposed mechanical deformation will be cor-
related to the chemoelectromechanical response of the eIPMC.

Linear chemoelectromechanical sensing
Herein, we will focus on the linear response of the eIPMC

compression sensor, under the hypothesis of small: deforma-
tions, electric potentials, and deviations of the counterion con-
centration with respect to the concentration at rest. The govern-
ing equations for IPMC chemoelectromechanical sensing behav-
ior in the nonlinear case have been developed in [9], and further
enriched in [22, 27]. With specialization to the case at hand, and
following in part [28], a linearized version of the equations in [9]
is given by

−ε0εr
∂ 2ψ(x, t)

∂x2 = F (c(x, t)− c0[1−∆(x, t)]) , (2a)

∂c(x, t)
∂ t

+ c0
∂∆(x, t)

∂ t
= D

[
∂ 2c(x, t)

∂x2 +
Fc0

RT
∂ 2ψ(x, t)

∂x2

]
. (2b)

Equation (2a), consistent with the model in [10], is Poisson’s
equation, which establishes the relationship (Gauss’ law) be-
tween the electric potential ψ and the free charge in the eIPMC,
where F is Faraday’s constant, c is the concentration of mobile
counterions, c0 is the concentration of fixed ions, and ε0 and
εr are the vacuum permittivity and the eIPMC relative permit-
tivity, respectively, and assumed to be constant. It is impor-
tant to note that the concentrations of mobile counterions and
fixed ions are calculated with respect to the deformed volume of
the eIPMC. Equation (2b) is the linearized generalized Nernst-
Planck equation which establishes conservation of charge in the
eIPMC. Here, D is the counterion diffusivity in the bulk poly-
mer, R is the universal gas constant, and T is the IPMC temper-
ature. Note that, when compared to the model reported in [10],

3 Copyright c© 2020 by ASME



Eq. (2b) is enriched with the important advective term c0∂∆/∂ t,
see also [28], to capture the change in concentration, even in the
absence of ion flux, due to the mechanical deformation of the
eIPMC. The right hand side of Eq. (2b) is also recognized as the
(negative) divergence of the linearized ion flux J which is defined
as J =−D[∂c/∂x+(Fc0)/(RT )∂ψ/∂x].

The governing equations are subject to appropriate boundary
and initial conditions. We set here initial chemoelectromechan-
ically neutral conditions as p(0) = 0, ψ(x,0) = 0, and c(x,0) =
c0. Boundary conditions are such that ψ(0) = 0 at the grounded
electrode and ψ(2h) = V at the movable electrode. The value
of V will be prescribed later in the study of short-circuit (SC)
or open-circuit (OC) conditions. In addition, as customary, we
prescribe ion-blocking conditions at the electrodes at x = 0 and
x = 2h, which set the ion flux to zero at the polymer-electrode
interfaces, that is, J(0) = J(2h) = 0 [28].

As in standard practice, it is convenient to nondimen-
sionalize the governing equations and their boundary condi-
tions by scaling all lengths and displacements with the poly-
mer semithickness h, the time variable t with a characteristic
time t0 to be defined in the following, the electric potential ψ

with the thermal voltage Vth = RT/F . In addition, it is use-
ful to nondimensionalize the applied pressure p with the bulk
Young’s modulus of the polymer Ep, so that p/Ep = p̃, where the
superimposed tilde notation indicates a nondimensional quan-
tity. Thus, the dilatation becomes ∆(x̃, t̃) = −p̃(t̃)/K(x̃), with
K(x̃) = 1+Bexp(−x̃/d̃). We also define the nondimensional
counterion over-concentration χ̃(x̃, t̃) = [c(x̃, t̃)− c0]/c0. With
these positions, and neglecting the explicit dependence on the in-
dependent variables, the nondimensional form of Eqs. (2) reads

−δ
2 ∂ 2ψ̃

∂ x̃2 = χ̃− p̃/K, (3a)

∂ χ̃

∂ t̃
− ∂ p̃/K

∂ t̃
= δ

[
∂ 2χ̃

∂ x̃2 +
∂ 2ψ̃

∂ x̃

]
, (3b)

where we have also defined δ = λD/h as the ratio between
the Debye screening length λD =

√
(ε0εrRT )/(F2c0) and the

polymer semithickness h and the characteristic time t0 = λ 2
D/D

is selected as the diffusion timescale within the charge bound-
ary layers. Similarly, nondimensional boundary conditions are
ψ̃(0) = 0, ψ̃(2) = Ṽ , with Ṽ =V/Vth, and J̃(0) = J̃(2) = 0. Note
that the form of the presented equations and boundary conditions
is slightly different from that used in [22], as the concentrations
therein are expressed per unit undeformed volume.

It is important to note that, in practical IPMC and eIPMC
applications, λD ≈ 10−10 m and the parameter δ is thus of the
order of 10−6 [29]. Therefore, Eqs. (3) describe a singularly per-
turbed system whose solution is best attacked by way of matched
asymptotic expansions [30]. We will sketch below the solution
procedure, which follows the steps in [22, 29]. In what follows,
we will drop the superscript tilde for notational convenience al-
though we will consistently refer to nondimensional variables,

FIGURE 3. Schematic representation of the strategy of matched
asymptotic expansions, with labels indicating the three expansion zones.

except where explicitly noted. We will also use a superimposed
dot notation to indicate time derivatives and a prime notation to
indicate spatial derivatives.

Matched asymptotic expansions
The problem is attacked by the technique of matched asymp-

totic expansions. We will consider a bulk zone for which an outer
expansion is sought, and two boundary layer zones, in proxim-
ity of the polymer-metal interfaces, where an inner expansion is
sought. The idea is sketched in Fig. 3 and the relevant governing
equations are developed in the next subsections.

Outer expansion: In the eIPMC bulk, we consider a regu-
lar asymptotic expansion of χ and ψ in terms of the small pa-
rameter δ , such that χ(B) = χ

(B)
0 + δ χ

(B)
1 + δ 2χ

(B)
2 + . . . and

ψ(B) = ψ
(B)
0 + δψ

(B)
1 + δ 2ψ

(B)
2 + . . ., where the symbol (B) in-

dicates the outer expansion in the bulk. Substituting these repre-
sentations in Eqs. (3), and approximating the outer solution with
its leading order term of O(δ 0), we obtain

χ
(B) = χ

(B)
0 = p/K(x), (4a)

ψ
(B) = ψ

(B)
0 =−p/K(x)+A(B)

1 (t)x+A(B)
0 (t), (4b)

where A(B)
1 (t) and A(B)

0 (t) are yet unknown functions of time.

Inner expansion at the grounded electrode: In the vicinity
of the grounded electrode at x = 0, we magnify the spatial co-
ordinate by introducing the stretched variable ξg = x/δ , where
the subscript g stands for grounded electrode. We perform the
change of variables in Eq. (3) and seek a regular asymptotic ex-
pansion of χ and ψ in the boundary layer region in terms of the
small parameter δ , such that χ(G) = χ

(G)
0 +δ χ

(G)
1 +δ 2χ

(G)
2 + . . .

and ψ(G) = ψ
(G)
0 + δψ

(G)
1 + δ 2ψ

(G)
2 + . . ., where the symbol

(G) indicates the inner expansion in the boundary layer at the
grounded electrode. Thus, at the leading order, Eqs. (3) reduce
to χ

(G)
0 +(ψ

(G)
0 )′′ = p/K(0) and (χ

(G)
0 +ψ

(G)
0 )′′ = 0, and by ap-

proximating χ(G) and ψ(G) with their O(δ 0) terms, we obtain
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χ
(G) = p/K(0)+C(G)

2 (t)e−ξg , (5a)

ψ
(G) =−p/K(0)−C(G)

2 (t)e−ξg +A(G)
0 (t), (5b)

where A(G)
0 (t) and C(G)

2 (t) are yet unknown functions of time. In
the derivation of Eqs. (5) we have also used the fact that these so-
lutions must be bounded at ξg→ ∞, thus effectively determining
the null values of integration constants of the solution diverging
terms C(G)

1 (t)eξg and A(G)
1 (t)ξg.

Inner expansion at the movable electrode: In the vicinity of
the movable electrode at x= 2, we magnify the spatial coordinate
by introducing the stretched variable ξe = (2− x)/δ , where the
subscript e stands for movable electrode. We perform the change
of variables in Eq. (3) and seek a regular asymptotic expansion
of χ and ψ in the boundary layer region in terms of the small
parameter δ , such that χ(E) = χ

(E)
0 + δ χ

(E)
1 + δ 2χ

(E)
2 + . . . and

ψ(E) = ψ
(E)
0 + δψ

(E)
1 + δ 2ψ

(E)
2 + . . ., where the symbol (E) in-

dicates the inner expansion in the boundary layer at the movable
electrode. By closely following the steps above, we obtain

χ
(E) = p/K(2)+C(E)

2 (t)e−ξe , (6a)

ψ
(E) =−p/K(2)−C(E)

2 (t)e−ξe +A(E)
0 (t), (6b)

where A(E)
0 (t) and C(E)

2 (t) are yet unknown functions of time and,
as above, we have enforced boundedness of solutions at ξe→ ∞.

Matching: The inner and outer expansions determined above
must be matched in such a way they share a common limit
in their overlap regions so that, in particular, limx→0 ψ(B) =
limξg→∞ ψ(G) and limx→2 ψ(B) = limξe→∞ ψ(E), and similarly for
the over-concentration solutions. These conditions yield imme-
diately A(B)

0 (t) = A(G)
0 (t) and A(B)

0 (t)+2A(B)
1 (t) = A(E)

0 (t).
The next matching condition pertains to continuity of the

ion flux and can be enforced through the process devised in [29].
Summarizing the procedure, by integrating Eq. (3b) from the
electrode to an arbitrary location in the polymer bulk, enforc-
ing the ion-blocking condition at the interface, specializing the
left-hand side to the inner solution and the right-hand side to the
outer solution, and considering only the leading order of the so-
lution, the matching yields

Ċ(G)
2 (t) = A(B)

1 =−Ċ(E)
2 (t). (7)

Finally, the last matching condition stems from enforcing
the voltage boundary conditions at the electrodes on the inner
solutions. These are

ψ
(G)(ξg = 0) =−p/K(0)−C(G)

2 (t)+A(G)
0 (t) = 0, (8a)

ψ
(E)(ξe = 0) =−p/K(2)−C(E)

2 (t)+A(E)
0 (t) =V. (8b)

We combine together the matching conditions and Eqs. (8),
and we take a Laplace transform of Eq. (7), using a hat to indicate
transformed quantities and s as the Laplace variable. Then, we
obtain the following linear system for Â(B)

1 and Â(B)
0

{
(−s−1)Â(B)

1 + Â(B)
0 = p/K(0)

(2+ s−1)Â(B)
1 + Â(B)

0 = p/K(2)+V
(9)

Solution of the linear system completes the determination of the
unknown integration constants Â(B)

1 and Â(B)
0 , that is,

Â(B)
1 =

s
2(s+1)

V̂ +
s[1/K(2)−1/K(0)]

2(s+1)
p̂, (10a)

Â(B)
0 =

1
2(s+1)

V̂ +
K(0)+K(2)[1+2s]
2K(0)K(2)(s+1)

p̂, (10b)

from which the other constants can be directly determined, if
desired. For ease of notation, we denote with γ = [1/K(2)−
1/K(0)] which represents a measure of the asymmetry of the me-
chanical properties of the eIPMC in the vicinity of the grounded
electrode (the engineered electrode) and the movable electrode
(the bare electrode). In particular, 0≤ γ ≤ 1 and note that, if the
two interfacial regions are nominally identical with no asymme-
try, then γ = 0 and the term p̂ disappears from Â(B)

1 .

Sensor behavior. Rather than providing the composite solu-
tion for the fields ψ and χ throughout the eIPMC domain, we
opt to characterize the eIPMC sensor behavior by calculating the
eIPMC current output (per unit nominal surface area) associated
to the mechanical deformation and the electrochemical response.
To this aim, first, we calculate the charge storage at the electrodes
as the jump of the electric displacement at the polymer-metal in-
terfaces, that is, q̂ = ψ̂ ′(0) = −ψ̂ ′(2), see also [10]. Specializ-
ing this expression at the grounded electrode, we have q̂ = Ĉ(G)

2 .
From Eq. (7), it is thus evident that the eIPMC current, being
equal to the time derivative of the charge, is given by Â(B)

1 so
that, in summary

Î =
s

2(s+1)
V̂ +

sγ

2(s+1)
p̂ = Y (s)V̂ +G(s)p̂, (11)

with obvious meaning of the symbols Y (s) and G(s). Equa-
tion (11) is thus our main modeling results, demonstrating that
the current output of the eIPMC depends through an admittance
on the voltage across its electrodes, and the mechanical deforma-
tion behaves as a voltage generator [10].

It is instructive to give Eq. (11) a physical interpretation
in terms of an equivalent electric circuit with lumped parame-
ters. Specifically, by dividing Eq. (11) through by Y (s), and let-
ting Z(s) = 1/Y (s) = (2+2/s) as the impedance of the eIPMC,
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FIGURE 4. Equivalent lumped parameter circuit of the eIPMC com-
pression sensor.

Eq. (11) becomes

V̂ = Z(s)Î− γ p̂, (12)

which represents the governing equation for the circuit in Fig. 4.
It should be noted that the impedance Z(s) of the eIPMC com-
prises the series arrangement of one resistor (of nondimensional
resistance R= 2) and two capacitors (each of nondimensional ca-
pacitance C = 1) modeling diffusion through the bulk thickness
of the polymer and capacitive effects due to charge double layers
at the polymer-electrode interfaces, respectively.

We can thus distinguish two principal operating modes for
the eIPMC compression sensor: the open circuit (OC) voltage
sensing mode and the short circuit (SC) current sensing mode.
In the OC voltage sensing mode, the circuit is open and there-
fore Î = 0. Thus, the voltage across the eIPMC electrodes upon
application of normal pressure is given by

V̂OC =−G(s)
Y (s)

p̂ =−γ p̂. (13)

Note that, at the timescale of the analysis of this paper, the
eIPMC OC voltage output instantaneously follows the mechan-
ical input. This is consistent with what observed for example
in [9]. Importantly, if no mechanical asymmetry is present in
the eIPMC, γ = 0 and no voltage is observed upon application
of the mechanical pressure, see also [22]. Conversely, in the SC
current sensing mode, the electrodes of the eIPMC are shorted
and therefore V̂ = 0. Thus, the current through the eIPMC upon
application of normal pressure is given by

ÎSC = G(s)p̂ =
sγ

2(s+1)
p̂. (14)

Note that, differently from the OC voltage, the SC current re-
sponse depends on the rate of change of the applied pressure
(via the term sp̂) and its dynamics is mediated by the time con-
stant of the RC equivalent circuit. It is illustrative to consider

the response to a step input pressure, for which p̂ = p0/s, with
p0 the magnitude of the step input. In this case, the nondimen-
sional time domain response of the current is given by ISC(t) =
(γ p0/2)e−t . Once again, if no mechanical asymmetry is present
in the eIPMC, no current transient is observed upon application
of the mechanical pressure. These modeling results will be ex-
amined in the context of mechanical compression sensing exper-
iments performed on eIPMCs in the next section.

EXPERIMENTS, RESULTS, AND DISCUSSION
Experiments were conducted to compare the measured nor-

malized open-circuit voltage between standard (control) IPMC
sensors fabricated from Nafion polymer sheets to eIPMCs fabri-
cated using two approaches: (1) filament-based fused-deposition
manufacturing (FDM 3D printing) and (2) inkjet printing. The
FDM 3D-printed samples consisted of macro-scale surface fea-
tures and the inkjet printing process created micro-scale surface
features. The details of the eIPMC fabrication processes and the
measured results are described below. Figure 5 and 6 show the
FDM 3D printer and samples considered in this study.

eIPMC Fabrication
The control IPMC sensors were fabricated from

commercially-available Nafion sheet stock (Ion Power, Inc.,
membrane N117) using standard techniques for plating platinum
electrodes as described in [31]. The control sensors have
smooth surfaces, and one is shown in Fig. 5(c) with thickness
of approximately 200 µm. The sizes of the control samples
where approximately 9.5 mm × 31 mm and 12.5 mm × 15 mm.
Color codes in Fig. 5(c) are to facilitate book-keeping with the
presentation of the results in the following.

The FDM 3D-printed eIPMC samples were created using
the FDM technique described in [5], where a LulzBotTAZ6 3D
printer was modified to print the custom-made Nafion precursor
filament. Figure 5(a) shows the 3D printer, and Fig. 5(b) shows
an illustration of the basic structure of 3D-printed eIPMC sen-
sors with 3D-printed polymer membrane sandwiched between
two platinum metal electrodes. The 3D-printing process to cre-
ate the eIPMC samples first starts with creating a solid computer
model with desired features. Next, the solid model is sent to the
3D printer to print the desired shape of the eIPMC sensor us-
ing ionomeric precursor filament material, layer by layer. After-
wards, the manufactured precursor structure is chemically “acti-
vated” [5]. This process involves hydrolyzing the precursor fila-
ment in an aqueous solution of potassium hydroxide (KOH) and
dimethyl sulfoxide (DMSO, C2H6OS). Afterwards, multiple lay-
ers (up to 3) of platinum material is deposited on the surface of
the printed membrane to create electrodes through an electroless
plating process. The two-point resistance method was employed
to check for sufficient conductivity of the electrode surface. Two
eIPMC samples each with different surface textures were created
as shown in Fig. 5(c).

Sample eIPMC sensors with microfeatures in the form of
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FIGURE 5. Sample eIPMCs fabricated using FDM 3D printing pro-
cess: (a) custom-designed 3D IPMC printer; (b) basic structure of 3D-
printed eIPMC sensor with 3D-printed polymer membrane sandwiched
between two platinum metal electrodes; and (c) three types samples and
dimensions of features created for testing.

micrometer-scale dots were created on the surface of a Nafion
sheet stock. The eIPMC microfeatures were printed on the N117
Nafion Membrane from a FUJIFILM DMP-2850 Dimatix Ma-
terials Inkjet Printer using a specially designed ink consisting
of 5% weight D521 alcohol-based Nafion dispersion and propyl
alcohol, see Figure 6(a). The ink concentration of 1:19 (v/v)
was optimized based on the required surface tension (28–42
dynes/cm) and viscosity (10–12 cP) parameters of the 1 pL and
10 pL print cartridges. Before printing, the Nafion substrate was
tightly secured to an acrylic plate using 3M adhesive tape and
placed inside the printer chamber. The microfeature droplets
were then deposited using a custom print file that controlled the
droplet formation from the piezoelectric cartridge nozzles by ad-
justing the nozzle voltage, jetting frequency, and waveform pro-
gram. Multiple passes were employed to achieve the desired
height of the microfeatures in a layer-by-layer fashion.

Figure 6(b) shows a sample of the Nafion membrane with
printed micro-scale dots. Close-up view of the dots are shown
in Fig. 6(c), where Nafion dots with spacing between 87-92 µm,
dot diameter between 43-51 µm, and height of approximately
2 µm. Figures 6(d) and (e) show an AFM image of a printed dot
and a close-up view of the plated surface, respectively.

After printing, the eIPMC Nafion membrane was plated with
platinum metal electrodes using the sample process described

FIGURE 6. Sample eIPMCs fabricated using inkjet printing technol-
ogy: (a) inkjet printing process; (b) Nafion membrane with features
printed onto the surface using an inkjet printer; (c) close-up view of the
printed Nafion dots with spacing between 87-92 µm and dot diameter
between 43-51 µm and height of approximately 2 µm; (d) AFM image
of printed dot showing approximate dimensions; and (e) close-up view
of plated surface of eIPMC

for the control and FDM 3D-printed samples. Importantly, from
Fig. 6(e), it can be seen that the microfeatures are preserved after
the electroding process.

Sensor Characterization Apparatus
The sensor characterization apparatus shown in Fig. 7(a) is

used to apply pressure to IPMC sensors and to measure the open-
circuit voltage response. The apparatus consists of a stepper mo-
tor that is controlled to actuate a plate to apply pressure. A load
cell measures the load for pressure control. The experimental
configuration for the FDM 3D-printed and inkjet printed eIPMCs
voltage sensing test are shown in Fig. 7(b).

Prior to testing, each sample is fully hydrated in DI water.
The step load is applied to the eIPMC sensor and held until de-
compression is initiated after 30 seconds. The total duration of
each test is 60 seconds and the open circuit voltage and the me-
chanical step response are recorded for each sample.
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FIGURE 7. (a) Experimental setup for measuring open-circuit volt-
age of fabricated IPMC and eIPMC samples. (b) Experimental configu-
ration for measuring open-circuit voltage of test samples.

Results and Discussion
The results for the measured normalized open-circuit volt-

age, V̂OC, plotted against the normalized applied pressure, p̂, for
the IPMC sensors are shown in Fig. 8. All test presented here are
averages of multiple repetitions and concerned with the steady-
state response of the system to be compared with the modeling
results in Eq. (13). As in the model above, the open circuit volt-
age is normalized by the thermal voltage Vth = RT/F ≈ 25.4mV
at room temperature, and the pressure is normalized by the poly-
mer Young’s modulus Ep = 150MPa, see for example [32].

As the results show in Fig. 8(a), the enhancement in sensing
voltage is readily apparent between the control and eIPMC sen-
sors. In particular, the results for the FDM 3D-printed eIPMC
sensors show that the open circuit voltage increases with in-
creased pressure. The trend is entirely consistent with the pro-
posed model and Eq. (13), which predicts a linear increase.
Through curve fit, the open circuit voltage vs. pressure slope
for the 3D-printed eIPMC sample 1 and 2 is 72.66 and 149.56,
respectively. The voltage output of the standard IPMC is signif-
icantly smaller for any value of the applied pressure and does
not display a clear trend. A few comments are in order to inter-
pret these results in terms of the modeling contributions of the
previous section. The presence of macroscale ridges such as the
ones in Fig. 5 is expected to significantly modify the strain field

that would develop in a conventional IPMC and create inhomo-
geneous strain through the thickness, as for example shown in
Fig. 2. However, it should be noted that, differently from the
representative case studied above via finite element analysis, the
dimension d̃ of the ridges is very large with respect to the poly-
mer semithickness, that is, d̃ = 0.6 for the 3D-printed eIPMC
sample 1 and d̃ = 0.2 for the 3D-printed eIPMC sample 2. As
such, two important differences arise from our simplified mini-
mal mechanical and chemoelectromechanical model: (1) the di-
latation field may be significantly affected in a region sufficiently
far from the engineered electrode and (2) important chemoelec-
tromechanical phenomena can actually occur within the polymer
protrusion regions of the engineered electrode. These changes
would call for at least a 2D fully coupled chemoelectromechan-
ical analysis of the system which is significantly more compli-
cated than our approach which aims at distilling the fundamen-
tal aspects of the problem. Furthermore, additional and possi-
bly important effects that we have neglected (e.g. steric effects,
composite layers, electrode surface roughness, chemoelectrome-
chanical nonlinearities, non-rigid electrodes) may play a role in
the response. Even though we don’t hope to capture the correct
value of γ from our minimal model, it is remarkable that a fairly
linear behavior is observed, consistently with what has been pre-
dicted. It is more difficult to correlate the voltage vs. pressure
slope to the geometrical aspects of the interface. We predict that
the more asymmetry is produced in the dilation at the electrodes,
the higher the voltage response will be for a given pressure. The
qualitative difference between the response of sample 1 and 2
could be explained by noticing that the ridges in sample 2 have
shorter wavelength and smaller amplitude than those in sample
1. For small applied pressure, especially given the fact that the
eIPMC samples are compressed between parallel plates, the sam-
ple 2 eIPMC would contract in an almost homogeneous fashion,
not too dissimilar from the control sample. Larger wavelength
and larger amplitudes of the ridge would instead cause signif-
icant asymmetry in the sample 1 eIPMC. Vice versa, for large
values of the pressure, the polymer deformation could possibly
better follow the shape of the (non-rigid) electrode and yield an
enhanced voltage output. The existence of a possibly critical
pressure, for the geometry under study, is evidenced by the jump
around p̂ = 0.8×10−4. Finally, the response of the control sam-
ple should be identically null, according to Eq. (13). However,
small, uncontrollable differences between the electrode morphol-
ogy cause mechanical asymmetry and a non-zero, albeit erratic,
response.

Likewise, the same basic trend is observed for the inkjet
printed samples compared to the control sample, where the the
slope for the inkjet printed sample is approximately 117.71. Im-
portantly, note that the control sample in Fig. 8(b) is different
than the control sample in Fig. 8(a), as explained below. Results
in Fig. 8(b) show, on the other hand, that the response of the
control sample is inconclusive. It should be remarked that, in or-
der to minimize as much as possible the impact of the electrode
fabrication on the performance of control IPMC and microscale
inkjet printed eIPMC, the control and the eIPMC sample are si-
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multaneously fabricated from a single Nafion membrane, which
is only patterned in part as in Fig. 6(b), and is cut to separate
the control and the eIPMC sample after the electroding process.
Given the particular shape of the polymer protrusions resulting
from the inkjet printing process (see Fig. 6(d)), the actual de-
formation process upon application of the pressure may differ
significantly from the minimal model of our finite element anal-
ysis. Nevertheless, the response of the inkjet printed eIPMC is
consistently higher than the control experiments, on the order
of +50%–150%. A “jump” similar to the case of sample 2 in
Fig. 8(a) can be observed in the neighborhood of p̂ = 1.2×10−4,
suggesting that the experimental compression conditions may be
dependent on the actual value of the applied pressure.

These results on open circuit voltage response for compres-
sion sensing in eIPMCs are the first of their kind and show the
potential for enhanced sensing capabilities through engineered
interfaces. Remarkably, the minimal model proposed captures
the essence of the structure-property relationships to demonstrate
enhanced strain sensing performance. One last comment should
be briefly directed to the comparison of the control response in
Figs. 8(a) and (b), the latter being almost an order of magni-
tude larger than the former. The only evident explanation for
this behavior can be once again ascribed to asymmetry caused
by uncontrollable electrode surface roughness. Note here that
the Nafion membrane in the control sample of Fig. 8 was not
sandblasted before plating [18] to preserve the inkjet printed mi-
crofeatures. This is yet another datapoint corroborating the huge
variability in IPMC behavior dependent on uncontrollable fabri-
cation conditions. We hope that 3D-printing and advanced man-
ufacturing technicques of ionomer membranes with engineered
properties will alleviate this problem in the future.

CONCLUSIONS
In this paper, we described the design of tailored 3D-

structured (engineered) polymer-metal interfaces to create en-
hanced ionic polymer-metal composite (eIPMC) sensors with su-
perior performance. Differently than traditional IPMC benders,
these sensors are designed for operation in compression mode.
A physics-based chemoelectromechanical model is developed to
predict the performance of the eIPMC sensor. The model in-
corporates structure microfeature effects, including microscale
feature thickness, size, and spacing, that are translated into a
dilatation, or volume change, in response to applied mechani-
cal pressure. The dilatation is thus used as input in an analyti-
cally tractable chemoelectromechanical model that captures the
essential physics of the problem and provides insight into the
behavior of the sensor under open circuit and short circuit condi-
tions. Two novel approaches were described to create functional
samples of eIPMC sensors using fused deposition manufactur-
ing and inkjet printing technologies. Experimental results were
presented to show enhancement in compression sensing capabil-
ities compared to traditional sensors fabricated from sheet-form
IPMC material and the effectiveness of the minimal model to in-
terpret and explain the observed sensor behavior.
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FIGURE 8. Measured normalized open-circuit voltage, V̂ , plotted
against the normalized applied pressure, p̂, for (a) FDM 3D-printed
eIPMC sensors and (b) inkjet printed eIPMC sensor.
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