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Abstract 
 

The capacity to categorize using the concepts same and different plays a central role in cognition. 
However, in any given circumstance, it can be difficult to tell whether a person or animal is 
performing same and different categorization using structured relational rules from propositional 
logic or perceptual change detection processes. Discrete, logical behavior can often be produced 
from continuous perceptual spaces, and continuous behavior can arise from systems relying on 
structured logical rules. Model-based neuroimaging, when used in conjunction with advances in 
task development, can aid in understanding how people accomplish same and different 
categorization. We review recent publications employing the model-based neuroimaging 
paradigm to isolate latent brain processes associated with use of structured, logical rules and 
continuous perceptual processes. 
 
Highlights  

- Relational or continuous representations can be used to judge same and different 

- Representational format is difficult to assess using behavior or neuroimaging alone 

- Model-based neuroimaging can be used to adjudicate between representational formats 

- The rostrolateral prefrontal cortex supports use of structured representations 
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Introduction 

The concepts same and different provide a basis for higher-level human reasoning in logic, 

philosophy, and mathematics. Sameness allows us to substitute instantiations of concepts for 

one another to enable deduction and generalization through inductive reasoning. Difference 

gives us an idea of why such generalizations may fail. Sameness and difference also provide a 

key building block for cognition. Basic faculties like object permanence depend on some 

representation of sameness and difference to allow us to see objects as persisting through 

identity perserving transformations [1]. However, what representations of sameness and 

difference are, in a cognitive or neurobiological sense, remains a matter of debate with perhaps 

no single answer. In this review, we discuss cognitive and neurobiological representations of 

sameness and difference and how neuroimaging methods can inform research on how humans 

achieve this key feat. 

Abstractly, sameness is a relational concept whereby individuals, objects, or events are 

the same if they are alike in all of their properties (or at least ones critical to maintaining 

identity); difference refers to cases in which some properties mismatch. Such a relational 

process may describe at least some of peoples’ same-different categorization behavior [2]; 

people can, and sometimes likely do, represent sameness and difference by using a structured 

rule-like representation to check if all relevant properties align across two examples. However, 

in many cases, people likely do not use such rules. The alternatives are many variations on the 

idea that categorical behaviors, like identifying sameness and difference, can arise from basic 

properties of the continuous multidimensional spaces that underlie how our perceptual and 

conceptual representational systems are instantiated in the brain [3-5]; when noticing whether 

something is the same or different, we may not represent the abstract relation of sameness per 

se, but rather derive behavior consistent with representing these constructs from perceptions of 

change in more basic perceptual systems [6-8].  
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Main Text of Review 

Perhaps surprisingly, there are often not foolproof ways of ensuring whether a person is 

representing sameness, relationally or continuously, using behavior alone. Continuous 

representations of sameness are sufficient to guide behavior in many “match-to-sample” tasks 

where a target stimulus is chosen based on its sharing of the sameness relation with another 

cue stimulus [9,10]. This is because behavior (choosing correctly) can appear rule-based simply 

by adopting very strict perceptual criteria on which stimuli to choose. Another common paradigm 

for studying representations of same and different from the comparative cognition literature 

involves learning to categorize visual arrays based on whether all elements in the array are the 

same or different (e.g., arrays with all matching/same stimuli are in category 1; arrays with all 

different stimuli are in category 2)[11-13]. After learning this categorization rule, participants 

then classify new examples with intermediate numbers of same and different elements. In 

humans, who unequivocally have relational concepts of same and different (whether or not they 

use them in a given circumstance), the modal behavior is to only respond with the same 

category (e.g., category 1) for instances of all same and respond different for any instances 

where there is any difference [14]. Many other species, for whom true relational concepts of 

same and difference are more in question, tend to respond more continuously [12,13]; for each 

increase in the number of mismatching elements (i.e., the entropy or disorderliness of the 

array), continuous responders become more likely to choose the different category. Although 

such comparative differences have been used to argue for a more rule or relational 

representation of sameness in humans (and some primates [14]) and only perceptual 

representations of orderliness or entropy in other animals, both behavioral profiles could 

theoretically arise from the same basic perception of entropy or orderliness. Criterion shifts in 

humans (relative to animals) toward only the most orderly arrays could produce a similar pattern 

from a single entropy dimension. Moreover, given some proportion of human participants 

behave more continuously, like animals, in array learning tasks [14], there remains a possibility 
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that such tasks index individual differences in receiver operating characteristics (ROCs) as 

opposed to differences in representation.  

On the other hand, continuous/non-binary behaviors may also arise in cases where 

people are using structured rule representations, and not just when representations are truly 

continuous. For example, relational concepts like “predator” and “prey,” have structured rule-like 

representations wherein an animal either eats other animals or only plants. However, through 

experience with a variety of “predators” and “prey,” we might associate features like large sharp 

teeth with “predators” even though teeth are not strictly part of the relational rule. Further, even 

though such relational categories are not represented as binary-rules, their representations 

describing the systematic relations among objects (such as “hunt” and “eat”) are very different 

from those of categories typically modeled with continuous feature-space representations 

[15,16]. Likewise, when considering “sameness” in the context of substitutability and 

generalizability in deductive and inductive reasoning (respectively), this inherently involves 

seeing a functional “sameness” as also revealing continuous levels of difference. For example, 

analogical transfer during problem-solving involves both recognizing a structural equivalence, 

but also recognizing key differences [17,18]. Thus, neither continuous nor categorical/binary 

behavioral response patterns alone are necessary or sufficient for determining the 

representational format (structured or continuous) people or animals are using in a task. 

Given the difficulty of determining representational format of sameness and difference 

concepts from behavior alone, we argue it is useful to consider how neuroimaging methods may 

be leveraged to complement behavioral data. A variety of neuroimaging analysis techniques can 

be used to study the nature of brain representations [19,20], including classic univariate “BOLD” 

activation techniques, multivoxel/machine learning techniques, and adaptation techniques. Like 

in behavioral studies, match-to-sample tasks, including n-back tasks, continue to be a mainstay 

of representational research in many areas of neuroimaging, but are often not interpreted as 

studies of how people make same and different judgments. In fact, despite the importance of 
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same and difference to many neuroimaging paradigms, there has been very little neuroimaging 

research on the question of how same and different are represented per se. 

Even though the topic of same-difference categorization has received little attention in 

neuroimaging research, sameness and difference play central roles in the design and 

interpretation of many representational analysis techniques. However, as with behavioral 

measures, it is often difficult to assess whether representational neuroimaging techniques 

uncover binary, relational representations of sameness, or whether their results refect by-

products of more continuous neuronal or regional representations. For example, adaptation 

techniques were developed from the observation in the single-cell recording literature [21] that 

repetition of a stimulus tends to lead to decreases in neural firing for the second presentation 

relative to the first (i.e., repetition suppression [22]). Although such findings show that neurons 

(or voxels or regions) are sensitive to the sameness relation, like behavior, they are perfectly 

consistent with more continuous perceptual representational systems. Indeed, while the largest 

magnitude adaptation effects typically happen for same stimuli (exact repetitions), 

neurons/voxels can exhibit continuous changes in adaptation as a function of the distance 

between stimuli in a perceptual space [23]. Further, even in cases where adaptation is observed 

only for exact stimulus matches, these are more likely to reflect greater specificity of tuning 

functions, or differences in neural topography of a perceptual feature space (e.g., local vs 

distributed) as opposed to differences in representational format (structured vs continuous)[24]. 

Beyond adaptation, other representational neuroimaging techniques focused primarily on the 

specificity of the brain’s reponse to a stimulus would be met with similar interpretational pitfalls 

because specificity can nearly always be accomodated in continuous feature spaces with 

changes in ROCs. 

What is needed to move forward in studying the difference between structured 

representational accounts and continuous perceptual accounts of same/different -- or any cases 

where structured “rule” representations are pitted against more continuous similarity or 
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perceptual representations -- is to move toward computational model-based neuroimaging 

frameworks, in conjunction with behavioral paradigm development. In model-based imaging, 

quantitative predictions are generated from a formal mathematical model of a candidate 

cognitive process or a set of competing hypotheses [25]. These quantitative predictions can be 

anything from the choice probabilities (e.g., decisional uncertainty) underlying a decision, or can 

include intermediate steps between perceptual inputs and behavior that constitute more “latent” 

psychological processes leading up to a decision [26]. To the degree that models using 

structured representations predict differences in such latent processes from those relying on 

more continuous similarity-based feature spaces, brain data can potentially be used to 

adjudicate between different representational formats. 

One recent study on same and difference representation used a model-based imaging 

approach to test whether participants learned structured or continuous representations in an 

array categorization like those described above [27] (Figure 1). During training, participants 

learned to sort arrays of sine wave gratings (‘Gabor patches’) into novel categories (A or B) 

using trial and error. The category rule was based on whether all gratings in an array had the 

same or different orientations. Later, during a generalization phase, participants were tested 

with new arrays with different numbers of same and different gratings. Model-based fMRI 

analyses tested how two latent processes related to same-different categorization mapped onto 

the brain (Figure 1). One measure was based on the entropy of the arrays, a continuous 

representation of same-different. A second measure was based on a relational matching 

algorithm, instantiated in a hybrid exemplar model (relational generalized context model; rel-

GCM) that allowed for categorization to be based on a structured, relational processes. The 

entropy measure was associated with activation in a number of prefrontal regions that tend to 

track uncertainty in decision making [28-32] including the lateral PFC and vmPFC. In contrast, 

the relational matching measure uniquely captured activation in the rostrolateral PFC (rlPFC). 
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The results from this study are important for several reasons. First, by showing that a 

signal related to relational matching correlates with brain activation during same-different 

learning, this modeling work provides some of the first non-behavioral evidence that relations 

are being used in array categorization judgments. Relational matching was a latent, model-

based measure, and was not itself directly correlated with behavior. Thus, these results are 

potentially more immune to being re-explained by differences in ROCs. Indeed, the rlPFC region 

that was associated with our relational matching measure is known to be involved in relational 

reasoning [33] and other cognitive processes, like analogy, that depend upon more abstract or 

episodic cognitive control [34-36]. Interestingly, other PFC regions tracked the continuous 

entropy-based representation of same-different. The co-existence of relational and continuous 

representations is consistent with behavioral and computational research on relational thinking 

[37-41].  

However, a further complexity is that entropy, in this task, was highly correlated with a 

decisional uncertainty measure from the rel-GCM based on relational matching. Thus, there are 

at least two possibilities to explain the apparent co-existence of relational and continuous 

representations of same-different in the PFC. First, it is possible that some of the brain regions 

associated with the entropy measure may reflect the decisional outputs of a more discrete, 

relational decision process as opposed to a continuous representation of same-different per se. 

Second, it is possible this apparent continuous representation is truly driven by a bottom-up 

perceptual signal, consistent with how entropy is typically conceived.  Future research may 

develop model-based connectivity approaches to test whether the observed continuous same-

different signals in the brain are being driven by relational matching processes in rlPFC or by 

more perceptual processing regions. 
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Figure 1. Depiction of the study design and results from Davis, Goldwater, and Giron [27]. A) 
Examples of the category learning task with a same array (left), different array (middle) and an 
array with intermediate number of same and different elements (right). B) A depiction of the 
model-based imaging framework and results. Predicted hemodynamic response functions are 
generated from models assuming structured relations (left) or continuous representation of 
entropy (right). These are fitted to brain activation using linear regression, yielding brain regions 
that differentially track relational processes or more continuous decision processes related to 
display entropy. 

 

Although not on representation of sameness and difference per se, recent category 

learning research has extended the model-based imaging framework to adjudicate between 
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structured and continuous representations in other tasks [42]. O’Bryan, et al., [43] examined an 

‘inverse base-rate’ task where participants learned to categorize fictitious rare and common 

diseases based on visual or semantic cues. The past findings on this task are, when asked to 

categorize an ambiguous stimulus that has features of both rare and common diseases, people  

tend to choose the rare disease more than one would expect based on their base rates [44]. 

Like same-different categorization, hypotheses for why people do this have included structured 

representational accounts, such as the use of eliminative rules [45], and continuous perceptual 

or associative accounts, such as greater attention to rare features [46]. Using model-based fMRI 

measures that included predictors for dissimilarity- (eliminative) and similarity-based processes, 

we found that rlPFC uniquely tracked dissimilarity-based processing, consistent with a 

structured representation account. Together with the previous study [27], these results suggest 

rlPFC supports the use of structured representations in category learning and generalization. 

Importantly, however, rlPFC activation alone should not be interpreted as a brain 

signature of structured rule use. Although rlPFC tends to track cognitive control demands in 

abstract or episodic control tasks where structured rules are used, it is also often activated in 

tasks less clearly related to rule use, such as for exploratory decision making [36](but see [47]). 

Further, there are cases where rule use can be inferred based on behavior, such as in the 

Shanks-Darby patterning task [48], but where strong neuroimaging dissociations between 

people putatitively using such structured rules and those using more continuous or associative 

strategies have not been forthcoming [49]. 

One of the reasons why rlPFC may not show activation differences during apparent rule 

use is that people tend to automate rule use and use associations stored in memory as a task 

becomes more familiar [50,51]. For example, rlPFC tends to be activated when a problem 

solving procedure needs to be generalized to a novel situation, but not when they can be 

applied in a familiar manner [52]. Likewise, in category learning, for simple match-to-sample and 
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classification rules, rlPFC activation may be high during initial rule discovery and use, but then 

disipate as uncertainty decreases [53].  

A key question for future research concerns the behavioral consequences of moving 

from the use of cognitive control processes supported by the lateral PFC to the use of more 

automated stategies. In animal models of habit learning [54], related shifts can lead to 

behavioral rigidity. However, in humans, evidence suggests that increases in expertise can have 

the opposite effects. For example, in jazz musicians, compared to novices, the shift away from 

lateral PFC control mechanisms may lead to greater flexibility and creativity [55]. In relational 

tasks, experts tend to recognize common relational structures across different examples more 

readily than novices [56,57], which may reflect use of episodic memory strategies. Even in brief 

learning tasks, participants can develop strategies that allow them to accurately classify 

according to relational rules without fully engaging relational matching processes [58].  

Conclusions 

 To solve the puzzle of how humans represent structured relations, such as same and 

different, we expect increased use of model-based neuroimaging frameworks will be needed. 

Where behavioral studies and representational neuroimaging techniques have frequently had 

difficulty in firmly dissociating continuous and structured representational accounts, model-

based imaging can leverage differences in how such algorithms are instantiated computationally 

to uncover “latent” brain states that are more uniquely associated with a specific type of 

representation. This approach has had success in both same/different and other categorization 

tasks where structured representational and continuous feature-based accounts have previously 

reached an impasse. 
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