
Spin-dependent Seebeck and Nernst effects in a skyrmion ideal

gas

Andrei Zadorozhnyi and Yuri Dahnovsky

Department of Physics and Astronomy/3905

1000 E. University Avenue

University of Wyoming

Laramie, WY 82071∗

Abstract

We theoretically and numerically study spin-dependent Seebeck and Nernst effects in 2D ferro-

magnetic materials with the topological spin texture (skyrmion and vortex) ideal gas. From the

numerical solution of the matrix Boltzmann equation for a nonequilibrium distribution function

and the Lippmann-Schwinger equation for a T-matrix we find the strong nonlinear behaviors in the

thermoelectric coefficients depending on skyrmion/vortex diameters and electron concentrations.

In particular, the dramatic dependences in the Seebeck and Nernst coefficients take place at larger

magnetic texture sizes where the abrupt sign flip in the vortex Seebeck and Nernst coefficients oc-

curs in the narrow region of electron concentrations. In this case the normalized Nernst coefficient

changes from +5 to −7. The spin-dependent thermoelectric coefficients are proportional to T at

low temperatures for all skyrmion/vortex sizes.
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The Seebeck and Nernst effects take place when a voltage is induced by a temperature

gradient between the two terminals of a device. If the device is a 2D (ferromagnetic) film

with embedded magnetic moment textures, Seebeck and Nernst coefficients become spin-

dependent. The Nernst coefficient can exist even in the absence of an applied magnetic

field due to the presence of a constant magnetic moment. Much attention has been recently

paid to the anomalous spin Seebeck and Nernst effects where the uniform magnetic moment

causes the voltage difference along with and in the perpendicular direction to the applied

temperature gradient. [1–8]

With the development of information technology, the energy harvesting is a key tech-

nology to control energy, through accumulation, storage, and use of power. Small-scale

traditional natural energy sources such as heat, electromagnetic waves, etc. are known to be

basic for energy harvesting devices. Thermoelectric energy sources can be useful to generate

an electricity because of its clean heat conversion from ambient thermal sources. Especially

it is a promising and challenging strategy to use magnetism in thermoelectric conversion.

Thus, spin-dependent Seebeck (SDS) and Nernst (SDN) effects could be useful for future

clean environmental technologies. [6, 9, 10]

Charge SDS and SDN effects take place when conduction electrons scatter at topologi-

cal spin textures (skyrmions and vortexes). The presence of the topological spin textures

differs SDS and SDN effects from the anomalous spin Seebeck and Nernst effects where

the latter occur in a uniform ferromagnetic environment. To describe the topological spin

thermoelectric effects we employ the following Hamiltonian:

H =
k2

2m
− JS(r) · σ, (1)

where the first term represents the kinetic energy of conduction electrons, J is an exchange

integral, S(r) is a localized magnetic moment. Here σ is a vector with the three Pauli matrix

projections for the conduction electron spins. We choose the S(r) texture in the following

form:

S(r) = S0 · ez +
∑
i

δS(r− ri), (2)

where S0 is uniform out-of-plane background magnetization and δS(r− ri) is a deviation

of magnetic moment due to the presence of the magnetic structure (in this work we only

consider skyrmions with the topological charge Q = 1, and vortexes with the topological
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charge Q = 0). The main difference between the skyrmion with Q = 1 and vortex with

Q = 0 is in a magnetic moment in the center of the texture. Indeed, for Q = 1 the magnetic

moment equals the maximum value and for Q = 0 the magnetic moment is zero. The

conduction electrons are a uniform electron gas embedded into the ferromagnetic/skyrmion

environment. Because of the splitting of the energy for different spin projections, we can

introduce two types of carriers depending on a spin orientation. For spin ↑ and spin ↓ we

write the following energies ε↑,↓(k) = ~2k2/(2m)∓ J .

TSS, α, and TSN, Q, coefficients are defined in the following way:[11]

α =
∇x (eϕ− µ)

∇x(kBT )
; Q =

∇y (eϕ− µ)

∇x(kBT )
, (3)

where ϕ is voltage, µ is chemical potential, and T is a temperature.

To find α and Q, we solve the Boltzmann equation for a nonequilibrium distribution

function, f s(k) = f0(k) + f s
1 (k), f s

1 (k) = −(∂f0/∂ε)χ
s(ε) · k, where f0 is the Fermi equi-

librium distribution function, f1 is the nonequilibrium part, and χs is an unknown vector

function depending on the electron energy. [11] The scattering mechanism is due to the

interaction of the spins of the conduction electrons with the localized magnetic moment.

Therefore, we consider an ideal gas of skyrmions. The stationary, time-independent Boltz-

mann equation appears to be 4× 4 matrix equation,[12–14] which dimension is determined

by x and y projections of χs and the two electron spin projections, ↑, ↓. The right-hand-side

of the Boltzmann equation can be presented by the 2 × 2 transition probability per unit

time matrix:

W ss′

pp′ =
2π

~
nt

∣∣∣T ss′

pp′

∣∣∣2 δ(ε− ε′), (4)

which due to the radial symmetry only depends on the angle between the incident and

scattered directions. In Eq. (4) nt is a 2D density of magnetic structures (skyrmions or

vortexes). The transition matrix T can be found from the Lippmann-Schwinger integral

equation, [15] T̂ = V̂ + V̂ Ĝ0T̂ , where Ĝ0 is a retarded free electron Green’s function,

Gss′
0 (k − k′) = [ε− ~2k2/2m± J ]

−1
δss′δ(k − k′). In the Lippmann-Schwinger equation, V̂

is a 2× 2 matrix determined by the localized magnetic moment texture:[16]

V̂ (r) = −JS0

 nz − 1 nx − iny

nx + iny −nz + 1

 . (5)
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Here n2
x + n2

y + n2
z = 1. For the calculations, we select the following analytic forms for the

skyrmions and for vortexes: nz(r) = cos [π (1− exp (−r2/a2))] (the topological charge equals

±1), nz(r) = cos [π (exp (−r2/a2)− exp (−(c1r)
2/a2)) c2] (the topological charge equals 0).

The coefficients c1 and c2 allow us to change the minimum location and normalize the spin

distribution function. For the calculations we choose c1 = 3.2, that places minimum approxi-

mately at r = 0.5a, and c2 ' 1.4255. For both skyrmion and vortex, the x- and y-components

of the spin textures are determined as nx = cos (ϕ)
√

1− n2
z and ny = − sin (ϕ)

√
1− n2

z,

respectively. Here ϕ is a polar angle.

The T -matrix has been determined numerically in all orders of V by applying the Fourier

transform with respect to the angle between incident and scattered waves. The unknown

Fourier coefficients have been found from the Lippmann-Schwinger integral equation. As

soon as the transition matrix is calculated, and, therefore the transition probabilities (see Eq.

(4)), we substitute W ss′

pp′ into the collision integral matrix for x-, y-components of χ↑,↓(ε),

which determines the nonequilibrium part of the total distribution function, which has been

calculated using the original codes. As soon as the nonequilibrium part of the distribution

function is numerically detremined, the electric current can be easily found and presented

in the following way (the derivations are given in Supplementary Materials):[11]

jsx = as11eEx + as12eEy + bs11∇x(kBT ) + bs12∇y(kBT ),

jsy = as21eEx + as22eEy + bs21∇x(kBT ) + bs22∇y(kBT ),
(6)

where coefficients a and b have been found from the solution of the Boltzmann equation

in the low temperature limit. Then, we express SDS, α, and SDN, Q, coefficients defined

by Eq. (3) in terms of a and b coefficients from Eq. (6) under the following conditions:

jx = j↑x + j↓x = jy = j↑y + j↓y = ∇y(kBT ) = 0. Solving the system of equations we obtain the

following expressions for α and Q:

α =
a12b21 − a22b11
a11a22 − a12a21

; Q =
a11b21 − a21b11
a12a21 − a22a11

, (7)

where aij = a↑ij + a↓ij and bij = b↑ij + b↓ij. α and Q are presented in Figs. 1 - 5 for different

skyrmion/vortex sizes κa and Γ. Here κ and Γ are defined as κ =
√

2mJ/~, and Γ =

εF/J . It is known that for a 2D free electron gas Fermi energy, εF , is proportional to a

carrier concentration, i. e. Γ can be regulated using gate voltage or doping concentration.

In addition, we have derived that α and Q are proportional to T at low temperatures
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(kBT/J � 1, kBT/(εF ± J) � 1). The proof of this with the detailed derivations is given

in Supplementary Materials. In Fig. 1 κa = 0.05, the size of the magnetic structure is

(a) (b)

FIG. 1. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes κa = 0.05

very small. In this case, the spin-dependent Seebeck coefficient is of the same order as

for other sizes, but the spin-dependent Nernst coefficient is extremely low: it is five orders

of magnitude smaller than α. The Seebeck coefficient dependencies for different topological

charges (i. e., for the skyrmion and vortex) are graphically indistinguishable, and the Nernst

coefficients are also very close. The indistinguishability of the the Seebeck and Nernst

coefficients for the skyrmions and vortexes can be explained by the small size with respect

to the electron de Broglie wavelength, which is much larger than the magnetic texture size.

In this case the scattering is insensitive to the internal spin structure of the texture. Both

coefficients decrease with Γ. The Nernst coefficient exhibits the peak at Γ ≈ 1.1 for both

skyrmion and vortex.

For κa = 1.0 the thermoelectric coefficients are presented in Fig. 2. The Seebeck and

Nernst coefficients are of the same order now. We note that the both coefficients change their

signs, the Seebeck coefficient at Γ ≈ 1.2 for the skyrmion and Γ ≈ 1.3 for the vortex and

Nernst coefficient at Γ ≈ 1.6 for the skyrmion and Γ ≈ 1.9 for the vortex. In addition, all

coefficients demonstrate the abrupt change at Γ ∼ 1, the Seebeck coefficients are increasing

while the Nernst coefficients are decreasing with Γ.

The thermoelectric coefficients with the relatively large values of the skyrmion size, κa =
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(a) (b)

FIG. 2. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes κa = 1.0

(a) (b)

FIG. 3. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes κa = 5.0

5.0 are presented in Fig. 3. The spin-dependent Seebeck coefficient (Fig. 3a) for the vortex

has the sharp peak at Γ = 1.15. It abruptly changes to the minimum at Γ = 1.25. The

skyrmion spin -dependent Seebeck coefficient has the broad minimum at Γ = 1.15 and then

reaches the highest point at Γ ≈ 2.5. The difference between the minimum and maximum

values is approximately as much as twice greater the vortex. The picture for the Nernst

coefficient (Fig. 3b) is substantially different. For the vortex it is much sharper at Γ = 1.15,

and it has the larger value than for the skyrmion. The skyrmion demonstrates the broad

peak at Γ = 1.15 and the broad minimum at Γ = 1.9. We note that the thermoelectric

coefficients for both magnetic textures change the sign in the range 1 < Γ < 3.
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(a) (b)

FIG. 4. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes κa = 7.0

The spin-dependent thermoelectric coefficients for κa = 7.0 are depicted in Fig. 4. In

this case, the both vortex Seebeck and Nernst coefficients demonstrate the dramatic change

sign switch at Γ = 1.0. The Seebeck coefficient has the peak at Γ = 1.25 and reaches the

minimum at Γ = 1.4. The vortex Nernst coefficient exhibits the sharp minimum at Γ = 1.2.

The skyrmion Seebeck coefficient constantly increases in the whole Γ region. The Nernst

coefficient for the skyrmion demonstrates the slow change withs the maximum at Γ = 1.2

and the minimum at Γ = 2.6.

(a) (b)

FIG. 5. (a) Seebeck coefficient and (b) Nernst coefficient for skyrmion/vortex sizes κa = 10.0

The spin-dependent thermoelectric coefficients for the large magnetic structure size κa =

10.0 are presented in Fig. 5 . The Seebeck coefficient for the vortex rapidly rises from −12.5
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at Γ = 1 to 1 at Γ = 1.2 and then maintains the level of 2.5 starting at Γ = 1.5. The

SDS coefficient for the skyrmion constantly increases from 0 to 2 in this region. The SDN

coefficient for the vortex also dramatically changes from its very sharp maximum having the

value of 6 at Γ = 1.1 to the minimum with the value of −2 at Γ = 1.2. It also has a local

maximum at Γ = 1.35. The SDN coefficient for the skyrmion behaves in a similar to the

case of κa = 7.0. Indeed, it has a very broad maximum of −0.75 at Γ ≈ 1.25 and decreases

constantly after that, reaches the value of −2.5 at the end of the region.

In conclusion, we have analytically and numerically studied the topological spin-dependent

Seebeck and Nernst effects in the presence of magnetic skyrmions and vortexes of different

sizes. The skyrmion size dependence is nontrivial according to our calculations. First, it

depends on a spin projection, second it depends on the electron concentration, and third it

could increase or decrease depending on a topological charge.

To explain the independence of the thermoelectric coefficients on a topological charge we

have to introduce an adiabaticity parameter α. In this work the numerical technique allows

us to study the whole range of the adiabaticity, i.e., the λ = kFa/Γ = κa/
√

Γ (see Ref. [13]).

Thus, for small sizes (κa) the regime is nonadiabatic. In the adiabatic limit (large λ), κa is

large and Γ is about one. The independence of the SDS and SDN coefficients on topological

charge, Q, can be explained in terms of adiabaticity. Indeed, in this case λ < 0.05. Therefore,

the scattering spin weakly interacts with the localized magnetic moment. In this case the

internal magnetic moment structure is irrelevant. Consequently, we observe indistinguishable

Q-dependences for small skyrmion sizes.

The dramatic sign change in both coefficients for the vortex is shown in Figs. 4 and 5

where the sign switching occurs in the narrow region of Γs (or electron concentrations). As

shown in Fig. 4b, the normalized SDN coefficient changes from +5 to −7. The SDS and

SDN coefficients are proportional to T at low temperatures. Such a behavior could be useful

for a voltage switching in a device where εF can be varied by a gate voltage in the narrow

region.
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