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ALMOST NON-NEGATIVELY CURVED 4-MANIFOLDS

WITH TORUS SYMMETRY

JOHN HARVEY AND CATHERINE SEARLE

(Communicated by Guofang Wei)

Abstract. We prove that if a closed, smooth, simply-connected 4-manifold
with a circle action admits an almost non-negatively curved sequence of invari-
ant Riemannian metrics, then it also admits a non-negatively curved Riemann-
ian metric invariant with respect to the same action. The same is shown for
torus actions of higher rank, giving a classification of closed, smooth, simply-
connected 4-manifolds of almost non-negative curvature under the assumption
of torus symmetry.

1. Introduction

The class of almost non-negatively curved manifolds contains precisely those
manifolds which admit Riemannian metrics with a negative lower sectional curva-
ture bound arbitrarily close to zero while maintaining an upper diameter bound.
This is identical to the class of manifolds which collapse to a point with a lower
sectional curvature bound. Understanding better the structure of almost non-
negatively curved manifolds would be an important step toward a general theory
of collapse with a lower curvature bound to any limit space. Unfortunately, such
manifolds are classified only in dimensions 3 or lower, with the result in dimen-
sion 3 due to Shioya and Yamaguchi [26]. In dimension 2, the result follows by
the Gauss–Bonnet Theorem and is the same as the classification for non-negative
curvature.

Yamaguchi [29] proved that for a manifold, M , of almost non-negative Ricci
curvature, a finite cover of M fibers over a b1(M)-dimensional torus and, in the
case where b1(M) = n, M is diffeomorphic to a torus.

Thus, given the classification of almost non-negatively curved manifolds of di-
mensions less than or equal to 3, the only interesting case to understand in dimen-
sion 4 is that of b1(M) = 0.

The Grove Symmetry Program aims to classify manifolds with a lower curvature
bound by assuming a certain amount of symmetry. Applying this principle to
4-manifolds of almost non-negative curvature, we prove the following theorem.

Main Theorem 1.1. Let S1 act smoothly and effectively on a closed, smooth,
simply-connected 4-manifold M . Let {gn}∞n=1 be a sequence of Riemannian metrics
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on M for which the S1 action is isometric and suppose that {(M, gn)}∞n=1 is almost
non-negatively curved. Then M admits a metric of non-negative curvature invariant
under the same action.

Bott has conjectured that all closed, simply-connected, non-negatively curved
manifolds are rationally elliptic, and Grove has proposed that the conjecture might
continue to hold in the case of almost non-negative curvature. This result provides
evidence for extending the conjecture.

Recall that isometric S1 actions on closed, simply-connected, non-negatively
curved 4-manifolds are classified by work of Hsiang and Kleiner [13], Kleiner [14],
Searle and Yang [24], Grove and Searle [10], Galaz-Garćıa [8], Galaz-Garćıa and
Kerin [9], and Grove and Wilking [11] as follows.

Theorem 1.2 ([13],[14],[24],[8],[9],[10],[11]). Let M be a closed, simply-connected,
non-
negatively curved 4-dimensional manifold with an isometric and effective S1 ac-
tion. Then M is equivariantly diffeomorphic to S4 or CP 2 with a linear S1 action
or equivariantly diffeomorphic to one of S2 × S2 or CP 2# ± CP 2 with an S1 sub-
action of a T 2 action induced by the standard T 4 action on S3 × S3.

The Main Theorem 1.1 shows that this classification continues to hold in the
case of almost non-negative curvature. The principal challenge in extending the
result to almost non-negative curvature is in the proof of Lemma 4.4, where we rule
out the possibility that five isolated points are fixed. Any S1 action on a closed,
simply-connected, non-negatively curved 4-manifold which fixes five points can be
shown to satisfy some very rigid geometric conditions, which yield a contradiction.
The approach in almost non-negative curvature is necessarily very different.

Proof of Main Theorem 1.1. We recall that for smooth circle actions, the fixed-
point set of the circle action, Fix(M ; S1), is of even codimension and that the Euler
characteristic χ(Fix(M ; S1)) = χ(M4) by work of Kobayashi [15]. Since M is closed
and simply connected it follows that χ(M) > 0. Thus any circle action will have
non-empty fixed-point set. The Main Theorem 1.1 is proven by considering two
cases: Case 1, where the action fixes only isolated fixed points, and Case 2, where
the circle action is fixed-point-homogeneous, that is, there is a codimension-two
fixed-point set of the circle action. We prove Case 1 in Proposition 4.7 and Case 2
in Proposition 5.4. !

We can generalize this result to classify all torus actions on almost non-negatively
curved manifolds. The classification in the case of non-negative curvature continues
to hold.

Corollary 1.3. Let T k act smoothly and effectively on a closed, smooth, simply-
connected 4-manifold M . Let {gn}∞n=1 be a sequence of Riemannian metrics on M
for which the T k action is isometric and suppose that {(M, gn)}∞n=1 is almost non-
negatively curved. Then k ≤ 2 and M admits a metric of non-negative curvature
invariant under the same action.

In particular, when k = 2, M is equivariantly diffeomorphic to one of S4 or CP 2

with a linear T 2 action or one of S2×S2 or CP 2#±CP 2 with a T 2 action induced
by the standard T 4 action on S3 ×S3, and when k = 1, it is a sub-action of any of
these.
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Proof. By work of Parker [18], there are no smooth actions of rank k = 3 on a
closed, smooth, simply-connected 4-manifold M , giving us the desired bound on
the rank.

The Main Theorem 1.1 provides the result for k = 1, so that M is diffeomorphic
to one of S4, CP 2, S2 × S2, and CP 2# ± CP 2. When k = 2, clearly M must
be diffeomorphic to a manifold on this same list. However, it is known that every
smooth T 2 action on these manifolds admits an invariant metric of non-negative
curvature, by work of Orlik and Raymond [17] for S4 and CP 2 and Galaz-Garćıa
and Kerin [9] for S2 × S2 and CP 2# ± CP 2, and the actions are classified as
stated. !

Organization of the paper. In Section 2 we include notation and background
needed for the rest of the paper. In Section 3 we prove some results on trian-
gles in almost non-negatively curved Alexandrov spaces and bound the number
of boundary components of an almost non-negatively curved Alexandrov space in
any dimension. In Section 4 we prove Proposition 4.7 and in Section 5 we prove
Proposition 5.4: these two results combine to prove the Main Theorem 1.1.

2. Preliminaries

In this section we include basic results and facts about transformation groups
and Alexandrov spaces as well as notation that will be used throughout the paper.

2.1. Transformation groups. Let G be a compact Lie group acting by diffeo-
morphisms on a smooth manifold M . Recall that the isotropy group of a point
p ∈ M is the stabilizer of p in G. We denote it by Gp and note that it acts on TpM .
In this paper we will only consider the restricted action of Gp on the unit sphere
in νpM , the space normal to the orbit through p. The action is called effective if⋂

p∈M Gp = {e}.

In the case where G = S1 there are three basic orbit types. An orbit will be
principal, exceptional or a fixed point if its isotropy subgroup is, respectively, trivial,
finite of order ≥ 2, or the full group S1.

We will let F denote the set of fixed points of the circle action in M and let E
denote the set of exceptional orbits. We let π : M → M/G = M∗ be the orbit map
and denote the images of F and E in M∗ by F ∗ and E∗, respectively.

Corollary IV.4.7 of Bredon [3] characterizes the orbit space, M∗, under the hy-
potheses of the Main Theorem 1.1.

Lemma 2.1 ([3]). Let G act on M by cohomogeneity 3, with H1(M ; Z2) = 0 and
all orbits connected. Then M∗ is a 3-manifold with or without boundary.

We can further characterize the orbit space using Proposition 3.1 of Fintushel
[7], which we recall here for the reader’s convenience (see Figure 1).

Proposition 2.2 ([7]). Let S1 act smoothly on M4, a closed, simply-connected
4-manifold. Then the following hold:

(1) In the case where ∂M∗ &= ∅, ∂M∗ ⊂ F ∗;
(2) The set F ∗ \ ∂M∗ is isolated; and
(3) The set E∗ is a union of open arcs in M∗ and these arcs have closures with

distinct endpoints in F ∗ \ ∂M∗.
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∂M∗ ⊂ F ∗

∂M∗ ⊂ F ∗

∂M∗ ⊂ F ∗

F ∗ \ ∂M∗

E∗

Figure 1. The orbit space M∗ = M4/S1 as described in Propo-
sition 2.2.

2.2. Alexandrov spaces. Alexandrov geometry is a natural tool to use in study-
ing isometric group actions in the context of bounded curvature because simple
examples of Alexandrov spaces with curv ≥ k include

• Riemannian manifolds with sec ≥ k and
• quotients of Riemannian manifolds with sec ≥ k by closed groups of isome-

tries.

The reader who is not familiar with Alexandrov spaces should find it sufficient for
the purposes of this paper to consider only spaces of these two types.

A finite-dimensional Alexandrov space is a locally complete, locally compact
length space, with a lower curvature bound in the triangle comparison sense. In
dimensions n ≥ 1, the space is assumed to be connected, whereas in dimension 0,
we allow a two-point space. Additionally, we will assume throughout this paper
that the space is compact.

There are a number of introductions to Alexandrov spaces to which the reader
may refer for basic information (see, for example, Burago, Burago, and Ivanov [4],
Burago, Gromov, and Perelman [5], Plaut [23], and Shiohama [25]).

A geodesic in an Alexandrov space is a shortest path between two points. Unlike
in Riemannian geometry, geodesics are always globally length-minimizing.

The space of directions of an n-dimensional Alexandrov space X at a point p is,
by definition, the completion of the space of geodesic directions at p and is denoted
by ΣpX or, where there is no confusion, Σp. The space of directions is a compact
Alexandrov space of dimension n−1 with curv ≥ 1. In the case X = M/G, that is,
where X is the orbit space of an isometric action by a group G on a Riemannian
manifold M , Σp is isometric to the quotient of the unit sphere in νqM by the
isotropy subgroup Gq for any q ∈ π−1(p).
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Alexandrov spaces can have many types of singularities and among them are
the extremal sets, which are well reviewed in [22]. We shall not make this notion
precise here; it is sufficient for the present work to mention that the closure of a
stratum of an orbit space given by points representing orbits of the same type is
an example of an extremal subset. Connected components of the boundary of an
Alexandrov space are also examples of extremal subsets. At an isolated extremal
point p we have diam(Σp) ≤ π/2.

The class of Alexandrov spaces is closed under certain types of operations. Two
of these will be useful in what follows. The first such operation is that of gluing
along boundary faces. We summarize this result in the following theorem due to
work of Perelman [19], Petrunin [21], and Wörner [28].

Theorem 2.3 ([19, 21, 28]). Let X and Y be two Alexandrov spaces of the same
dimension, both with curv ≥ k. Suppose that A ⊂ X and B ⊂ Y are connected
components of the boundaries of X and Y , respectively, or, more generally, are
codimension-one extremal subsets. If f : A → B is an isometry with respect to the
intrinsic metrics on A and B, then X ∪f Y with the induced length metric is also
an Alexandrov space of curv ≥ k.

A second operation which preserves a lower curvature bound is that of taking
the double branched cover over an extremal knot in S3. The following lemma is a
slight generalization of a result of Grove and Wilking [11, Lemma 5.2], which was
originally stated only in the case k = 0. The proof by the present authors of a
generalization of that result in a different direction [12, Theorem A] shows how the
curvature bound can be modified.

Lemma 2.4 ([12]). Let X be an Alexandrov space of curv ≥ k which is homeo-
morphic to S3. Let c be a simple closed curve in X which is an extremal subset.
Then the double branched cover of X over c, X2(c), is also an Alexandrov space of
curv ≥ k.

We now recall the definition of the q-extent of a metric space, which is useful in
estimating the number of isolated fixed points of an isometric group action in the
presence of a lower curvature bound. The q-extent is defined to be the maximal
average distance between q points, not necessarily distinct, in a metric space. That
is, for any metric space (X, d) and positive integer q ≥ 2, we define the q-extent of
X to be

xtq(X) =

(
q

2

)−1

sup
x1,...,xq∈X

∑

1≤i, j≤q

d(xi, xj).

Any set of q points that achieves the q-extent is then called a q-extender.
Finally, we recall the following useful lemma from [24]. For two relatively prime

integers s, t, denote by Xs,t the orbit space of S3 by the isometric circle action
eiθ · (z2, z2) = (eisθz1, eitθz2).

Lemma 2.5 ([24]). The bounds

xt4(Xs,t) ≤
π

3
and xt5(Xs,t) ≤

3π

10
hold. Moreover, given 4 distinct points in Xs,t with (|s|, |t|) &= (1, 1),

∑

1≤i<j≤4

dist(xi, xj) < 2π.

In particular, the 4-extent of 4 distinct points in Xs,t is strictly less than π/3.
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3. Alexandrov spaces of almost non-negative curvature

Since a Riemannian manifold with a lower curvature bound is also an Alexan-
drov space, we simply state the definition of almost non-negative curvature for
Alexandrov spaces.

Definition 3.1. We say that a sequence of Alexandrov spaces {(X, distn)}∞n=1 is
almost non-negatively curved if there is a fixed D > 0 so that

diam (X, distn) ≤ D and curv (X, distn) ≥ − 1

n2
.

We will also say that the topological space X admits almost non-negative cur-
vature (in the Alexandrov sense) or, less formally, that X is an Alexandrov space
of almost non-negative curvature.

We can always rescale the metrics, distn, on X so that each (X, distn) has
diameter 1 and we will always do so. Let (X∞, dist∞) denote the limit space
limn→∞(X, distn). Then diam(X∞, dist∞) = 1.

Remark 3.2. When we talk about almost non-negatively curved manifolds, we spec-
ify the manifold up to diffeomorphism. In Definition 3.1 we only specify the space up
to homeomorphism and this can create ambiguities. For example, the round sphere
S5 and the double-suspension of the Poincaré homology sphere are markedly dif-
ferent as Alexandrov spaces but they are homeomorphic as topological spaces. It
would thus be of interest to find a category intermediate between that of topological
spaces and Alexandrov spaces which plays a similar role in the subject to that of
the category of smooth manifolds.

In non-negative curvature, every geodesic triangle has angle sum at least π. As
might be expected, in almost non-negative curvature this can be shown to be almost
true.

Lemma 3.3. Let X be an Alexandrov space with curv(X) ≥ −k2 and diam(X) ≤ 1.
Then the defect of any triangle in X is bounded above by a function µ(k) with
µ(k) = O(k2).

Proof. The defect of a triangle in a space X with curv(X) ≥ −k2 is bounded above
by the defect of a triangle with the same side lengths in the hyperbolic plane of
constant curvature −k2, which is equal to the area of the triangle multiplied by
k2. It follows that, when diam(X) ≤ 1, an upper bound can be determined from
the area of the largest triangle in the hyperbolic plane with side lengths at most 1.
Bezdek [1] showed that the area of a polygon in the hyperbolic plane with a given
perimeter is maximized by a regular polygon.

Computing the Taylor expansion of the hyperbolic law of cosines, we see that
the angle in an equilateral triangle with side length 1 is given by

arccos
cosh2 k − cosh k

sinh2 k
=

π

3
− O(k2) <

π

3
,

and the result follows. !

Perelman and Petrunin in [20] showed that the triangle comparison condition
can be framed in terms of the concavity properties of the distance function from
any point p.
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p1dmin

p3

p2

ε
α

Figure 2. A thin triangle. By Lemma 3.4, if p2 and p3 are ex-
tremal, then α ≈ π/2.

We say that a locally Lipschitz function f : R → R is λ-concave if φ(t) =
f(t) − λt2/2 is a concave function. We can write f ′′ ≤ λ, since this differential
inequality holds in the barrier sense. As a consequence of the concavity of φ,
we have φ′

+(t0) ≥ φ′
−(t1) for t0 < t1, where φ′

− and φ′
+ are the left and right

derivatives, respectively. A function f : X → R on a length space X is λ-concave
if its restriction to every shortest path is λ-concave.

In an Alexandrov space with curv ≥ −k2, the function fk = ρk ◦ dist(p, ·) with

ρk(x) =
1

k2
(cosh(kx) − 1)

is (1+k2fk)-concave. Note that in the hyperbolic plane of constant curvature −k2,
equality holds so that f ′′

k = 1 + k2fk. Similar conditions hold for non-negative
curvature bounds, but we omit them here.

Using this formulation we can now prove a lemma for a certain class of thin
triangles; those with one short edge, such that the two endpoints of the edge are
extremal points, as shown in Figure 2. This lemma will be important to the proof
of Proposition 4.5.

Lemma 3.4. Let X be an Alexandrov space with curvature bounded below by −k2

and fix dmin > 0. Let p1, p2, p3 ∈ X be three distinct points with p2, p3 extremal,
dist(p2, p3) = ε and dist(p1, pi) ≥ dmin for i ∈ {2, 3}. Then

π

2
≥ "p1p2p3 ≥ π

2
− f(dmin, ε, k),

where

(3.1) f(dmin, ε, k) = ε

(
1

dmin
+ O(k2)

)
+ O(ε3).

Proof. Since p2 is chosen to be extremal, diam(Σp2) ≤ π/2 and so "p1p2p3 ≤ π/2.
We proceed to demonstrate the lower bound.

The function fk defined above satisfies f ′′
k ≤ 1 + k2fk. Let γ : [0, ε] → X be

a geodesic from p2 to p3. Let f = fk ◦ γ be the restriction of fk to the geodesic.
Choose R > 0 so that f ≤ R on [0, ε]. It now follows that f ′′ ≤ 1 + Rk2 on the

geodesic, in other words φ(t) = f(t) − (1 + Rk2) t2

2 is concave.
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Let α = "p1p2p3. Then

f ′
+(0) =

sinh(k dist(p1, p2))

k
(− cosα) ≤ − sinh(kdmin)

k
cosα.

Note that φ′
+(0) = f ′

+(0). At the other end of γ, since p3 is an extremal point, we
have "p1p3p2 ≤ π/2. So f ′

−(ε) ≥ 0 and hence φ′
−(ε) ≥ −(1 + Rk2)ε. Observe that

the direction of the inequality is due to the fact that this is the angle at p3 between
a shortest path from p3 to p1 and a geodesic given by reversing γ.

Now by concavity φ′
−(ε) ≤ φ′

+(0) so that

−(1 + Rk2)ε ≤ − sinh(kdmin)

k
cosα,

from which, using a Taylor series expansion for the last equality, we conclude that

cosα ≤ k(1 + Rk2)

sinh(kdmin)
ε = ε

(
1

dmin
+ O(k2)

)
.

It follows that

"p1p2p3 = α ≥ π

2
− ε

(
1

dmin
+ O(k2)

)
− O(ε3),

as required. !
We also need the following general proposition about 3-dimensional Alexandrov

spaces of almost non-negative curvature. The proof is very similar to that for
non-negative curvature in [14] and [24].

Proposition 3.5. Let {(X, distn)}∞n=1 be an almost non-negatively curved sequence
of 3-dimensional Alexandrov spaces. Then for sufficiently large n, (X, distn) can
have at most five interior points with spaces of directions isometric to S3/S1.

Proof. Let S ⊂ X be the set of all such singular points and suppose that |S| = 6.
Write S = {pi}6

i=1.
Each of the 20 distinct triples which can be chosen from S defines a triangle.

Recalling that curv(X, distn) ≥ −1/n2, it follows from Lemma 3.3 that each of
these triangles has a total angle of at least π − µ(1/n). So we may write

∑

i,j,k

"pipjpk ≥ 20

(
π − µ

(
1

n

))
.

On the other hand, by considering the geometry of the space of directions Σpj ,
we can obtain an upper bound for

∑
i,j,k "pipjpk. Since by Lemma 2.5 we have

xt5(Σpj ) ≤ 3π/10 and there are ten angles based at pj , we obtain
∑

i,k

"pipjpk ≤ 3π.

Summing over all j, we obtain the inequality

20

(
π − µ

(
1

n

))
≤ 18π,

which, for large enough n, does not hold. The upper bound of five follows. !
It follows from the Soul Theorem for Alexandrov spaces [19] that a non-negatively

curved Alexandrov space can have at most two boundary components. Here we
show that the same result holds in almost non-negative curvature.
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Lemma 3.6. An almost non-negatively curved Alexandrov space can have at most
two boundary components.

Proof. As shown by Wong [27], the work of Liu and Shen [16] bounding the Betti
numbers of Alexandrov spaces also bounds the number of boundary components
in an Alexandrov space. That is, an Alexandrov space of dimension n, diam ≤ D,
and curv ≥ k can have at most C(n, D, k) boundary components.

Since every almost non-negatively curved space admits a metric with diam ≤ 1
and curv ≥ −1, this implies a uniform bound C(n) on the number of boundary
components in an almost non-negatively curved Alexandrov space of dimension n.

However, if an almost non-negatively curved space had three boundary com-
ponents, then by gluing copies of the space along boundary components it would
be possible to produce almost non-negatively curved spaces with arbitrarily many
boundary components, thus violating this bound. This contradiction demonstrates
the result. !

4. Case 1: The circle acts with isolated fixed points

Recall that the strategy of proof for the Main Theorem 1.1 is to consider two
separate cases: Case 1, where the circle action has only isolated fixed points, and
Case 2, where there is a codimension-two fixed-point set. The goal of this section
is to prove Proposition 4.7, which addresses Case 1.

The first step is to use Lemmas 3.3 and 3.4 to bound the number of isolated
fixed points, which we will accomplish in Proposition 4.5. We observe that, for the
case of non-negative curvature, geometric arguments were used in [14] and [11] to
rule out the presence of a fifth fixed point. Both papers rely on the fact that, at
any of the five fixed points, precisely two of the six angles will equal π/2 and that
the total angle at any vertex of the tetrahedron formed by any 4 points must be π.
However, once the rigidity of non-negative curvature is relaxed, of the six angles at
any of the five fixed points, there could be four angles all of which are close to π/2,
so the argument breaks down in almost non-negative curvature.

In order to prove the upper bound of 4 isolated fixed points, we need to prove
a technical lemma, Lemma 4.4, which will follow once we have proven Sublemmas
4.2, and 4.3.

Before we attempt the proofs of Sublemmas 4.2 and 4.3, we need to better
understand the geometry of Xs,t, (|s|, |t|) &= (1, 1), which we recall is the quotient
of S3 under an isometric circle action as in Lemma 2.5. The diameter of Xs,t is
only achieved on the unique pair of antipodal points, p and q, such that one or
both are singular, depending on the values of s and t. Then, given any two points
v, w ∈ Xs,t, whose distance is sufficiently close to π/2, we see that v must be close
to one of p or q and w must be close to the other. That is, we obtain the following
sublemma.

Sublemma 4.1. Let p, q ∈ Xs,t such that dist(p, q) = π/2. Suppose that p is a
singular point in Xs,t. For any ε > 0 there is a δ > 0 such that if v0, v1 ∈ Xs,t with
dist(v0, v1) ≥ π/2 − δ, the following statements hold for some i ∈ {0, 1}, where we
read i + 1 modulo 2.

(1) | dist(vi, p) − dist(vi+1, q)| ≤ δ;
(2) dist(vi+1, q) ≤ (1 + ε)δ; and
(3) dist(vi, p) ≤ (2 + ε)δ.
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4942 JOHN HARVEY AND CATHERINE SEARLE

Proof. Using the triangle inequality, we have

dist(vi, vi+1) ≤ dist(vi, p) + dist(p, vi+1)

= dist(vi, p) +
π

2
− dist(vi+1, q),

since dist(p, vi+1)) + dist(vi+1, q) = π/2. But dist(vi, vi+1) ≥ π/2− δ and therefore
dist(vi, p) − dist(vi+1, q) ≤ δ. This proves Part 1.

To prove Part 2, we note that since dist(vi, vi+1) ≥ π/2− δ and by compactness
of Xs,t, and the uniqueness of p and q, we have dist(vi, p), dist(vi+1, q) ≤ C ′(δ), for
some i ∈ {0, 1}, where limδ→0 C ′(δ) = 0. It then follows from first variation of arc
length that

dist(vi, vi+1) ≤ dist(vi+1, p) − cos(β) dist(vi, p) + C(δ)(dist(vi, p))2,

where β = "vi+1pvi, and C(δ) = C(C ′(δ)), with limδ→0 C(δ) = 0. Then, since p is
singular, it follows that β ≤ π/2 and we have

π

2
− δ ≤ dist(vi, vi+1) ≤ dist(vi+1, p) + C(δ)(dist(vi, p))2

≤ π

2
− dist(vi+1, q) + C(δ)(dist(vi, p))2

≤ π

2
− dist(vi+1, q) + C(δ)(dist(vi+1, q) + δ)2,

by Part 1. Thus

dist(vi+1, q) ≤ δ + C(δ)(dist(vi+1, q) + δ)2.

Then either

dist(vi+1, q) ≤ δ + 4C(δ)(dist(vi+1, q))
2 or dist(vi+1, q) ≤ δ + 4C(δ)δ2.

In the first case, since 1− 4C(δ)(dist(vi+1, q) > 0 and using a Taylor expansion, we
see that

dist(vi+1, q) ≤ δ(1 + 8C(δ) dist(vi+1, q)) ≤ δ(1 + 4πC(δ))

for small enough δ. In the second case, noting trivially that δ < π, we can show
that the same inequality holds. We set 4πC(δ) < ε, and with this choice we have
proven Part 2.

Part 3 follows by combining Parts 1 and 2. !
We now proceed to prove Sublemmas 4.2 and 4.3. Let S = {pi}5

i=1 be a set of
five distinct points in an Alexandrov space X of almost non-negative curvature with
Σpi = Xsi,ti for each pi ∈ S. We denote by vij ∈ Σpi the direction of a geodesic
from pi to pj . The set S converges to some finite S∞ ⊂ X∞ with 1 ≤ |S∞| ≤ 5.

Sublemma 4.2. Let {(X, distn)}∞n=1 be an almost non-negatively curved sequence
of 3-dimensional Alexandrov spaces. Suppose that S is defined as above and that
|S∞| ≤ 4 in X∞. Then there is a δ > 0 such that for some k and for sufficiently
large n,

xt4({vkl : k &= l}) ≤ π

3
− δ.

Proof. The proof is broken into two cases: either |S∞| ≤ 2 or |S∞| ≥ 3.
Let us define a convergence map π : S → S∞ so that π(pi) = limn→∞ pi. By

passing to a subsequence, we may assume that the preimages π−1(x), for each
x ∈ S∞, satisfy distn(pi, pj) < 1/n for each pi, pj ∈ π−1(x). Choose d so that
dist∞(x, y) > 2d for each pair of distinct points x, y ∈ S∞. We will denote by dist
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p1 p2 p3

p4 p5

o

v51
v52

v53

v54

Σp5

(a) (b)

Figure 3. One possible configuration with |S∞| = 2. Where
|S∞| ≤ 2, there are always three thin triangles (a) guaranteeing
the configuration shown in (b) within the cone on the space of
directions.

the distance function on any space of directions, Σpj , and, for simplicity, we will
omit the dependence of this space on n. Seeking a contradiction, suppose that for
all k we have

xt4({vkl : k &= l}) → π

3
as n → ∞.

Consider first the case in which |S∞| ≤ 2. Then there is some x ∈ S∞ which is the
limit of at least three points.

Suppose that exactly three points converge to x, so that π−1(x) = {p1, p2, p3}.
Apply Lemma 3.4 to the three thin triangles given by (pj , p5, p4) for j = 1, 2, 3,
as shown in Figure 3(a), with ε < 1/n and dmin = d, as chosen above. Then, as
shown in Figure 3(b), and since "pj , p5, p4 = dist(v5j , v54) in Σp5 , equation (3.1)
of Lemma 3.4 gives us that

π

2
− dist(v5j , v54) ≤ f

(
dmin,

1

n
,
1

n

)
=

1

nd
+ O

(
1

n3

)
for 1 ≤ j ≤ 3.

In the case where (|s5|, |t5|) = (1, 1), then each v5j , 1 ≤ j ≤ 3, is close to the
unique point antipodal to v54. Hence the v5j are pairwise close to each other. In
particular, it follows from the triangle inequality that

dist(v5i, v5j) ≤
2

nd
+ O

(
1

n3

)
for 1 ≤ i, j ≤ 3.

However, if (|s5|, |t5|) &= (1, 1), it follows from Parts 2 and 3 of Sublemma 4.1 that
v54 is close to some ξ ∈ Σp5 , which is either a singularity or the unique point
antipodal to a singularity. In this case, each v5j , 1 ≤ j ≤ 3, is close to the unique
point antipodal to ξ. In particular, it follows from Parts 2 and 3 of Sublemma 4.1
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p3 p4

p1

p2

Figure 4. Where |S∞| ≥ 3 the existence of two thin triangles
guarantees collinearity.

and the triangle inequality that

dist(v5i, v5j) ≤
5

nd
+ O

(
1

n3

)
for 1 ≤ i, j ≤ 3.

In both cases, we obtain that

xt4({v5l : l &= 5}) ≤ 1

2

(
π

2
+

5

nd

)
+ O

(
1

n3

)
−−−−→
n→∞

π

4
<

π

3
,

a contradiction.
Alternatively, suppose {p1, p2, p3, p4} ⊂ π−1(x). Let y ∈ X∞ so that y &= x.

Set d′ = 1
2 dist∞(x, y). Let qn ∈ (X, distn) be such that limn→∞ qn = y. We then

apply Lemma 3.4 to the thin triangle given by (qn, p1, pj) for j = 2, 3, 4, now with
dmin = d′. We obtain at Σp1 that, as before,

dist(v1i, v1j) ≤
5

nd′
+ O

(
1

n3

)
for 2 ≤ i, j ≤ 4,

so that

xt4({v1l : l &= 1}) ≤ 1

2

(
π

2
+

5

nd′

)
+ O

(
1

n3

)
−−−−→
n→∞

π

4
<

π

3
,

a contradiction.
We now turn to the case 3 ≤ |S∞| ≤ 4. Note first that, since these are extremal

points, no three are collinear, in the sense that no shortest path between two points
of S∞ contains a third point of S∞.

Suppose that p1, p2 ∈ π−1(x). Let y = π(p3) and z = π(p4). By renumbering,
we may assume that x, y, and z are all distinct. Then applying Lemma 3.4 to
(p3, p1, p2) and (p4, p1, p2), we obtain that, at Σp1 ,

π

2
− dist(v12, v1j) ≤

1

nd
+ O

(
1

n3

)
for j = 3, 4.

We can deduce as before that

dist(v13, v14) ≤
5

nd
+ O

(
1

n3

)
−−−−→
n→∞

0,

as shown in Figure 4. It follows from the lower semi-continuity of angles in Alexan-
drov spaces (see Theorem 4.3.11 in [4]) that "yxz = 0, that is, the points x, y, and
z are collinear; a contradiction. !

Sublemma 4.3. Let {(X, distn)}∞n=1, S, and S∞ be as in Sublemma 4.2. Suppose
that |S∞| = 5 and that there is a pi ∈ S such that Σpi is isometric to Xsi,ti with
(|si|, |ti|) &= (1, 1). Then there is a δ > 0 such that for some k and for sufficiently
large n,

xt4({vkl : k &= l}) ≤ π/3 − δ.
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Proof. Suppose, without loss of generality, that i = 5, so that Σp5 = Xs,t with
(|s|, |t|) &= (1, 1) and, seeking a contradiction, that xt4({vkl : k &= l}) = π/3. By
Lemma 2.5, the 4-extender in Σp5 is given by

{w1, w2, w3, w4} ⊂ Σp5 with w1 = w2, w3 = w4, dist(w1, w3) =
π

2
.

It follows that, passing if necessary to a subsequence, we may assume that

dist(v51, v52), dist(v53, v54) <
1

n
−−−−→
n→∞

0.

It follows that the points in each of the two sets {π(p5), π(p1), π(p2)}, and
{π(p5), π(p3), π(p4)}, are collinear. As noted in Sublemma 4.2, this contradicts
the extremality of S∞. !

Combining Sublemmas 4.2 and 4.3, we obtain the following lemma.

Lemma 4.4. Let {(X, distn)}∞n=1 be an almost non-negatively curved sequence of
3-dimensional Alexandrov spaces. Suppose that S = {pi}5

i=1 is a set of five distinct
points in X with Σpi = Xsi,ti for each pi ∈ S. Suppose there is a j such that
(|sj |, |tj |) &= (1, 1). Then there is a δ > 0 such that for some k and for sufficiently
large n,

xt4({vkl : k &= l}) ≤ π

3
− δ.

We are now in a position to prove that there are only 4 isolated fixed points of
the S1 action.

Proposition 4.5. Let S1 act smoothly and effectively on a closed, smooth, simply-
connected 4-manifold M , admitting an almost non-negatively curved sequence of
S1-invariant Riemannian metrics. If the fixed-point set of the action contains only
isolated points, then there are at most four of these.

Proof. By Proposition 3.5 there are at most five isolated fixed points. Suppose that
there are exactly five fixed points, and consider their images, {pi}5

i=1 = F ∗ ⊂ M∗.
These points define 10 triangles. Let vjl ∈ Σpj be the direction of a geodesic from
pj to pl. If we apply similar arguments to those of Proposition 3.5, we will find
only that the inequality

10

(
π − µ

(
1

n

))
≤ 10π

must hold, but since µ
(

1
n

)
> 0 this is always true.

The right hand side of this inequality stems from the statement xt4(Σpj ) ≤ π/3.
However, we can restrict our attention to calculating the potentially smaller value
xt4({vjl : l &= j}). By Lemma 4.4 we have that if, for some i, Σpi is isometric to
some Xs,t with (|s|, |t|) &= (1, 1), the inequality

xt4({vij : j &= i}) ≤ π

3
− δ

holds for some fixed δ > 0 and sufficiently large n. In that case,

10

(
π − µ

(
1

n

))
≤ 10π − δ

would hold, yielding a contradiction for sufficiently large n.
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It follows that, for all i, the space Σpi must be isometric to X1,1. In other words,
the action of the isotropy group S1 on the unit sphere at each fixed point must be
free.

The residue theorem of Bott [2] then implies that the signature of M is given by

σ(M) =
1

3

(
5∑

i=1

±2

)
∈ Z,

which can only be ±2. However, there is no closed, simply-connected 4-manifold
with Euler characteristic 5 and signature ±2, and so there cannot be five fixed
points, completing the proof. !

Remark 4.6. Rather than using a signature argument, one can also rule out the
possibility of a fifth fixed point by noting that the action is semi-free, that is, there
are no points of finite isotropy. This is because Proposition 2.2 requires the closure
of any component of finite isotropy to intersect the set of fixed points, but as shown
above the isotropy action on the unit sphere at each fixed point is free. By work
of Church and Lamotke [6], or since the weighted orbit spaces are legally weighted
3-manifolds, as in Definition 5.2 of [7], semi-free circle actions on closed, smooth,
simply-connected 4-manifolds always have an even number of fixed points.

Proposition 4.7. Let S1 act smoothly and effectively on a closed, smooth, simply-
connected 4-manifold M , admitting an almost non-negatively curved sequence of
S1-invariant Riemannian metrics. If the action fixes only isolated fixed points,
then there is an invariant metric of non-negative curvature.

Proof. By Lemma 2.1 and Proposition 2.2, the orbit space M∗ is homeomorphic to
S3 and E∗ comprises arcs in S3 joining the fixed points, of which, by Proposition
4.5, there are at most four. Since the number of fixed points gives χ(M), the Euler
characteristic of M , the fact that χ(M) ≥ 2 for simply-connected 4-manifolds
ensures that there are at least two fixed points.

At this stage, the arguments made by Grove and Wilking in [11] in classifying
isometric circle actions on non-negatively curved 4-manifolds all carry through. We
summarize these arguments for the sake of completeness.

First, for any closed curve γ ⊂ E∗ ∪ F ∗, we consider the double branched cover
over γ, M∗

2 (γ). By Lemma 2.4, M∗
2 (γ) is almost non-negatively curved. Moreover,

its universal cover, M̃∗
2 (γ), is also almost non-negatively curved. Observe that

M̃∗
2 (γ) must have at least 2|π1(M∗

2 (γ))| points with spaces of directions isometric
to some Xs,t. By Proposition 3.5, 2|π1(M∗

2 (γ))| ≤ 5. Therefore |π1(M∗
2 (γ))| ≤ 2.

By Theorem C of [11], we can use the topology of M∗
2 (γ) to recognize whether γ

is knotted. Namely, γ is knotted if and only if the order of the fundamental group
|π1(M∗

2 (γ))| ≥ 3. It follows that γ is the unknot.
This technique can also be used to show that γ must pass through all of the

S1-fixed points, as follows. Recall that Proposition 2.2 says that γ cannot contain
just one isolated fixed point and so, by counting singularities in M̃∗

2 (γ), the only
configuration we still need to rule out is where E∗ ∪ F ∗ = {p} ∪ α, where p is an
isolated fixed point and α is a bi-angle consisting of two distinct paths in E∗ with
common endpoints in F ∗. However, this configuration is ruled out by Lemma 5.1
of Fintushel [7], since the weight assigned to a closed curve is 0 and to an isolated
point ±1.
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Therefore M∗ ∼= S3 with F ∗ consisting of two, three, or four isolated points
and E∗ making up arcs between the points of F ∗, so that any closed curve in
E∗∪F ∗ is unique, unknotted, and contains all of F ∗ (cf. Theorem 2.5 in [11]). The
decomposition of M into two disk bundles described in Section 3 of [11] does not
depend on M itself being non-negatively curved, but rather on the consequences of
that fact for the topology of the orbit space, and so applies in our case. !

5. Case 2: Fixed-point-homogeneous actions

A fixed-point-homogeneous action is one where the orbit space has a boundary
component corresponding to a component of the fixed-point set. By classifying
these actions in Proposition 5.4 we will complete the proof of the Main Theorem
1.1.

Since the action of S1 on M is fixed-point-homogeneous, we see immediately
that the orbit space M∗ is a simply-connected, almost non-negatively curved 3-
manifold with boundary by Lemma 2.1. By Proposition 2.2, the union of ∂M∗

with a number of isolated singular points makes up F ∗, while the points in E∗, the
image of components of finite isotropy, comprise arcs joining the isolated points of
F ∗.

We can identify the topology of M∗ using the following well-known fact.

Lemma 5.1. If Y is a simply-connected 3-manifold with m boundary components,
then Y is homeomorphic to S3 with m copies of D3 removed.

Proof. By Lefschetz duality, H2(Y, ∂Y ) ∼= H1(Y ) ∼= 0, the latter isomorphism
holding since Y is simply connected. The homology long exact sequence of the
inclusion ∂Y → Y then shows that H1(∂Y ) ∼= 0, so that it is a union of copies of
S2.

Now gluing in m copies of D3 along the m boundary components produces,
by the Van Kampen Theorem, a closed, simply-connected manifold, which by the
resolution of the Poincaré Conjecture is homeomorphic to S3. !

Recall that by Lemma 3.6, the orbit space M∗ can have at most two bound-
ary components, so we will characterize the orbit spaces on a case-by-case basis
according to whether the boundary has one or two connected components.

Lemma 5.2. If M∗ has one boundary component, then it is homeomorphic to D3

and the action has at most two isolated fixed points. If E∗ &= ∅, then it is an arc
between the two isolated points of F ∗.

Proof. Since M∗ is a copy of S3 with one D3 removed, it is homeomorphic to D3.
We now consider a sequence of S1-invariant metrics {gn}∞n=1 on M such that

diam(M, gn) = 1 and curv(M, gn) ≥ −1/n2. Each induces an Alexandrov metric on
M∗ with diam ≤ 1 and curv ≥ −1/n2, and the doubling of these Alexandrov spaces
along the boundary produces another sequence of Alexandrov spaces, (X, distn),
with diam ≤ 2 and curv ≥ −1/n2.

Therefore X also admits almost non-negative curvature. By Proposition 3.5, for
sufficiently large n, the metric on X can have at most five points corresponding to
isolated fixed points of the action on M , and therefore M can contain at most two
isolated fixed points.

The set E∗ makes up a number of arcs between the isolated points of F ∗. Seeking
a contradiction, suppose that there are two such arcs, creating a singular closed
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curve in M∗. In the double, X, there are then two such curves, each with two
points having small spaces of directions. Taking the double branched cover over
one of these curves creates an almost non-negatively curved space with six points
having small spaces of directions, violating Proposition 4.5. !
Lemma 5.3. If M∗ has two boundary components, then it is homeomorphic to
S2 × I and the action has no isolated fixed points or finite isotropy.

Proof. As a copy of S3 with two D3s removed, M∗ is homeomorphic to S2 × I.
Two copies of M∗ may be joined along a common boundary component to create

a new space, also homeomorphic to S2 × I. Let us consider a space X constructed
by joining six copies of M∗ in such a manner. Since the diameter is still finite,
having increased by a factor of at most six, X again admits almost non-negative
curvature in the Alexandrov sense.

If M∗ had an isolated fixed point, then for each n, X would have six points with
spaces of directions isometric to some Xs,t, violating Proposition 3.5. Since E∗ only
appears as arcs joining isolated points of F ∗, there is also no finite isotropy. !
Proposition 5.4. Let S1 act smoothly and effectively on a closed, smooth, simply-
connected 4-manifold M , admitting an almost non-negatively curved sequence of
S1-invariant Riemannian metrics. If the action fixes a set of codimension-two,
then there is an invariant metric of non-negative curvature.

Proof. By Lemmas 5.2 and 5.3, the orbit space is either homeomorphic to (i) D3

with up to two isolated fixed points and a possible arc joining them representing
finite isotropy, or (ii) S2 × I with no isolated fixed points or finite isotropy.

These orbit spaces appear in the classification of fixed-point-homogeneous circle
actions on simply-connected, non-negatively curved 4-manifolds in [8], and therefore
they arise from actions equivariantly diffeomorphic to those described there. !
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